
A Scalable Multi-Replication Framework for Data Grid

Shin’ichiro Takizawa
Tokyo Institute of Technology

takizawa@matsulab.is.titech.ac.jp

Yasuhito Takamiya
Tokyo Institute of Technology

takamiya@matsulab.is.titech.ac.jp

Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology

hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology & NII

matsu@is.titech.ac.jp

Abstract

Existing replica services on the Grid we know to date as-
sumes point-to-point communication and file transfer pro-
tocol. As such, when hundreds to thousands of hosts on the
Grid access a single dataset simultaneously, bottlenecks in
networks and/or the data servers will hinder performance
significantly. Instead, our replication framework couples ef-
ficient, multicast techniques with a replica catalog that au-
tomatically detects simultaneous access to the replica by
multiple nodes. As a prototype, we have designed and built
a portable, XML-based replica location service accounting
for such parallel transfer requests, and coupled it with a
O(1) bulk file transfer system Dolly+[6]. The benchmarks
show that the system is scalable and effective in reducing
replication costs significantly in cluster-based replication
scenarios.

1. Introduction

Various scientific disciplines, such as high-energy
physics, astronomy, and lifesciences, are now build-
ing and deploying Grids in order to process the datasets
collected through their observational instruments, typi-
cally referred to as Data Grids. The sizes of such datasets
on a Data Grid could be quite large, ranging from a few ter-
abytes up to several petabytes, and moreover, they are typ-
ically accessed remotely over high-speed networks as re-
searchers and their computing facilities on the Grid are
globally distributed. In order to facilitate their efficient
and safe management, various work have focused on algo-
rithms and systems for managing replicas on Data Grids:

for example, The Globus toolkit facilitates areplica man-
agement service[1] that manages the location of the datasets
and their replicas in a hierarchical fashion in a database
called the replica catalog[2], and transfers the repli-
cas using GridFTP[3], one of the standard file transfer
services on the Grid. The Grid DataFarm[4] is a paral-
lel and distributed filesystem on the Grid, and utilizes
replicas extensively to achieve efficiency and data fault tol-
erance.

Existing replica services on the Grid we know to date as-
sumes point-to-point communication and file transfer pro-
tocol. As such, when hundreds to thousands of hosts on
the Grid access a single dataset simultaneously (a typical
scenario for many applications), bottlenecks in networks
and/or the data servers will hinder performance signifi-
cantly. As an example, in the BLAST[5] DNA sequenc-
ing application, the DNA sequence database must properly
replicate amongst all compute nodes, and such replication
may happen frequently due to rapidly changing datasets of
newly acquired DNA sequence data, rendering common op-
timization techniques such as caching useless.

Instead, we propose a replication framework for (Data)
Grid that couples efficient, multicast techniques with a
replica catalog that automatically detects simultaneous ac-
cess to the replica by multiple nodes. More specifically,
we have designed and built a portable, XML-based replica
location service accounting for such parallel transfer re-
quests, and coupled it with a O(1) bulk file transfer system
Dolly+[6]. The benchmarks show that the system is scal-
able and effective in reducing replication costs significantly,
especially in the case where the client peers of the replica-
tion are multiple nodes in a single cluster, accessing a re-
mote data server.



2. Our Parallel Multi-Replication Frame-
work on the Data Grid

Our parallel multi-replication framework on the Data
Grid manages the location of data in the Grid, and employs
efficient multicast techniques to drastically reduce the cost
of replication when requests are made on a single data set in
a parallel fashion from multiple nodes. Because the replica
service has full knowledge of where the original data and
the replica are, the requests that are made, and the network
topologies and bandwidths of the relevant nodes in the Grid,
the replica manager can select an appropriate strategy per
each replica request, including the normal peer-to-peer high
bandwidth transfer, to aggregating requests and employing
fast O(1) multicast protocols when deemed advantageous.
Our framework thus is most effective in a realistic setting,
when a large-scale SPMD or parameter sweep applications
involving hundreds of nodes issue frequent data access re-
quests to an identical data set, as is with the case of the
BLAST application.

Data replication for our framework is performed in two
phases: the (1) data (originator) host selection phase, and
the (2) file transfer phase, as depicted in Figure 1 and Fig-
ure 2.

1. The originator of the data registers its location and ac-
cess info to thedata location management server. The
server hosts a data location service for the entire Grid
for each piece of data, typically a file or a set of files.

2. The client inquires the location of the data it wishes to
access to the file information management server.

3. The server in turn returns all the known locations of
the particular data in question to the client.

4. The client selects the most appropriate data server (i.e.,
the originator of the data or a client hosting its replica)
according to the topology and the status of the net-
work, etc. (Note that at this point the decision on the
data server is being made strictly locally.)

The file transfer happens in the following fashion as in
Figure 2.

1. When multiple client hosts of some naturally definable
group, typically in the same network site or within a
same large-scale cluster, makes a data replication re-
quest within some short time interval, the request is
made through a proxy or a representative node that
dynamically aggregates the requests and sends the re-
quest to the data server.

2. The data server multicasts the requested data to all the
representative hosts that requests the data using a effi-
cient and reliable multicast algorithm to the represen-
tative nodes.

Figure 1. Selecting the Data Server Host in a
Data Grid

Figure 2. Data Replication using Parallel Mul-
ticasting

3. Each representative node in turn multicasts the data to
all the hosts within the group.

Although the our framework itself is clean and simple
as outlined, each component must satisfy the following re-
quirements. Moreover, multicasting is typically considered
as often not very reliable or scalable over hundreds of nodes
in a network. In order to circumvent such problems, we fa-
cilitate an efficient and reliable O(1) multicasting we have
devised for our Dolly+ system, but this must be shown to
scale over numerous nodes in the network. Below, we inves-
tigate the requirements for the three components that serves
as a key to our implementation of the framework:

Managing Data/File Location A given data and its replica
may exist in numbers throughout a Data Grid, and
the data location management server must manage
and promptly return the choice in an efficient fash-
ion. When multiple requests are made in parallel, this



Figure 3. Overview of the Prototype System

server may itself may become a bottleneck. As such
the server not only needs to be flexible but also re-
quires high performance.

Network/Grid Monitoring The client in turn must select
the most appropriate data server from the given list of
candidates returned by the data location management
server. Such a decision will have to be made based
on the dynamic monitoring information of the Grid, in
particular the status of its network. Although network
monitoring for the Grid is considered as its essential
constituent, we must nevertheless show that clients can
make appropriate local decisions from its given info,
and such must be shown to scale given the hundreds of
nodes involved in the Grid and the aggregation of re-
quests that happen therein.

Application-Level, Hierarchical Multicasting of Data
As indicated above, our system uses application-level
multicast for transfer amongst multiple ‘groups’ and
the transfer within each group (i.e., typically a clus-
ter with LAN and local storage). Because of signifi-
cant differences in network characteristics for WAN
and LAN, the system must shown to scale and ex-
hibit O(1) scaling. Also important is to investi-
gate the tradeoff point where our framework actually
would be effective compared to conventional strate-
gies such as caching within a local site.

3. Prototype Implementation of our Multi-
Replication Framework

We have implemented a prototype of our framework to
address the above issues. The system is written in Java, and
the overall architecture is as shown in Figure 3.

3.1. Replica Location Service (RLS)

The RLS provides various services on data replica loca-
tion including registration, update, deletion, search, etc. The
server maintains data with its logical name (called the log-
ical data or file name), and maintains the physical location
and other attributes of the data in the replica catalog DB.
Our RLS also supports logical collection services, a typi-
cal service often provided by other RLSs.

In our implementation we experimented with the use of a
native XML DB Xindice[7] for flexibility. A logical collec-
tion is an entry in Xindice, and a logical data/file are the
registered as its attribute, and the replica location is fur-
ther defined as an attribute of the logical data/file. We added
caching so that multiple parallel accesses from the nodes to
the same entry will not cause significant conflicts. We have
also employed XML-based protocol over HTTP for porta-
bility and firewall compliance.

3.2. File Transfer Service

Data Transfer Server A server that acts as a head node
for multicast within a given group within a LAN. Al-
though we have designed the prototype to accommo-
date various types of LAN file transfer services, we
have employed the Dolly+ system we are developing
for clusters that performs full-speed O(1) reliable mul-
ticast utilizing a ring topology. In order to aggregate as
many transfer requests so that they can be multicast,
we delay the startup of transfer for some adjustable
time period.

Data Transfer Client The RLS client will select the best
replica amongst all the available replicas (including the
original data) from which the file will be transferred.
The prototype is designed to hook into a Grid moni-
toring service to make the appropriate judgement. For
our experiment, we simply took the RTT amongst the
nodes as a metric, but in practice more comprehensive
metrics should be used.

After making the selection the client behaves differ-
ently whether the host will be in the LAN or the WAN.
If the host is within the same LAN, the request is sent
directly to the data transfer service of that node. Oth-
erwise, the request is sent to the transfer negotiator,
which we describe below.

Data Transfer Negotiator The Transfer Negotiator aggre-
gates multiple parallel requests from the same group
of hosts within a LAN, thereby reducing external traf-
fic outside the group. In our current implementation,
the negotiator only grants request to fetch the replica
data for the first node that requested the transfer; for
other nodes, a reply is sent to fetch the replica locally,
initiating multicast transfer amongst the nodes.



CPU Mobile PentiumIII 1.13GHz
Memory 640MB
Network 100Base-T
OS Windows XP Professional
Java Sun JDK 1.4.2_01

Table 1. RLS Server PC

CPU Athlon MP 1900+
Memory 768MB
Network 100Base-T
OS Linux Kernel 2.4.19
Java Sun JDK 1.4.2_03

Table 2. The Presto III Cluster at Titech

4. Performance Measurements of Multi-
Replication

For brevity, we present the performance of our proto-
type system in a typical Data Grid scenario where a set of
hosts within a cluster all request replica of a single remote
dataset. The remote RLS server and the client PC cluster
are described in Table 1 and Table 2, respectively. The repli-
cated data is the entire image file of the Fedora Linux dis-
tribution (approximately 660MB), and as a remote server,
we registered the Fedora’s Australian mirror server (mir-
ror.pacific.net.au) and a private server within our laboratory
(matsu-www.is.titech.ac.jp) into the replica catalog.

Here, we compare the three replication scenarios:

Intra-Site Replication When the replica of the data to be
requested already resides on one of the nodes in the
LAN, transfer is made within the node. (1. in Fig 4).
Here we artificially register the node that holds the
replica into the replica catalog.

Inter-Site Replication from a Remote Server When
the replica resides outside the LAN, whereby one
of the hosts within the LAN of the group will re-
trieve the data on behalf of other nodes, and succes-
sively performs efficient replication (2. in Figure 4)
amongst the nodes.

Parallel Replication with Requests from 2 or more Sites
When numerous nodes from multiple groups accesses
the same replica residing in the outside server (3. in
Figure 4). In this experiment we employed the Den-
nis Cluster show in Table 3 at University of Tsukuba
as the second group accessing the same dataset.

We now present the actual results of the experiment:

Figure 4. Replication Scenario

CPU Dual Xeon 2.4GHz
Memory 1GB
Network 1000Base-T
OS Linux Kernel 2.4.20-28.8smp
Java Sun JDK 1.4.2_03

Table 3. The Dennis Cluster at Univ. of
Tsukuba

4.1. Intra-site replication

Firstly, we compared the Intra-site replication with sim-
ple, node-by-node replication using rcp. Figure 5 shows the
result. As one can observe, the increase in the replication
time is almost negligible, allowing near O(1) replication
cost. This is thanks to the efficient and reliable multicast
feature of Dolly+, which is being shown to be used to max-
imum effect.

Figure 5. Results of Intra-Site Replication



Figure 6. Results of Replication from Remote
Data Sever

4.2. Inter-Site Replication from Remote Data
Server

Secondly, we tested the remote replication sce-
nario whereby a request only comes from a same group
of client nodes. For this purpose, we compared the re-
sults with the use of more common transfer sequentially or
using parallel http transfers.

For brevity, we show the case where the server is close,
i.e., a web server in the same lab, This is probably the best
case for rcp and parallel http, since the file-by-file transfer
bottlenecks are minimized.

Figure 6 shows the results. We observe that, for our pro-
totype implementation, the overhead remains constant even
with the increased number of nodes, achieving extremely
high scalability. For smaller number of nodes, however, par-
allel http wins; this is primarily due to the overheads present
in our system, which we hope to minimize in the future.

4.3. Parallel, Multiple Site Replication

Finally, we evaluated the scenario whereby two groups
of different sites access the same replica, from Tokyo and
Tsukuba, respectively. Here we compared the results with
parallel http transfer. Figure 7 shows the results. As was
with the previous scenario, our prototype exhibits high scal-
ability, at the cost of some overhead for small number of
nodes. We also note that the Dennis cluster exhibits supe-
rior performance due to its LAN being 1GigE as opposed
to 100Base-T on Presto III, indicating that Dolly+ is able to
exploit the availability of high local bandwidth. Contrast-
ingly, for http transfers, the results for the two clusters are
largely identical. This is because the overhead in the trans-
fer is being dominated by the bottleneck accessing the re-
mote data server.

Figure 7. Parallel, Multiple Site Replication

5. Conclusion

We proposed a parallel, multi-site replication frame-
work for Data Grid that couples data location service in a
replica catalog dynamically with efficient and reliable O(1)
application-level multicasting. Although the framework is
rather simple, we have demonstrated through our prototype
implementation that the scheme demonstrates extremely
high scalability even in cases where nodes in the hundreds
will access the same data set almost simultaneously, com-
pared to traditional replication systems that largely relied on
point-to-point protocols.

For future work, we hope to improve our algorithm by
fully supporting multicasting over wide-area networks, as
well as experimenting with various aggregation algorithms
to investigate what would be the most appropriate for more
realistic applications. Another issue is exploiting more in-
formation from the monitoring services for replica selec-
tion, and finally, we hope to build a more solid version
which we plan to incorporated into our Data Grid systems
such as the Grid Datafarm, as well as other systems, allow-
ing testing in much higher numbers in terms of its scalabil-
ity.

Acknowledgements

We would like to thank the Grid Datafarm (GFarm)
AIST/KEK/U-Tokyo/Titech team for valuable insights re-
garding replication in the data grid problem space, espe-
cially Atsushi Manabe @ KEK who made the original im-
provements to the Dolly system to create Dolly+, and con-
tinued to work with us in improving Dolly+ over the past
several years. This research was partially supported by the
Ministry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research on Priority Areas, 13224034,
2004.



References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications,
pages 23:187–200, 2001.

[2] An L. Chervenak, Naveen Palavalli, Shishir Bharathi, Carl
Kesselman, and Robert Schwartzkopf. Performance and scal-
ability of a replica location service.The Thirteenth IEEE
International Symposium on High-Performance Distributed
Computing, 2004.

[3] W. Allcock, J. Bresnaham, I. Foster, L. Liming, J. Link, and
P. Plaszczac. Gridftp update january 2002.Globus Project
Technical Report, 2002.

[4] Osamu Tatebe, Youhei Morita, Satoshi Matsuoka, Noriyuki
Soda, and Satoshi Sekiguchi. Grid datafarm architecture for
petascale data intensive computing.Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), pages 102–110, 2002.

[5] Blast. http://www.ncbi.nlm.nih.gov/BLAST/.
[6] Atsushi Manabe. Disk cloning program ‘dolly+’ for system

management of pc linux cluster.Computing in High Energy
Physics and Nuclear Physics, 2001.

[7] Apache xindice. http://xml.apache.org/xindice/.


