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Abstract—This paper concerns sparse decomposition of a noisy
signal into atoms which are specified by unknown continuous-
valued parameters. An example could be estimation of the model
order, frequencies and amplitudes of a superposition of complex
sinusoids. The common approach is to reduce the continuous
parameter space to a fixed grid of points, thus restricting the
solution space. In this work, we avoid discretization by working
directly with the signal model containing parameterized atoms.
Inspired by the ”fast inference scheme” by Tipping and Faul
we develop a novel sparse Bayesian learning (SBL) algorithm,
which estimates the atom parameters along with the model
order and weighting coefficients. Numerical experiments for
spectral estimation with closely-spaced frequency components,
show that the proposed SBL algorithm outperforms state-of-the-
art subspace and compressed sensing methods.

I. INTRODUCTION

Suppose we have a length-N signal x given by a weighted
sum of K � N elementary functions, so-called signal atoms:

x =
∑K
i=1ψ(θi)αi, (1)

where θ = [θ1, · · · , θK ]T is a vector of atom (dictionary)
parameters and α = [α1, · · · , αK ]T is a vector of weight-
ing coefficients. We specify the atoms by the vector-valued
function ψ : [0, 1) → CN .1 We take noisy measurements
y ∈ CN as y = x + w, where w ∈ CN is a zero-mean
complex Gaussian noise vector with independent and identical
distributed (i.i.d.) entries of variance λ−1.

The problem of estimating K, θ and α given the atom
specification ψ(·) and observation y is ubiquitous in sig-
nal processing. When the Fourier atom is considered, i.e.
ψ(θi) = [ej2πθi0, · · · , ej2πθi(N−1)]T, the problem reduces
to the line spectral estimation problem, which has a wide
range of applications, e.g. direction of arrival estimation. The
problem also arises in the context of compressed sensing (CS)
reconstruction: When a sensing matrix Φ is employed, the
atoms in our model become ψ(·) = Φψ̃(·), where ψ̃(·) is the
atom specified without a sensing matrix.

A common approach, particularly in CS [1], is to discretize
the parameter space into a (uniform) grid of M ≥ N values
on [0, 1). Then, a sparse representation of x is sought in the
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1Any function ψ(·) having a connected and bounded domain in R can be
expressed in this form.

dictionary obtained by evaluating ψ(·) at the M grid points.
However, the mismatch between the atoms in the dictionary
and the true atoms limits the accuracy of the fixed dictionary
approach. To combat the severity of the atom mismatch a finer
grid can be employed, leading to two undesired effects: a)
the dictionary becomes increasingly coherent, rendering the
estimation problem ill-posed [1] and b) the larger size of the
dictionary results in higher computational cost of estimation.

Model-based CS can be applied to mitigate the coherence
issue occurring with fixed dictionaries, see for example [2],
[3]. If the objective is to reconstruct the signal vector x, and
not to find a decomposition into atoms, “analysis sparsity” [4],
[5] alleviates the need for dictionary incoherence. All these
coherence-controlling methods suffer from high computational
complexity when a fine grid is used.

Recent works [6] formulate our estimation problem as
a total variation norm minimization problem. The strongly
related parallel development [7] uses a similar atomic norm
minimization. Minimizing the `1-norm promotes sparse es-
timates. The idea in [6], [7] is to generalize the `1-norm
from vectors to the real line, such that minimizing the norm
promotes a sparse signal on the real line, i.e. a sum of spikes.
For Fourier atoms, [6], [7] rewrite the norm minimization as a
semi-definite program. The theoretical analysis of these works
requires the frequencies in θ to be well-separated, e.g. by at
least 2/N in [6].

Another recently-proposed approach is to introduce a com-
plementary dictionary which characterizes the basis mismatch,
e.g. [8], [9].

For Fourier atoms (1) reduces to the line spectral estimation
problem and many methods have been proposed; see [10] for
a list of references. The most prominent of these methods are
the so-called subspace methods [11], e.g. ESPRIT [12].

In this paper, we devise a sparse Bayesian learning (SBL)
algorithm for estimating K, θ and α. Since most SBL methods
(e.g. [13]–[16]) are developed for discrete dictionaries, they
suffer from the mentioned drawbacks when applied to our
problem. Therefore, we instead use the parameterized model
(1) to devise our algorithm. Specifically, we extend the sparse
prior model proposed in [13] and devise an inference scheme,
inspired by [14], which estimates K, θ and α. A parallel de-
velopment is found in [17], which uses a variational Bayesian
method for estimation.

c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
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Fig. 1. Bayesian network of the probabilistic model.

II. PROBABILISTIC MODELLING

Our probabilistic model is an extension of that in [13]
to include modelling of the atom parameter vector θ. The
Bayesian network representation of our model is shown in
Fig. 1. We note that the model in [13] is itself obtained by
modifying the model in [15] such that α depends on λ. This
modification is employed since it gives certain benefits in
computational complexity as discussed in [13].2

The following treatment is valid for both the real and
complex cases.3 The observation y is taken in white Gaussian
noise with variance λ−1:

p(y|θ,α, λ) = N(y|Ψ(θ)α, λ−1I), (2)

where the dictionary matrix Ψ(θ) = [ψ(θ1), · · · , ψ(θK)]
contains the atoms as columns. The noise precision λ is mod-
elled as gamma distributed with shape a and rate b: p(λ) =
Ga(λ|a, b). The atom parameter vector θ ∈ [0, 1)K has i.i.d.
uniformly distributed entries: p(θ) =

∏K
i=1 unif(θi|0, 1). The

coefficients α are modelled through a two-layer hierarchical
specification. The first layer is a zero-mean Gaussian distri-
bution, i.e. p(α|γ, λ) = N(α|0, λ−1Γ), where Γ = diag(γ).
The vector γ constitute the second layer. Its entries are mod-
elled as i.i.d. gamma distributed: p(γ) =

∏K
i=1 Ga(γi|ε, η).

III. BAYESIAN INFERENCE

To infer on (K,θ,α), we proceed by applying Type-II
estimation [18], i.e. we use Bayesian inference to find point
estimates (K̂, θ̂, γ̂, λ̂) of the parameters (K,θ,γ, λ) and find
the estimate α̂ of α as the mode of p(α|y, θ̂, γ̂, λ̂). From
Bayes rule, p(α|y,θ,γ, λ) turns out to be a normal density:

p(α|y,θ,γ, λ) = N(α|µ, λ−1Σ), (3)

where

µ = ΣΨH(θ)y, (4)

Σ =
(
ΨH(θ)Ψ(θ) + Γ−1

)−1
. (5)

We find (θ̂, γ̂, λ̂) as an approximation of the maximum a
posteriori (MAP) estimate

(θ̂, γ̂, λ̂)MAP = arg max
(θ,γ,λ)

ln p(θ,γ, λ|y). (6)

2Note that with this modification, the entries of γ represent the ratio of the
weight variances to the noise variance, i.e. signal-to-noise ratios.

3 The multivariate normal density is parameterized to encompass both the
real (ρ = 1

2
) and complex (ρ = 1) cases:

N(x|µ,Σ) =
( ρ
π

)ρ dim(x)
|Σ|−ρ exp

(
−ρ(x−µ)HΣ−1(x−µ)

)

Following the steps of [13], we proceed by writing the log-
posterior by its factors:

ln p(θ,γ, λ|y) ∝e ln p(y|θ,γ, λ)p(θ)p(γ)p(λ), (7)

where x ∝e y denotes x = y+ const. The marginal likelihood
can be found by marginalizing the coefficient vector α out:

p(y|θ,γ, λ) = N(y|0, λ−1B), (8)

where B =
(
I−Ψ(θ)ΣΨH(θ)

)−1
= I + Ψ(θ)ΓΨH(θ).

Using this result, we can rewrite the log-posterior (7) such
that one set of parameters (θi, γi, λ) appear explicitly:

ln p(θ,γ, λ|y) ∝e ρN lnλ− ρ ln |B−i|

− ρ ln (1 + γisi)− ρλyHB−1
−iy +

ρλ|qi|2

γ−1
i + si

+

K∑
k=1

{(ε− 1) ln γk − ηγk}+ (a− 1) lnλ− bλ, (9)

where B−i = I+Ψ(θ−i)Γ−iΨ
H(θ−i) and Γ−i = diag(γ−i).

The notation a−i denotes a vector a with the ith component
removed. We have further defined the quantities

si , ψ
H(θi)B

−1
−iψ(θi) and qi , ψ

H(θi)B
−1
−iy. (10)

To estimate the parameters {θi, γi}i=1,...,K̂ and λ we it-
eratively maximize (9) with respect to one parameter, while
keeping all other parameters fixed at their current estimate. To
do so, we take partial derivatives of (9) w.r.t λ and γi and
solve for the roots. Following a procedure similar to that in
[15], to analyse the stationary points, we get the updates

λ̂ =
ρN + a− 1

ρyHB̂−1y − b
(11)

γ̂i =

{
−(2ε−2−ρ)ŝi−ρλ̂|q̂i|2−

√
∆

2(ε−1−ρ)ŝ2i
ρλ̂|q̂i|2 > δ,

0 otherwise,
(12)

where ∆ =
(

(2ε− 2− ρ)ŝi + ρλ̂|q̂i|2
)2

−4(ε−1)(ε−1−ρ)ŝ2
i

and δ =
(

2 + ρ− 2ε+ 2
√

(1− ε)(1 + ρ− ε)
)
ŝi.

It is not tractable to obtain similar closed-from expression
for updating θ̂i. We instead use Newton’s method for uncon-
strained optimization, which iteratively updates θ̂i as

θ̂new
i = θ̂old

i − l′
(
θ̂old
i

)/
l′′
(
θ̂old
i

)
, (13)

where l′(θi) and l′′(θi) are the first and second partial deriva-
tives of (9) with respect to θi as given in the Appendix.

Algorithm 1 combines update equations (11), (12) and
(13) into a constructive sequential algorithm for estimating
(K,θ,α). The algorithm follows the idea of the fast inference
scheme [14] and starts with an empty model and iteratively
adds atoms into the model. Due to the highly-nonlinear form
of (9) as a function of θi, the search for candidate atoms to
include in the model is aided by a grid search. We have found
that using the Jeffreys prior for γi and λ, obtained as the
special case ε = η = a = b = 0, yields good performance.
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Algorithm 1: SBL with Dictionary Parameter Estimation
Input: Signal measurement y.
Output: Estimates of the model order K̂, atom

parameters in θ̂ ∈ [0, 1)K̂ and coefficients in
α̂ ∈ CK̂ .

Parameters: Prior parameters ε, a, b (η = 0 assumed.)
1 (θ̂, γ̂)← Empty vectors; λ̂← 100
2 while Stopping criterion not met do
3 if Iteration number ∈ {0, 5, 10, 20, 30, . . .} then
4 for i = 0, . . . , 3N − 1 do
5 θ̂candidate ← Calc. from (13), with θ̂old = i

3N .
6 γ̂candidate ← Calculate from (12).
7 if γcandidate > 0 then
8 Append (θcandidate, γcandidate) to (θ̂, γ̂).
9 end

10 end
11 end
12 for i = 1, . . . , ||θ̂||0 do
13 θ̂i ← Update from (13).
14 γ̂i ← Update from (12).
15 if γ̂i == 0 then
16 Remove component i from θ̂ and γ̂.
17 end
18 end
19 λ̂← Update from (11).
20 end
21 α̂← µ̂ µ̂ calculated from (4) based on (θ̂, γ̂).

We have observed that applying the update (13) more
than once in lines 5 and 13, does not improve the overall
convergence rate significantly for Fourier atoms. As a stopping
criterion in the kth iteration we use ||θ̂k−θ̂k−1||∞ < 10−6/N .
To reduce computational complexity, the matrix Σ̂ can be
iteratively updated as atoms are added and removed from the
model, by using the expressions in [16]. With these updates,
the algorithm has computational complexity per iteration of
O(N2K̂) when searching for new atoms to add to the model
and O(NK̂2) otherwise.

IV. NUMERICAL EXPERIMENTS

To investigate the performance of our algorithm, we conduct
a numerical experiment with Fourier atoms. The simulation
code is available online at http://doi.org/srp. We use N = 100
measurements and K = 10 signal components. We generate θ
consisting of 5 pairs of frequencies. The distance d(θi, θi+1)
between two paired frequencies is i.i.d. uniform random on the
interval [0.7/N, 1/N ]. The distance metric d(·, ·) is the wrap-
around distance on the interval [0, 1). The pairs are located
randomly such that any set of frequencies (θi, θj) which
are not paired are separated by at least d(θi, θj) ≥ 1.5/N .
The complex amplitudes of the signal components in α are
generated i.i.d. with uniform random phase on [0, 2π) and
amplitudes drawn from a normal density of mean 1 and
variance 0.1.

We measure performance in terms of normalized mean-
squared error (MSE) of the reconstructed signal x̂ = Ψ(θ̂)α̂
and the following performance metric for θ̂:

β(θ, θ̂) ,
1

K

K∑
i=1

(
min
θ̂∈θ̂

d(θ̂, θi)

)2

, (14)

where the notation θ̂ ∈ θ̂ signifies that θ̂ is given as one of the
entries in θ̂. Further, we show histograms of the model order
estimation error at 15 dB SNR for some of the algorithms. All
reported values are averaged over 100 trials.

We compare our algorithm with the fixed dictionary SBL
algorithm [13], which our algorithm is based on, also using
Jeffreys priors for γi and λ (ε = η = a = b = 0). Further, we
compare with a selection of state-of-the-art estimators: total
variation norm minimization via semi-definite programming
(SDP) [6]; a complex reformulation of continuous basis pursuit
(CCBP) from [9]; the integer program employed as part of
spectral iterative hard thresholding (SIHT IP) [2]; “analysis”
basis-pursuit denoising (BPDN) [5]; and ESPRIT [12].

Fixed dictionary SBL, SIHT IP and analysis BPDN are
given a fixed dictionary of size M = 10N . Due to com-
putational feasibility, CCBP is given a smaller dictionary of
size M = 3N . ESPRIT is given the true model order, i.e.
K̂ = K, and SIHT IP is given K̂ = 3K as the model order.
The regularization parameters of SDP and CCBP are set based
on the true noise variance λ. The above choices of K̂ and
regularization parameters are based on preliminary numerical
investigations to obtain the best performance of the algorithms.

For the reconstruction MSE, we compare with an oracle
estimator which computes a least-squares solution to find α̂
from the true set of frequencies. The Cramér-Rao bound for θ̂
(CRB) is calculated as in [19] and averaged over all simulated
signal realizations. The CRB is a lower bound on β(θ, θ̂),
assuming that the matching of an estimate θ̂ to each of the
true frequencies θi in the minimization of (14) is one-to-one.

The simulation results are shown in Fig. 2. We see that our
proposed SBL algorithm is superior to all other algorithms at
SNR ≥ 5 dB. At SNR ≥ 15 dB ESPRIT performs similarly to
our algorithm in terms of reconstruction MSE. The proposed
SBL algorithm attains the CRB of β(θ, θ̂) at SNR ≥ 5 dB,
while ESPRIT only almost does so at SNR ≥ 20 dB.

All algorithms which rely on a fixed dictionary (fixed dict.
SBL, CCBP and SIHT IP) show a saturation effect in β(θ, θ̂);
beyond a certain SNR threshold the performance does not
improve since the resolution limit of the dictionary is reached.
Notice how CCBP performs similar to fixed dict. SBL in terms
of β(θ, θ̂), even though it uses a much smaller dictionary.

For fixed dict. SBL, SDP and SIHT IP the saturation effect
in terms of β(θ, θ̂) does not give rise to a corresponding
saturation in reconstruction MSE. These three estimators are,
however, significantly overestimating K in high SNR (see Fig.
2c and remember that K̂ = 3K for SIHT IP). Our algorithm
has small model order estimation error for all SNR values
greater than 0 dB and still out-performs ESPRIT which is given
the true model order.
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Fig. 2. Simulation results.

V. CONCLUSION

In this paper we addressed the so-called off-grid sparse
decomposition problem which consists in decomposing a noisy
signal into atoms specified by unknown continuous-valued
parameters. We found that a convenient way to avoid the
undesired effects of a discretized atom parameter space is
to consider the atom parameters as unknown variables to be
estimated along with the model order and atom coefficients.

Thus, we proposed a novel SBL algorithm based on an
extension of the probabilistic model in [13]. Inspired by the
constructive scheme of [14], we devised update expressions
which provide a simple criterion for inclusion of an atom
into the estimated model; candidate atoms for inclusion are
identified via a grid search. Unlike for the rest of the variables,
the updates of the atom parameters cannot be computed in
closed-form, so we resorted to Newton’s method to update
these estimates.

The numerical results show that our algorithm is superior to
the reference algorithms for spectral estimation with closely-
spaced frequency components. This is remarkable since our
algorithm estimates the model order, while many of the
reference algorithms are given the true value. An interesting
aspect for further research is to reduce the computational
demands of the algorithm, in particular that connected with
the search for new atoms to include in the model estimate.

APPENDIX: PARTIAL DERIVATIVES OF (9) W.R.T. θi

l
′
(θi) =

ρλ̂γ̂i

1 + γ̂iŝi

∂|q̂i|2

∂θi
−
(

ργ̂i

1 + γ̂iŝi
+

ρλ̂γ̂2
i |q̂i|

2

(1 + γ̂iŝi)2

)
∂ŝi

∂θi

l
′′

(θi) =

(
λ̂
∂2|q̂i|2

∂θ2i
−
∂2ŝi

∂θ2i

)
ργ̂i

1 + γ̂iŝi
+

(
∂ŝi

∂θi

)2 2ρλ̂γ̂3
i |q̂i|

2

(1 + γ̂iŝi)3

+

((
∂ŝi

∂θi

)2

− 2λ̂
∂ŝi

∂θi

∂|q̂i|2

∂θi
− λ̂|q̂i|2

∂2ŝi

∂θ2i

)
ργ̂2
i

(1 + γ̂iŝi)2

∂ŝi

∂θi
= 2 Re

{
ψ

H
(θi)B̂

−1
−i
∂ψ(θi)

∂θi

}
∂|q̂i|2

∂θi
= 2 Re

{
q̂iy

H
B̂
−1
−i
∂ψ(θi)

∂θi

}
∂2ŝi

∂θ2i
= 2 Re

{
ψ

H
(θi)B̂

−1
−i
∂2ψ(θi)

∂θ2i
+
∂ψH(θi)

∂θi
B̂
−1
−i
∂ψ(θi)

∂θi

}
∂2|q̂i|2

∂θ2i
= 2 Re

{
y
H
B̂
−1
−i

[
∂ψ(θi)

∂θi

∂ψH(θi)

∂θi
+
∂2ψ(θi)

∂θ2i
ψ

H
(θi)

]
B̂
−1
−iy

}
.

For Fourier atoms we have ∂ψ(θi)

∂θi
= Dψ(θi) and ∂2ψ(θi)

∂θ2
i

= D2ψ(θi), where

D = diag([0, j2π, · · · , j2π(N − 1)]).
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