
How to Implement Doubly-Stochastic Matrices for
Consensus-Based Distributed Algorithms

Sergio Valcarcel Macua , Carlos Moreno Leon , Jhoan Samuel Romero , Silvana Silva Pereira
Javier Zazo , Alba Pagés-Zamora , Roberto López-Valcarce and Santiago Zazo

Abstract—Doubly-stochastic matrices are usually required by
consensus-based distributed algorithms. We propose a simple
and efficient protocol and present some guidelines for imple
menting doubly-stochastic combination matrices even in noisy,
asynchronous and changing topology scenarios. The proposed
ideas are validated with the deployment of a wireless sensor
network, in which nodes run a distributed algorithm for robust
estimation in the presence of nodes with faulty sensors.

Index Terms—Consensus, Contiki OS, distributed algorithms,
robust estimation, wireless sensor network.

I. INTRODUCTION

The advantages of distributed learning algorithms over
networks with respect to centralized schemes have long been
recognized (see, e.g., the surveys [1], [2]). Consensus strate
gies are widely used for implementing distributed algorithms
and have recently found many applications (e.g., feature ex
traction, adaptive filtering, classification, clustering, detection,
estimation, and convex optimization methods, among oth
ers). Consensus-based distributed algorithms usually require
a doubly-stochastic matrix for performing the combination of
the information flowing across the network. However, although
there are several mathematical methods to design such ma
trices, in practice, when communications or synchronization
among nodes are not perfect, even theoretically well designed
combination matrices become nondoubly-stochastic, resulting
into biased results.

There are few implementations of distributed algorithms
[3]-[6]. However, they are sensitive to asynchronous and noisy
communications (e.g., in wireless-sensor-networks). This pa
per proposes a simple protocol for guaranteeing that the
combination matrix is doubly-stochastic at every iteration,
independently of the amount of packet loss and the lack of
synchronization among nodes. The protocol is also robust
against permanent changes in the topology (e.g., because of
node failure or after adding new nodes). We also provide
some implementation guidelines to abstract the implementa
tion from the mathematical formulation of the algorithms, so
the designer can use consensus-like combinations as a service
and focus on the data-processing step. The proposed methods

djk

/ ®—© node o
\ ? \ f) link —

aik \ (])

Fig. 1. Example of networks considered in this work.

are validated experimentally with the implementation of a
sophisticated robust estimation algorithm introduced in [7].

II. CONSENSUS ALGORITHMS

Consider a network of TV cooperative agents with arbitrary
topology. The network is modeled by a graph where the nodes
are the agents, and edges represent the communication links
(see Figure 1). We assume the graph is connected (i.e., there
is at least one path between any pair of nodes). The agents
want to estimate some parameter vector, w° (e.g., the sample
estimate of a sufficient statistic of the data, or the common
minimizer of some objective function). If each individual agent
has only access to a subset of the data, its individual learning
process will be biased. Nevertheless, by cooperating with its
neighbors each node can approach the same performance as
the one of a centralized architecture.

Let Aik denote the neighborhood of node k (i.e., all the
nodes that can share information with node k, including k
itself). Let aik denote the non-negative weight given by node
k to the information shared by node /. Many consensus
algorithms can be expressed by the following two steps [8]:

4>k,i-i = ^2 a'-kWi,i-i (la)
leAfk

Wk,i = <Pk,i-i - l^kSk,í(wk,í-i) (lb)

where Wk,i denotes the estimate of the parameter of interest
at time i by node k, 4>k,i is an intermediate variable, and
Sk,i(-) is some local function that depends on the problem
at hand (e.g., the gradient of a local objective function in a
distributed optimization problem), and ¡ik is the step-size of
the update. In (la), each node combines the estimates of its
neighbors (including itself) with the corresponding weights.
Then, in (lb), each node processes information locally.

We collect the weights a¡k into a combination matrix A of
size N x N. In consensus algorithms, A is designed to satisfy
the following three conditions:

P(AT - — 1 1 T j < 1, ATt = t, Al = l (2)

where p(-) denotes the spectral radius. The first condition en
sures asymptotic convergence, while the other two determine
the convergence point and amount to saying that A is doubly
stochastic.

As an illustrative example of the algorithm (la)-(lb),
consider a network of agents, in which each agent k wants
to estimate the sample mean of the observations of all the
agents across the network, but it only has access to its own
observation xk. This problem is solved by the standard average
consensus rule (see, e.g., [2]), given by

4>k,i-l = J 3 alkwl,i-U wk,i = 4>k,i-\ (3)

where the initial estimate is set equal to the local observation
(i.e., wkfi = xk). For simplicity, assume observations are
scalar valued, and introduce the vector w¿ = [w l j ¿ , . . . , wNti]

T

with entries the individual estimates of all the nodes. Then,
we can express (3) as a network recursion: w¿ = ATwi^1. It
is well known that when A satisfies (2), then lim^oo A1 =
^ 1 1 T . Hence, every node will approach the network average

1 N

lim Wi= lim A1WQ = — > xk = w° (4)
¿^oo i^co TV —J

k = \

III. THE WAIT-FOR-THE-SLOWEST (WFS) PROTOCOL

When aiming to implement (la)-(lb), the conditions in (2)
become relevant. In particular, left-stochasticity (i.e., ATt =
1) means that the weights given by each agent to all its
neighbors add up to one. This condition is easy to enforce
even when some packets are lost, because the node could
recalculate the weights at every iteration giving positive weight
only to the packets that were successfully received (including
its own). On the other hand, ensuring right stochasticity (i.e.,
At = 1) is more challenging because each row depends on
the whole neighborhood. It means that the weights given by
the neighbors of some node to the information coming from
that node must add up to one. In a real scenario (e.g., under
wireless communications), this condition may be difficult to
satisfy. Consider that some node broadcasts a packet, which
is only received by a subset of its neighbors. Those neighbors
that received the packet can give positive weight and compute
(la). However, those that did not receive the packet must set
the corresponding weight to zero and, thus, the right stochastic
condition will not hold. Therefore, the algorithm will converge
to a weighted sample average, so that the result of (3) will be
biased.

Besides dealing with lossy links, another issue is how to
keep synchronization among neighbors, so they update its
estimate at the same rate. Consider a simple network of just
two nodes, k and /, which are performing periodic iterations

TABLE I
NEIGHBOR TABLE FOR NODE k OF FIGURE 1.

M.
3
t
k

\N\
2
4
3

a.fc (using Metropolis rale [1], [2])
a-jk = 1/2
aik = 1/4

afcfc = l - (1 / 2 + 1/4) = 1/4

of the form (la)-(lb). Assume the clock of k has a drift so,
eventually, it will be out of synch and, although it may receive
data coming from node /, it will not transmit any packet. In
this case, node k has all the required information to perform
(la) and, then, to update its estimate using (lb). On the other
hand, node / is still waiting for the data coming from node
k, so it can not update its estimate at that iteration. It means
that, during the update of k, the combination matrix A is only
left stochastic, as opposed to doubly stochastic, and, again, the
asymptotic result will be biased.

A. Basic design for tackling temporary link failures

In order to tolerate packet loss, asynchronous transmissions
and other impairments of real environments, and avoid biased
results of the distributed algorithm, some sort of coordination
among neighbors becomes necessary, so they can give total
unit weight to node k at every iteration (thus, making the com
bination matrix row stochastic). We propose an efficient and
easy to implement mechanism, named Wait-For-the-Slowest
(WFS) protocol. The idea underlying WFS is simple: syn
chronization at the application layer (rather than at the MAC
level). In particular, every node has a table where it stores an
iteration counter for each of its neighbors, so it waits until this
table is filled with the correct information before performing
the combination step. This mechanism works efficiently under
the assumptions that every node knows its neighbors before
performing the consensus iterations. Indeed, WFS is composed
of two main stages: an initial setup and the consensus loop.

The setup stage is executed only once, at the beginning of
the algorithm, with the purpose of building the combination
matrix. During this initial stage, every node broadcasts 'dis
covery' messages with some useful local information (e.g.,
|A4| for the Metropolis rule [1], [2]). Let us say that node
I receives a discovery message from node k, then, it checks
whether node k was already in its neighbor list; if it was not,
another row is added to the table; otherwise, just the degree
\JV. I and the weight a.k are updated (see Table I for an example
of neighbor table). At the end of the setup stage, every node
has stored its neighbor table, where the weight column can be
thought of as a column of the combination matrix.

Once the nodes know their neighborhoods and have set the
corresponding combination weights, they start the consensus
stage. When some event (which could be asynchronous, such
as the arrival of a new packet or the availability of a new
sample, or periodic, in synch with an internal iteration timer)
triggers the combination step (la), the node has to be sure
that it has the right estimates. Let us say that node k wants
to update wk¡i, then it should combine wi¿-\ for all / G A/&,
instead of any other w¡¿ with j =é i - 1. If such information

3 k I m
i = 0 ©-*-©—©—©
í = l © ^ © — ® ~ ©
t = 2 @^©~®—©

i = 3 ©^®—©~©
Fig. 2. Example 1. A chain of nodes running WFS, where the link between
the two nodes in the left end of the chain is faulty. The iteration number (i) of
the estimate (e.g., Wfc ¿) is written inside each circle. At time í = 1, node j
cannot update because info from node fc is missing. Similarly, although node
fc has info from node I, it misses the estimate from node j , so it cannot update
its estimate. On the other hand, nodes I and m have all the information from
their neighborhoods. Nevertheless, at time í = 2, node I misses w^ i so it
has to stop. Node m have both witi and iom , i so it can compute iom,2. At
time í = 3, node m is missing wi 2 so it is forced to stop too and, hence,
the whole network has to either wait until the link between j and fc works
again (some retransmission finally reaches the node) or until a retransmission
timeout, which they understand as a permanent topology change so they safely
remove each other from their neighbor tables.

is not available, the node patiently waits for a retransmission
of the missing information. Note that when one node stops
updating its estimate (because it misses information from
any of its neighbors), then the rest of its neighbors will
also wait for it. Therefore, the difference in the iteration
number between two neighbors is at most 1 (e.g., wfci and
wij-i). Thus, at every iteration, every node has to transmit
two parameters, namely, the two most recent estimates (i.e.,
Wk¿ and Wk¿-i). This is illustrated in Figure 2.

B. Extension for dealing with permanent topology changes

Although the mechanism explained above is robust against
temporary link failures (e.g., due to fading, collisions...) and
asynchronous communications (e.g., because of clock drifts,
different transmission rates...), two extensions are required in
order to tackle permanent changes in the topology: a link-timer
that measures how long a link has been inactive, and a dynamic
neighbor table that can be updated during the consensus stage.

When one node receives a packet from one of its neighbors,
it resets the link-timer. If one link fails permanently (e.g., due
to node failure), the timer of each of the affected nodes will
reach a tunable timeout period, hence, they will assume that
the link will not recover anymore (at least in the short term)
and remove it from their tables. The iteration number is a
form of acknowledgement that the information is diffusing
properly. Therefore, every node keeps transmitting its relevant
parameters as described in Sec. III-A. Note that if the link-
failures divide the network in two or more islands, then
WFS will still work in each of the islands, but they may
independently converge to different results.

When a new node is added to the network after the network
has entered the consensus stage, the other nodes will not
take it into account (they will continue giving zero weight).
Nevertheless, if the nodes are able to update their neighbor
tables every time they receive a packet from an unknown
neighbor, even during the consensus stage, then the network

1

V

•

_3&*
Y?-''~p^. 6.5 -

WFS
No coordination

0 100 200 300 400 500 600 700 800

Number of iterations

Fig. 3. Robustness of WFS. We begin with a chain of 4 nodes, with values
{2, 3, 4, 5}, respectively. Then, we add up to 6 more nodes, one at a time,
with values {6, 7, 8, 9, 10, 11}, respectively. Note that WFS is able to achieve
the sample average of all the available nodes at each time (resulting in 6.5
when all nodes are included in this case).

will be able to integrate new nodes on the fly. When the new
node boots, it enters the setup-stage, in which it broadcasts
discovery messages and listens to discover its neighbors.
During this stage, apart of storing its neighbors' identity, it
also keeps their iteration number. At the end of this stage, the
node sets its iteration number equal to the highest iteration
number among its neighbors. This way, the new node will be
included in new iterations of the consensus algorithm without
biasing earlier uncompleted iterations in its neighborhood.

Fig. 3 shows the robustness of WFS against noisy links,
asynchronous updates and permanent changes in the topology.

IV. IMPLEMENTATION GUIDELINES

The nodes will operate in an asynchronous environment,
hence, we find convenient to use an event-oriented operating
system with multi-threading capabilities.

We define a 2-thread template to split the communication-
tasks performed by each node: processing asynchronous in
coming packets (RX) and synchronously transmitting its own
data (TX) (other tasks, like sensing/actuating, could be in
cluded into the RX or TX threads or into another thread at
convenience). The state-logic of the WFS protocol is embed
ded in the RX thread, which triggers the adaptation step and
checks whether the updated estimates of all the neighbors are
available before triggering the combination step. Therefore,
the RX thread controls the update of the two most recent
estimates, which will be broadcast by the TX thread. This im
plementation scheme provides reliable data-diffusion at every
consensus iteration (i.e., it ensures a doubly stochastic matrix
during the combination step (la)), Therefore, the developer can
abstract from the within-neighborhood communications and
focus on testing the local adaptation step (lb), speeding up the
development process. Still, a complete and flexible simulator,
able to emulate communication impairments, changes in the
topology and asynchronous events is a desirable feature. A
further constraint when developing distributed algorithms for
large scale networks is that the hardware of the nodes often has
little available memory. For these reasons, we choose Contiki

OS, which brings a powerful simulator, named Cooja, and
offers multithreading functionality plus a complete communi
cation stack—we use UDP over IPv6—at a minimum memory
footprint (in the order of tens of kilobytes), and it is designed
to be programmed with standard C language (which makes
debugging simpler as opposed to other options, like TinyOS).

V. CASE OF STUDY: DISTRIBUTED ROBUST ESTIMATION

In this section, we illustrate the effectiveness of WFS as a
solution for implementing sophisticated distributed algorithms.
Consider a network of N sensors collecting one observation
each under the following model

yk =bkw° + nk, k = l,...,N, (5)

where w° is the parameter of interest, {bk,\/k} = {0,1} are
i.i.d. Bernoulli random variables with probability p = Pr{6fc =
1}, and {nk,Wk} are i.i.d. zero-mean Gaussian with variance
a2 and independent of {bk,\/k}. The nodes run a distributed
robust algorithm named DB-DEM [7], which provides an
unbiased estimation even under the presence of nodes with
faulty sensors that report only noise (i.e., those for which
bk = 0). Let wk¡i and a\{i) denote the estimates of the
parameters at node k at time i, and pk(i) the a posteriori
probability of bk given {yk, wM ,cr | (i)} .

The DB-DEM algorithm diffuses pk(i) across the network
by means of local combination steps of four intermediate
variables (one combination step each), which are then used
to update the local estimates. In this way, an initial period for
information diffusion is gradually switched off at the same
time as an averaging process is gradually switched on.

The followed methodology consists in: 1) Developing the
algorithm in a numerical computations environment (e.g.,
MATLAB) and defining a set of test-vectors (input-output)
that guarantee the correct operation of the algorithm; 2)
Developing the same program in C language, splitting the
adaptation step (local computations) and the combination step
(within neighborhood communications), but still assuming that
the combination step is performed exactly; 3) Moving the local
computations to the Contiki OS multi-threading template—
by using WFS as the service that provides the combination
step—and checking the test-vectors in the Cooja simulator.
4) Customizing the Cooja code for the hardware platform
and checking the test-vectors in the real deployment. 5)
Developing sensing-acting routines for the hardware platform.

A chain of nodes and a fully connected network are the least
favorable topologies for testing: in the former the information
takes several steps to diffuse across the network; in the latter,
all the nodes interfere each other and many packets are lost.
Figure 4 shows the results for robust estimation vs. average
consensus for a simulated chain of 10 nodes. We compare
perfect communications (Matlab) vs. the WFS implementation
in Cooja under 30% of packet loss and nodes with different
transmission rates. Both simulations match almost perfectly.

In addition to simulations, we ported the DB-DEM algo
rithm to real hardware with minimal effort (note that Cooja
already simulated the operating system, with the exception of

Fig. 4. DB-DEM vs sample average, with perfect communications vs. WFS
and noisy and asynchronous links. The simulated network consists of 10 nodes
in chain topology, where 4 of them have a faulty sensor. DB-DEM is able to
detect and compensate the faulty readings. Moreover, WFS (dashed) behaves
similar to the curves that assume perfect communication (solid with marker).

the sensing and actuating routines). We used commercial off-
the-shelf Econotag motes, equipped with MC13224 System-
on-Chip, which offers an ARM7 microcontroller at 24MHz
with 96 KB RAM and an integrated 802.15.4 radio. The results
obtained with the real motes match closely the simulations
in Cooja and Matlab. Moreover, WFS performed efficiently,
being able to complete one iteration per second in different
topologies, including a fully connected network of 10 nodes.
A complete description of the experiments with real motes is
left for a future extended version of this work.

VI. CONCLUSIONS

We introduced WFS: an efficient protocol that performs
the combination step of the consensus algorithm even under
asynchronous and impaired communications. By using WFS,
the designer can focus on implementing the local adaptation
step, speeding up the development cycle.

REFERENCES

[1] A. H. Sayed, "Diffusion adaptation over networks," in Academic Press
Library in Signal Processing, R. Chellapa and S. Theodoridis, Eds.
Elsevier, 2014, vol. 3, pp. 323-454. Also available as arXiv:1205.4220vl,
May 2012.

[2] F. Garin and L. Schenato, "A Survey on Distributed Estimation and
Control Applications Using Linear Consensus Algorithms," in Networked
Control Systems. Springer, 2011, vol. 406, pp. 75-107.

[3] W. Ren, H. Chao, W Bourgeous, N. Sorensen, and Y.-Q. Chen, "Ex
perimental implementation and validation of consensus algorithms on a
mobile actuator and sensor network platform," in IEEE Int. Conf. on
Systems, Man and Cybernetics, Oct 2007, pp. 171-176.

[4] R. Pagliari and A. Scaglione, "Implementation of average consensus
protocols for commercial sensor networks platforms," in Grid Enabled
Remote Instrumentation. Springer, 2009, pp. 81-95.

[5] J. Kenyeres, M. Kenyeres, and M. Rupp, "Experimental node failure anal
ysis in WSNs," in Int. Conf. on Systems, Signals and Image Processing,
June 2011, pp. 1-5.

[6] J. Kenyeres, M. Kenyeres, M. Rupp, and P. Farkas, "Wsn implementation
of the average consensus algorithm," in European Wireless, April 2011.
pp. 1-8.

[7] S. Pereira, R. Lopez-Valcarce, and A. Pages-Zamora, "A diffusion-based
em algorithm for distributed estimation in unreliable sensor networks,"
Signal Processing Letters, IEEE, vol. 20, no. 6, pp. 595-598, June 2013.

[8] J. Chen and A. H. Sayed, "On the learning behavior of adaptive networks
— Part I: Transient analysis," submitted for publication [also available as
arXiv:1312.7581], 2013.

