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Abstract

Basket Analysis is mathematically characterized and ex-
tended to search families of sets in this paper. These the-
ories indicate the possibility of various new approaches of
data mining. We demonstrate the potential through proposal
of a novel approach QARMINT. It performs complete min-
ing of generic QARs within a low time complexity which has
not been well addressed in the past work. Its performance
evaluation shows high practicality.

1. Introduction

Since an algorithm of Basket Analysis was proposed by
Agrawal and Srikant [1], a large number of researches on
more efficient Basket Analysis have been presented in the
field of data mining. A basic principle underlying all of the
algorithms is the bottom up building of candidate itemsets
in a lattice under a downward closure property of itemsets,
i.e., “if any given itemset � is not large, any superset of �
will also not be large.” The most representative measure to
introduce the downward closure property of the itemsets is
“support,” i.e., occurrence frequency of an itemset in given
transaction data. If an itemset � occurs more than a thresh-
old value, i.e., “minimum support,” it is called a “frequent
itemset.” When two itemsets ���� and ���� sharing their
�� � elements are frequent, their join �� is a candidate fre-
quent itemset.

Some issues remain in the current Basket Analysis where
transactions and itemsets are limited to finite Boolean sets.
The aforementioned basic principle has wider applicability
not limited to the search on the finite Boolean lattice, be-
cause it requires only a search space having (1) a join opera-
tion between two sets and (2) a downward closure property
among sets. In spite of this wide applicability, the frame-
work of the Basket Analysis has not been extended to ad-
dress more generic tasks.

Another issue is the analysis of transaction data in-
cluding items with numeric values such as “��� � ��”
and “��	
��� � �.” These items are called “numeric
items” whereas the items having categorical values such
as “
������ � � ��” are called “categorical items.” The
clause of an item such as “���” is called an “attribute.”
Some categorical item may be only a clause as “����”
without its value. An association rule in which every nu-
meric item has appropriate intervals of its value is called a
“quantitative association rule” (QAR). An example QAR
is “���� � ���� ��� and 
������ � � ��� � ���	
��� �
��� ���” which states “a person who is thirties and married
owns two cars.” Since Srikant and Agrawal proposed an ap-
proach to mine QARs [2], number of studies on the QAR
mining have been made. However, the problem to mine a
complete set of QARs in generic form under representative
mining measures is known to be NP-complete [4]. The state
of the art has not addressed the complete mining of generic
QARs within tractable time complexity.

In this paper, first, we extend the framework of the Bas-
ket Analysis to searching families of sets based on the math-
ematical characterization of the aforementioned basic prin-
ciple. Second, we propose a novel approach and its im-
plementation for complete mining of generic QARs within
a low time complexity ��� �	
� � based on the exten-
sion where � is the number of transactions in data. This
approach is called QAR mining by Monotonic INTerval
(QARMINT) by the nature of its mining criterion. Its low
time complexity in terms of the data amount is essential for
mining large data. Third, its performance evaluation is pre-
sented to show practicality.

2. Extension of Basket Analysis

As mentioned earlier, the basic principle of the Basket
Analysis requires only a search space having (1) a join op-
eration between two sets and (2) a downward closure prop-
erty among sets. The operation (1) introduces a structure on
the search space. Let � be a “family of sets” in which ele-



ments are sets. Let a “join” of two elements �� � in � be an
“upper bound” � � � which follows the rules
Commutative Rule : � � � � � � �, and
Associative Rule : � � �� � �� � �� � �� � �.
� is called an “upper semilattice” when � � � exists in �
for any pair of elements �� � in �. Accordingly, the space
searched by the join operation is an upper semilattice. On
the other hand, the search space of the conventional Basket
Analysis is a finite Boolean lattice where it is finite, an up-
per bound ��� and a lower bound ��� exist, and commuta-
tive rule, associative rule, absorption rule, distributive rule
and complement rule must hold for the upper bound and
the lower bound. The former search space is far less con-
strained than the latter space.

The property (2) of a search space is defined in a more
generic way than that by the conventional support. Let an
“inclusion relation” � � � be an “ordered pair” ��� �� of
two elements �� � where ���� ��� � ���� ��� iff �� � ��
and �� � �� hold. Let � be an “ordered family of sets”
where some pairs of its elements have the inclusion re-
lations. Give a property � of � where � ��� means that
��� �� has the property � . Then the downward closure
property � of � is defined as

� � �� � ���� � ���� (1)

where �� � � �. When � is an upper semilattice, � � � is
given by � � � � �. In familiar settings, � ��� is ������ �
	��	� � �� � � ��	 
 	����� where � is a database, � a
transaction in � and 	����� minimum support.

Upon the above characterization, the basic principle of
the Basket Analysis is known to be applicable to wider
classes of problems whose search space has the upper semi-
lattice structure and the generic downward closure property.
We further extend the Basket Analysis to the search on fam-
ilies of sets. Given two families of sets ��� and two sets
� � �� � � �, let ���� �� be a set function to map the pair
of � and � onto a family of sets � . Under this definition of
� , we define the following join operation.

� �� � ��	� � � � ���� ��� � � � and � � ��� (2)

A set of families of sets � is an upper semilattice, if ��� �
� for any pair of families of sets ��� � �. We also intro-
duce an extended downward closure property. Given two
families of sets ���, let an inclusion relation � � � be
an ordered pair ��� �� of � � �� � � �. Let � be an “or-
dered set of families of sets” where some pairs of sets �� �
in some pairs of families of sets ��� have the inclusion re-
lations. Then the downward closure property � of � is de-
fined by Eq.(1) where � � �� � � � and ��� � �. When
� is an upper semilattice, � � � is given by ���� �� � ���.
By these definitions, � is a search space of the Basket Anal-
ysis on families of sets.

3. Complete Mining of Generic QARs

3.1. QAR mining by Monotonic INTerval

We propose a novel approach called “QAR mining by
Monotonic INTerval (QARMINT)” for complete mining of
generic QARs within a low time complexity. The key ideas
of QARMINT are to use the aforementioned extension of
the Basket Analysis to families of sets and to introduce a
“Monotonic INTerval (MINT)” measure having the down-
ward closure property on hyper rectangles formed by nu-
meric items.

First, we define some mining measures. Let a binary
��� �� be an item. ��� �� is called a numeric item if � is a
closed interval on continuous number field, whereas ��� ��
is called a categorical item if � is a categorical symbol. �
stands for an attribute of ��� ��. Let an itemset � be a set of
items ��� ��s and a set of attributes of � �� � ��	��� �� � ��.
Given a pair of itemsets � and �, � supports �, when � is
more or equally restrictive to �. It is represented as � � �,
and defined as ���� �� � �� ���� �� � �, � 
 � for a
numeric item and � � � or � � ���� for a categorical
item. � � ���� means that any value is not admitted at
�, and hence it is the most restrictive. Let a transaction �
be a set of items and a data set � a collection of trans-
actions �s. � of ��� �� � � is usually a point interval rep-
resenting a unique value while � can be a finite interval
in general. Let � be a set of families of sets where some
pairs of sets �� � in some pairs of families of sets ���
have the inclusion relations � � �s. Given “support” of �
as ������ � 	��	� � �� � � ��	, a property � of � is
that � ��� is ������ 
 	�����. Then � is a downward
closure property of � according to Eq.(1). Moreover, let
�� � be a QAR where �� � �� � �. Then “confidence” of
� � � is given by � ���� � �� � ������!������ where
� � ���� ��	��� �� � � or ��� �� � ��.

We further introduce a novel class of mining measures on
the hyperspace formed by multiple numeric attributes. Give
itemsets �� � and � where � � � and a property� of � where
� ��� and � ��� are � � � and � � � respectively. Because
the aforementioned definition of � � � and � � � which is
���� �� � �� ���� �� � �, � 
 � for a numeric item and � � �
or � � ���� for a categorical item, ���� �� � �� ���� �� � �,
� 
 � for a numeric item and � � � or � � ���� for a cate-
gorical item. Hence, � � �. Then � is a downward closure
property of � according to Eq.(1). A mining measure to de-
fine intervals having this property from data � is called a
“Monotonic INTerval (MINT)” measure. An advantage of
MINT is that the optimum intervals for numeric items can
be derived in low time complexity by the monotonicity.

An example of a MINT measure is the following “dense-
ness”. Given two numeric items ��� ��� � �� and ��� ��� � ��
where ��� �� � �, let 
� be a “permissible range” of �.



Then �� and �� are “close” on � if

������� � ������� � 
� and �������� ������� � 
��
(3)

Here, ������ and ������ are the upper bound and the lower
bound of �. Given a projection mapping 	� of � � � to
the space formed by all numeric attributes in ��, and given
a monotone hyper rectangular region "� formed by inter-
vals �s on all numeric attributes in ��, let �� � ��	� �
�� � � ��	���� � "��. When every � � �� has another
�� � �� which is close on all numeric attributes in ��, and
all of such close pairs are mutually connected through the
other close pairs in ��, "� is called a “dense region” of �.
If any monotone hyper rectangular region " �

��
 "�� is not
dense, "� is called a “maximal dense region (mdr)” under
given data �. Define a “maximal dense interval (mdi)” ��
of each numeric attribute � in �� as the projection of the mdr
"� onto �. Consider another itemset � where �� � �� and
� categorical items ��� �� � �� ��� �� � ��� �� � �. When
�� � ��, the mdi �� of each numeric attribute in �� is iden-
tical with the mdi �� of the numeric attribute in ��, since
�� � ��. When �� has some attributes which is not in ��,
let the projection of the mdr "� onto the space formed by
all numeric attributes in �� be "���. Then "��� � "�, since
�� � ��. Accordingly, �� � �� for each numeric attribute
in ��, and thus � � �. This concludes that the denseness
measure that the interval of each numeric item is defined by
its mdi is a MINT measure. The time complexity to derive
mdis of numeric attributes is ��� �� in the worst case be-
cause the pair wise evaluation of Eq.(3) is needed, while its
practical complexity is ��� �	
� � as shown later.

Next, we define “join” operation of two families of sets
��� in �. Given ��� �� and ��� ��, a join � � ���� �� is
defined as follows. Let � be an itemset where �� � �� � ��.

(1) Given ��� �� � �� ��� �� � � for all categorical � � ���
��, let ��� �� � � if � � � otherwise ��� ����� � �.

(2) Given ��� �� � � for all categorical � � �� and � !� ��,
let ��� �� � �.

(3) Given ��� �� � � for all categorical � � �� and � !� ��,
let ��� �� � �.

(4) Given an mdi of �, ��, for all numeric � � ��, let
��� ��� � �.

Given ��� �� � �� ��� �� � � and ��� �� � �, � � � or
� � ���� for each categorical � � �� and � � � or � � ����
for each categorical � � �� from (1) to (3). From (4) and
the denseness being a MINT measure, � 
 � for each nu-
meric � � �� and � 
 � for each numeric � � ��. Accord-
ingly, � � � and � � �, and the join � � ���� �� gives
the upper bounds of �� �. � may not be unique, since mul-
tiple mdrs "�s can be derived. Also � may not exist, since
��� ����� can be obtained in (1), or the mdr "� can not ex-
ist, i.e., �� � ���� in (4). Figure 1 depicts these cases. In

Figure 1. Derivation of "� by join.

(a), "� of the combined itemset � is multiple due to the lack
of uniformity of � � ��, even if "� and "� of the origi-
nal itemsets are unique respectively. In (b), "� does not ex-
ist due to the low denseness of � � ��. Accordingly, � de-
rived via ���� �� is a family of sets in general. Then we ob-
tain the join operation
 � ��� by Eq.(2). From the above
discussion, �� � �� �� � 
� � � �, and thus � � 
. Sim-
ilarly, � � 
. This indicates that the join � � � gives the
upper bound of ��� and an upper semilattice �.

Based on this definition of join operation on families of
sets with denseness and the definitions of support and con-
fidence, the most of the standard algorithms of the Basket
Analysis whose complexity is ��� � can be applied to de-
rive generic QARs from data.

3.2. Implementation
To assess the basic features of QARMINT, we used the

standard Apriori-TID algorithm [1], since it is principally
an algorithm running on memory, and its computational
features are well known. Instead of hash tables, the trie
data structure as depicted in Fig. 2 was used under lexi-
cographically ordered itemsets. If any subsets of the joined
set � � � � ���� �� are not frequent according to a given
	�����, � is pruned before its mdr "� is computed. More-
over, after computing the mdr "�, � is pruned if � is not
frequent. The pruning by these checks are indicated by the
slashed itemsets in Fig. 2. A difference from the original
Apriori-TID algorithm is that the join of two itemsets �� �
within a family depicted by a solid box is not allowed, and
the itemsets �s obtained from a pair of families ��� be-
long to an identical family 
. Another difference is that a
join of �� � can generate multiple itemsets �s as depicted in
a dashed box.

The most expensive process in QARMINT is to derive
the mdr "�s of joined itemset �. We introduce an iterative
approach to reduce the required computation time. Given
� � ����� ���� ���� ���� ����, first, all transactions in � are
sorted for each attribute �� in �. This is ��� �	
� �. Then,
the mdis on the number line of �� are computed from the
transactions without taking into account the other attributes.
When multiple mdis are obtained, one of them is focused,
and the transactions in the mdi is retained. Next, the identi-



Figure 2. Trie data structure.

Figure 3. Time complexity.

cal process is applied to ��, and this recursively continues
in depth first search (DFS). After the mdis on �� is com-
puted, the process continues again from �� until the mdi of
every ���� � �� ���� �� converges. The mdis always converge
to these of the mdr "� because the denseness is a MINT
measure. After the convergence, the search is backtracked
to the next mdr "�. The computation of mdis in each step
requires ��� � time at most. In the worst case, only one
transaction is dropped in each step, and � steps required
until the mdis converge. Thus, ��� ��. However, this does
not likely occur. Practically, only a portion of the transac-
tions are retained in each step. Let � # $ # � be an ex-
pected rate of transactions retained in each step, 	 the re-
quired steps for convergence. The process to search an mdr
"� stops at the latest when the number of retained trans-
actions $�� becomes less than 	�����. By solving the
equation 	����� � $�� with 	, 	 is ���	
� �. Ac-
cordingly, the expected time complexity of this most expen-
sive process is ��� �	
� �.

4. Performance Evaluation
The performance of QARMINT has been evalu-

ated through both artificial data and real bench mark data.
Sets of artificial data have been generated under vari-
ous conditions. The characteristics of the computation
time is simlilar to the conventional Basket Analysis ex-
cept for 
� and � . The time moderately increases when

�s of all attributes are increased. This is because wider
permissible ranges increases the number of mdrs. Fig-

ure 3 shows the dependency of the computation time on the
number of transaction � . The curve almost follows the re-
lation ��� �	
� �.

The real bench mark data “Labor relations Database”
in UCI Machine Learning Repository [3] was analyzed by
QARMINT. It contains 57 instances, 8 numeric attributes
and 8 categorical attributes and many missing values. We
ignored the attributes of missing values in each instance,
and transformed the data into transactions. Though the size
of this data is quite small, we found many interesting QARs
associated with the labor conditions under 	����� � ���
and 
� � ��� which is 10% of the maximum and mini-
mum values of each � in the data. The following two are ex-
amples.
��� � ���� � �� � ����
����� � �  �� ������ �� %���� � ��� ���
& ����� � ' ��� � ���� ����
&���� �������� � ��� ��� %������ � ����� �����
��� � ���� � �� � ����
����� � �  �� ������ �� %���� � ��� ���
& ����� � ' ��� � ���� ����
&���� �������� � ��� ��� %������ � ����� �����
These rules indicate that the workers having longer dura-
tion contracts and evaluating their labor condition as �  �
admit longer working times and less wage increase. These
evaluations indicate the sufficient tractability and the prac-
tical applicability of QARMINT.

5. Conclusion
The mathematical characterization and the exten-

sion of the Basket Analysis presented in this paper are
expected to provide variety of new approaches of data min-
ing. Their potential has demonstrated by a novel ap-
proach called QARMINT for complete mining of generic
QARs within a low time complexity. We are implement-
ing QARMINT in a more efficient algorithm and evaluating
its performance in near future.
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