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Abstract—Doubly-stochastic matrices are usually required by 
consensus-based distributed algorithms. We propose a simple 
and efficient protocol and present some guidelines for imple
menting doubly-stochastic combination matrices even in noisy, 
asynchronous and changing topology scenarios. The proposed 
ideas are validated with the deployment of a wireless sensor 
network, in which nodes run a distributed algorithm for robust 
estimation in the presence of nodes with faulty sensors. 

Index Terms—Consensus, Contiki OS, distributed algorithms, 
robust estimation, wireless sensor network. 

I. INTRODUCTION 

The advantages of distributed learning algorithms over 
networks with respect to centralized schemes have long been 
recognized (see, e.g., the surveys [1], [2]). Consensus strate
gies are widely used for implementing distributed algorithms 
and have recently found many applications (e.g., feature ex
traction, adaptive filtering, classification, clustering, detection, 
estimation, and convex optimization methods, among oth
ers). Consensus-based distributed algorithms usually require 
a doubly-stochastic matrix for performing the combination of 
the information flowing across the network. However, although 
there are several mathematical methods to design such ma
trices, in practice, when communications or synchronization 
among nodes are not perfect, even theoretically well designed 
combination matrices become nondoubly-stochastic, resulting 
into biased results. 

There are few implementations of distributed algorithms 
[3]-[6]. However, they are sensitive to asynchronous and noisy 
communications (e.g., in wireless-sensor-networks). This pa
per proposes a simple protocol for guaranteeing that the 
combination matrix is doubly-stochastic at every iteration, 
independently of the amount of packet loss and the lack of 
synchronization among nodes. The protocol is also robust 
against permanent changes in the topology (e.g., because of 
node failure or after adding new nodes). We also provide 
some implementation guidelines to abstract the implementa
tion from the mathematical formulation of the algorithms, so 
the designer can use consensus-like combinations as a service 
and focus on the data-processing step. The proposed methods 
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Fig. 1. Example of networks considered in this work. 

are validated experimentally with the implementation of a 
sophisticated robust estimation algorithm introduced in [7]. 

II. CONSENSUS ALGORITHMS 

Consider a network of TV cooperative agents with arbitrary 
topology. The network is modeled by a graph where the nodes 
are the agents, and edges represent the communication links 
(see Figure 1). We assume the graph is connected (i.e., there 
is at least one path between any pair of nodes). The agents 
want to estimate some parameter vector, w° (e.g., the sample 
estimate of a sufficient statistic of the data, or the common 
minimizer of some objective function). If each individual agent 
has only access to a subset of the data, its individual learning 
process will be biased. Nevertheless, by cooperating with its 
neighbors each node can approach the same performance as 
the one of a centralized architecture. 

Let Aik denote the neighborhood of node k (i.e., all the 
nodes that can share information with node k, including k 
itself). Let aik denote the non-negative weight given by node 
k to the information shared by node /. Many consensus 
algorithms can be expressed by the following two steps [8]: 

4>k,i-i = ^2 a'-kWi,i-i (la) 
leAfk 

Wk,i = <Pk,i-i - l^kSk,í(wk,í-i) (lb) 

where Wk,i denotes the estimate of the parameter of interest 
at time i by node k, 4>k,i is an intermediate variable, and 
Sk,i(-) is some local function that depends on the problem 
at hand (e.g., the gradient of a local objective function in a 
distributed optimization problem), and ¡ik is the step-size of 
the update. In (la), each node combines the estimates of its 
neighbors (including itself) with the corresponding weights. 
Then, in (lb), each node processes information locally. 



We collect the weights a¡k into a combination matrix A of 
size N x N. In consensus algorithms, A is designed to satisfy 
the following three conditions: 

P(AT - — 1 1 T j < 1, ATt = t, Al = l (2) 

where p(-) denotes the spectral radius. The first condition en
sures asymptotic convergence, while the other two determine 
the convergence point and amount to saying that A is doubly 
stochastic. 

As an illustrative example of the algorithm (la)-(lb), 
consider a network of agents, in which each agent k wants 
to estimate the sample mean of the observations of all the 
agents across the network, but it only has access to its own 
observation xk. This problem is solved by the standard average 
consensus rule (see, e.g., [2]), given by 

4>k,i-l = J 3 alkwl,i-U wk,i = 4>k,i-\ (3) 

where the initial estimate is set equal to the local observation 
(i.e., wkfi = xk). For simplicity, assume observations are 
scalar valued, and introduce the vector w¿ = [w l j ¿ , . . . , wNti]

T 

with entries the individual estimates of all the nodes. Then, 
we can express (3) as a network recursion: w¿ = ATwi^1. It 
is well known that when A satisfies (2), then lim^oo A1 = 
^ 1 1 T . Hence, every node will approach the network average 
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III. THE WAIT-FOR-THE-SLOWEST (WFS) PROTOCOL 

When aiming to implement (la)-(lb), the conditions in (2) 
become relevant. In particular, left-stochasticity (i.e., ATt = 
1) means that the weights given by each agent to all its 
neighbors add up to one. This condition is easy to enforce 
even when some packets are lost, because the node could 
recalculate the weights at every iteration giving positive weight 
only to the packets that were successfully received (including 
its own). On the other hand, ensuring right stochasticity (i.e., 
At = 1) is more challenging because each row depends on 
the whole neighborhood. It means that the weights given by 
the neighbors of some node to the information coming from 
that node must add up to one. In a real scenario (e.g., under 
wireless communications), this condition may be difficult to 
satisfy. Consider that some node broadcasts a packet, which 
is only received by a subset of its neighbors. Those neighbors 
that received the packet can give positive weight and compute 
(la). However, those that did not receive the packet must set 
the corresponding weight to zero and, thus, the right stochastic 
condition will not hold. Therefore, the algorithm will converge 
to a weighted sample average, so that the result of (3) will be 
biased. 

Besides dealing with lossy links, another issue is how to 
keep synchronization among neighbors, so they update its 
estimate at the same rate. Consider a simple network of just 
two nodes, k and /, which are performing periodic iterations 
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NEIGHBOR TABLE FOR NODE k OF FIGURE 1. 
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a.fc (using Metropolis rale [1], [2]) 
a-jk = 1/2 
aik = 1/4 

afcfc = l - ( 1 / 2 + 1/4) = 1/4 

of the form (la)-(lb). Assume the clock of k has a drift so, 
eventually, it will be out of synch and, although it may receive 
data coming from node /, it will not transmit any packet. In 
this case, node k has all the required information to perform 
(la) and, then, to update its estimate using (lb). On the other 
hand, node / is still waiting for the data coming from node 
k, so it can not update its estimate at that iteration. It means 
that, during the update of k, the combination matrix A is only 
left stochastic, as opposed to doubly stochastic, and, again, the 
asymptotic result will be biased. 

A. Basic design for tackling temporary link failures 

In order to tolerate packet loss, asynchronous transmissions 
and other impairments of real environments, and avoid biased 
results of the distributed algorithm, some sort of coordination 
among neighbors becomes necessary, so they can give total 
unit weight to node k at every iteration (thus, making the com
bination matrix row stochastic). We propose an efficient and 
easy to implement mechanism, named Wait-For-the-Slowest 
(WFS) protocol. The idea underlying WFS is simple: syn
chronization at the application layer (rather than at the MAC 
level). In particular, every node has a table where it stores an 
iteration counter for each of its neighbors, so it waits until this 
table is filled with the correct information before performing 
the combination step. This mechanism works efficiently under 
the assumptions that every node knows its neighbors before 
performing the consensus iterations. Indeed, WFS is composed 
of two main stages: an initial setup and the consensus loop. 

The setup stage is executed only once, at the beginning of 
the algorithm, with the purpose of building the combination 
matrix. During this initial stage, every node broadcasts 'dis
covery' messages with some useful local information (e.g., 
|A4| for the Metropolis rule [1], [2]). Let us say that node 
I receives a discovery message from node k, then, it checks 
whether node k was already in its neighbor list; if it was not, 
another row is added to the table; otherwise, just the degree 
\JV. I and the weight a.k are updated (see Table I for an example 
of neighbor table). At the end of the setup stage, every node 
has stored its neighbor table, where the weight column can be 
thought of as a column of the combination matrix. 

Once the nodes know their neighborhoods and have set the 
corresponding combination weights, they start the consensus 
stage. When some event (which could be asynchronous, such 
as the arrival of a new packet or the availability of a new 
sample, or periodic, in synch with an internal iteration timer) 
triggers the combination step (la), the node has to be sure 
that it has the right estimates. Let us say that node k wants 
to update wk¡i, then it should combine wi¿-\ for all / G A/&, 
instead of any other w¡¿ with j =é i - 1. If such information 
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Fig. 2. Example 1. A chain of nodes running WFS, where the link between 
the two nodes in the left end of the chain is faulty. The iteration number (i) of 
the estimate (e.g., Wfc ¿) is written inside each circle. At time í = 1, node j 
cannot update because info from node fc is missing. Similarly, although node 
fc has info from node I, it misses the estimate from node j , so it cannot update 
its estimate. On the other hand, nodes I and m have all the information from 
their neighborhoods. Nevertheless, at time í = 2, node I misses w^ i so it 
has to stop. Node m have both witi and iom , i so it can compute iom,2. At 
time í = 3, node m is missing wi 2 so it is forced to stop too and, hence, 
the whole network has to either wait until the link between j and fc works 
again (some retransmission finally reaches the node) or until a retransmission 
timeout, which they understand as a permanent topology change so they safely 
remove each other from their neighbor tables. 

is not available, the node patiently waits for a retransmission 
of the missing information. Note that when one node stops 
updating its estimate (because it misses information from 
any of its neighbors), then the rest of its neighbors will 
also wait for it. Therefore, the difference in the iteration 
number between two neighbors is at most 1 (e.g., wfci and 
wij-i). Thus, at every iteration, every node has to transmit 
two parameters, namely, the two most recent estimates (i.e., 
Wk¿ and Wk¿-i). This is illustrated in Figure 2. 

B. Extension for dealing with permanent topology changes 

Although the mechanism explained above is robust against 
temporary link failures (e.g., due to fading, collisions...) and 
asynchronous communications (e.g., because of clock drifts, 
different transmission rates...), two extensions are required in 
order to tackle permanent changes in the topology: a link-timer 
that measures how long a link has been inactive, and a dynamic 
neighbor table that can be updated during the consensus stage. 

When one node receives a packet from one of its neighbors, 
it resets the link-timer. If one link fails permanently (e.g., due 
to node failure), the timer of each of the affected nodes will 
reach a tunable timeout period, hence, they will assume that 
the link will not recover anymore (at least in the short term) 
and remove it from their tables. The iteration number is a 
form of acknowledgement that the information is diffusing 
properly. Therefore, every node keeps transmitting its relevant 
parameters as described in Sec. III-A. Note that if the link-
failures divide the network in two or more islands, then 
WFS will still work in each of the islands, but they may 
independently converge to different results. 

When a new node is added to the network after the network 
has entered the consensus stage, the other nodes will not 
take it into account (they will continue giving zero weight). 
Nevertheless, if the nodes are able to update their neighbor 
tables every time they receive a packet from an unknown 
neighbor, even during the consensus stage, then the network 
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Fig. 3. Robustness of WFS. We begin with a chain of 4 nodes, with values 
{2, 3, 4, 5}, respectively. Then, we add up to 6 more nodes, one at a time, 
with values {6, 7, 8, 9, 10, 11}, respectively. Note that WFS is able to achieve 
the sample average of all the available nodes at each time (resulting in 6.5 
when all nodes are included in this case). 

will be able to integrate new nodes on the fly. When the new 
node boots, it enters the setup-stage, in which it broadcasts 
discovery messages and listens to discover its neighbors. 
During this stage, apart of storing its neighbors' identity, it 
also keeps their iteration number. At the end of this stage, the 
node sets its iteration number equal to the highest iteration 
number among its neighbors. This way, the new node will be 
included in new iterations of the consensus algorithm without 
biasing earlier uncompleted iterations in its neighborhood. 

Fig. 3 shows the robustness of WFS against noisy links, 
asynchronous updates and permanent changes in the topology. 

IV. IMPLEMENTATION GUIDELINES 

The nodes will operate in an asynchronous environment, 
hence, we find convenient to use an event-oriented operating 
system with multi-threading capabilities. 

We define a 2-thread template to split the communication-
tasks performed by each node: processing asynchronous in
coming packets (RX) and synchronously transmitting its own 
data (TX) (other tasks, like sensing/actuating, could be in
cluded into the RX or TX threads or into another thread at 
convenience). The state-logic of the WFS protocol is embed
ded in the RX thread, which triggers the adaptation step and 
checks whether the updated estimates of all the neighbors are 
available before triggering the combination step. Therefore, 
the RX thread controls the update of the two most recent 
estimates, which will be broadcast by the TX thread. This im
plementation scheme provides reliable data-diffusion at every 
consensus iteration (i.e., it ensures a doubly stochastic matrix 
during the combination step (la)), Therefore, the developer can 
abstract from the within-neighborhood communications and 
focus on testing the local adaptation step (lb), speeding up the 
development process. Still, a complete and flexible simulator, 
able to emulate communication impairments, changes in the 
topology and asynchronous events is a desirable feature. A 
further constraint when developing distributed algorithms for 
large scale networks is that the hardware of the nodes often has 
little available memory. For these reasons, we choose Contiki 



OS, which brings a powerful simulator, named Cooja, and 
offers multithreading functionality plus a complete communi
cation stack—we use UDP over IPv6—at a minimum memory 
footprint (in the order of tens of kilobytes), and it is designed 
to be programmed with standard C language (which makes 
debugging simpler as opposed to other options, like TinyOS). 

V. CASE OF STUDY: DISTRIBUTED ROBUST ESTIMATION 

In this section, we illustrate the effectiveness of WFS as a 
solution for implementing sophisticated distributed algorithms. 
Consider a network of N sensors collecting one observation 
each under the following model 

yk =bkw° + nk, k = l,...,N, (5) 

where w° is the parameter of interest, {bk,\/k} = {0,1} are 
i.i.d. Bernoulli random variables with probability p = Pr{6fc = 
1}, and {nk,Wk} are i.i.d. zero-mean Gaussian with variance 
a2 and independent of {bk,\/k}. The nodes run a distributed 
robust algorithm named DB-DEM [7], which provides an 
unbiased estimation even under the presence of nodes with 
faulty sensors that report only noise (i.e., those for which 
bk = 0). Let wk¡i and a\{i) denote the estimates of the 
parameters at node k at time i, and pk(i) the a posteriori 
probability of bk given {yk, wM ,cr | ( i )} . 

The DB-DEM algorithm diffuses pk(i) across the network 
by means of local combination steps of four intermediate 
variables (one combination step each), which are then used 
to update the local estimates. In this way, an initial period for 
information diffusion is gradually switched off at the same 
time as an averaging process is gradually switched on. 

The followed methodology consists in: 1) Developing the 
algorithm in a numerical computations environment (e.g., 
MATLAB) and defining a set of test-vectors (input-output) 
that guarantee the correct operation of the algorithm; 2) 
Developing the same program in C language, splitting the 
adaptation step (local computations) and the combination step 
(within neighborhood communications), but still assuming that 
the combination step is performed exactly; 3) Moving the local 
computations to the Contiki OS multi-threading template— 
by using WFS as the service that provides the combination 
step—and checking the test-vectors in the Cooja simulator. 
4) Customizing the Cooja code for the hardware platform 
and checking the test-vectors in the real deployment. 5) 
Developing sensing-acting routines for the hardware platform. 

A chain of nodes and a fully connected network are the least 
favorable topologies for testing: in the former the information 
takes several steps to diffuse across the network; in the latter, 
all the nodes interfere each other and many packets are lost. 
Figure 4 shows the results for robust estimation vs. average 
consensus for a simulated chain of 10 nodes. We compare 
perfect communications (Matlab) vs. the WFS implementation 
in Cooja under 30% of packet loss and nodes with different 
transmission rates. Both simulations match almost perfectly. 

In addition to simulations, we ported the DB-DEM algo
rithm to real hardware with minimal effort (note that Cooja 
already simulated the operating system, with the exception of 

Fig. 4. DB-DEM vs sample average, with perfect communications vs. WFS 
and noisy and asynchronous links. The simulated network consists of 10 nodes 
in chain topology, where 4 of them have a faulty sensor. DB-DEM is able to 
detect and compensate the faulty readings. Moreover, WFS (dashed) behaves 
similar to the curves that assume perfect communication (solid with marker). 

the sensing and actuating routines). We used commercial off-
the-shelf Econotag motes, equipped with MC13224 System-
on-Chip, which offers an ARM7 microcontroller at 24MHz 
with 96 KB RAM and an integrated 802.15.4 radio. The results 
obtained with the real motes match closely the simulations 
in Cooja and Matlab. Moreover, WFS performed efficiently, 
being able to complete one iteration per second in different 
topologies, including a fully connected network of 10 nodes. 
A complete description of the experiments with real motes is 
left for a future extended version of this work. 

VI. CONCLUSIONS 

We introduced WFS: an efficient protocol that performs 
the combination step of the consensus algorithm even under 
asynchronous and impaired communications. By using WFS, 
the designer can focus on implementing the local adaptation 
step, speeding up the development cycle. 
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