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ABSTRACT

A method is proposed for reducing the effect of white noise in wide-

band uniform linear arrays via a combination of a judiciously de-

signed transformation followed by highpass filters. The reduced

noise level leads to a higher signal to noise ratio for the system,

which can have a significant effect on the performance of various

direction of arrival (DOA) estimation methods. As a representative

example, the compressive sensing-based wideband DOA estimation

method is employed here to demonstrate the improved estimation

performance, this is confirmed by simulation results.

Index Terms— Wideband arrays, direction of arrival estima-

tion, white noise reduction, uniform linear arrays.

1. INTRODUCTION

Direction of arrival (DOA) estimation in array signal processing has

been an active field of research for many years [1, 2, 3, 4], with a

wide range of applications including radar, sonar, and wireless com-

munications. Many methods have been proposed for both narrow-

band and wideband signals, and two representative ones are the MU-

SIC and the ESPRIT algorithms [5, 6], which were originally pro-

posed for narrowband signals. For wideband signals, a commonly

used approach is to decompose the wideband signal into different

frequency bins and transform the wideband problem into a narrow-

band one through various focusing or interpolation algorithms [7, 8].

In addition, methods such as incoherent signal subspace method

(ISSM) [9], coherent signal subspace method (CSSM) [10] and test

of orthogonality of projected subspaces method (TOPS) [11] have

also been proposed. Recently, with the development of compressive

sensing theory [12, 13], many sparsity based DOA estimation meth-

ods were developed [14, 15, 16, 17], including various extensions to

the wideband case [18, 19, 20].

In general, the performance of a DOA estimation algorithm is

dependent on the level of noise in the system, and normally the

lower the level of noise, the better the performance. One common

assumption for noise in wideband arrays is that it is spatially (and

also temporally in many cases) white, i.e. the noise at array sensor is

uncorrelated with the noise at any other sensor. Under this assump-

tion, it seems there is not much that can be done about the noise and

we have to simply accept whatever noise component is left after the

required processing for the signal part.

In this paper, we aim to reduce the white noise level of a wide-

band array system so that the performance of various DOA estima-

tion algorithms can be improved. A novel noise reduction method

is developed to reduce the white noise level of a wideband uniform

linear array (ULA) using a set of judiciously designed transforma-

tions. The spatial characteristics of the white noise and the direc-

tional wideband signals received by the array are different. Based

on this difference and motivated by the low-complexity subband-

selective adaptive beamformer proposed in [21, 22], we first trans-

form the received wideband sensor signals into a new domain where

the directional signals are decomposed in such a way that their cor-

responding outputs are associated with a series of tighter and tighter

highpass spectra, while the spectrum of noise still covers the full

band from −π to π in the normalised frequency domain. Then, a se-

ries of highpass filters with different cutoff frequencies are applied

to remove part of the noise spectrum while keeping those of the di-

rectional signals unchanged. Finally, an inverse transformation is

applied to the filtered outputs to recover the original sensor signals,

where compared to the original set of received sensor signals, the

directional signals are left intact while the noise power is reduced.

One condition placed on the transformation matrix is that it must

be invertible. We have further assumed that it is also unitary and thus

used the discrete Fourier transform (DFT) matrix as a representative

example in our simulations section. Detailed analysis shows that the

signal to noise ratio (SNR) of the array after the proposed process-

ing can be improved by about 3dB in the ideal case, and this is then

translated into a corresponding enhanced performance for DOA es-

timation. To demonstrate this improved performance, a compressive

sensing based wideband DOA estimation method will be employed.

This paper is organised as follows. In Sec. 2, the proposed noise

reduction method is introduced, followed by the compressive sens-

ing based wideband DOA estimation method in Sec. 3. Simulation

results are presented in Sec. 4 and conclusions are drawn in Sec. 5.

2. THE PROPOSED WHITE NOISE REDUCTION

METHOD

A block diagram for the general structure of the proposed noise re-

duction method is shown in Fig. 1. The M received array signals

xm[n], m = 0, . . . ,M − 1, are first processed by an M ×M trans-

formation matrix B, and then its outputs qm[n], m = 0, . . . ,M − 1,

pass through a set of highpass filters with impulse responses given

by hm[n], m = 0, . . . ,M − 1; the outputs of these filters are de-

noted by zm[n], m = 0, . . . ,M − 1, and these are then transformed

by B−1. For simplicity, we assume B is unitary, i.e. B−1 = BH ,



h      

θ

−1

n[  ]

n[  ]
n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]
n[  ]

n[  ]qM−1 n[  ]zM−1 n[  ]^xM−1

^

^

BB

x

x

x

q

q

z

z

x

x

M−1

0

1

0

1
 0

 1

 M−1

0

1

0

1

h  

h  

Fig. 1: Structure of the proposed white noise reduction method.

where {}H denotes the Hermitian transpose.

We assume there are K wideband signals sk(t) impinging on the

array from different incident angles θk, k = 0, · · · ,K − 1. The re-

ceived array signal xm(t) at the m-th sensor consists of these wide-

band signals and white noise n̄m(t), i.e. we have

xm(t) =

K−1
∑

k=0

sk [t− τm(θk)] + n̄m(t), (1)

where τm(θk) represents the time delay (relative to a reference sen-

sor) of the k-th impinging signal with the incident angle θk arriving

at the m-th sensor of the array. Taking the first sensor in the array as

the reference point, we have τ0(θk) = 0. So with

dm(t) =

K−1
∑

k=0

sk [t− τm(θk)] , (2)

then (1) becomes

xm(t) = dm(t) + n̄m(t). (3)

With a sampling frequency fs, the discrete version of the array vec-

tor snapshot is

x[n] = d[n] + n̄[n], (4)

where

x[n] = [x0[n], x1[n], · · · , xM−1[n]]
T ,

d[n] = [d0[n], d1[n], · · · , dM−1[n]]
T ,

n̄[n] = [n̄0[n], n̄1[n], · · · , n̄M−1[n]]
T .

Thus the output of the M ×M transformation matrix B is

q[n] = Bx[n] = B(d[n] + n̄[n]), (5)

where [B]m,l = bm,l and q[n] = [q0[n], q1[n], · · · , qM−1[n]]
T .

Each row of the transformation matrix can be considered as a fixed

beamformer with its output given by qm[n] =
∑M−1

l=0
bm,lxl[n].

The corresponding beam response is

Rm(Ω, θ) =

M−1
∑

l=0

bm,le
−jlµΩsinθ = Bm(µΩsinθ), (6)

where µ = d/cTs and Ω = ωTs, with d being the inter-element

spacing of the uniform linear array (ULA), c the wave propagation

speed, Ts the sampling period, and ω is angular frequency. With

Ω̂ = µΩsinθ, we have

Bm(Ω̂) =

M−1
∑

l=0

bm,le
−jlΩ̂, (7)
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Fig. 2: Frequency response of the lth row vector followed by the

corresponding highpass filter in the ideal case.

where Bm(Ω̂) is the frequency response of the m-th row vector of

the transformation matrix B (where we consider each row vector as

the impulse response of a finite impulse response filter).

By assuming that the sampling frequency is twice the highest

frequency component of the wideband signal and that the array spac-

ing is half the wavelength of the highest frequency component, we

have µ = 1 [4]. The frequency responses Bm(Ω̂) of the row vec-

tors are arranged to be bandpass with bandwidths of 2π/M and all

together they cover the whole frequency band [−π;π] [22]. Taking

the lth row vector as example, its frequency response is

∣

∣

∣
Bl(Ω̂)

∣

∣

∣
=

{

1, for Ω̂ ∈ [Ω̂l,L; Ω̂l,U ]
0, otherwise

(8)

as shown in Fig. 2. Considering the above frequency response, the

received array signal components with frequency Ω ∈ (−Ω̂l,L; Ω̂l,L)
will not be able to pass through this row vector, since Ω̂ = Ωsinθ
does not fall into the passband of [Ω̂l,L; Ω̂l,U ] no matter what the

direction of arrival θ is. Therefore, the frequency range of the output

is |Ω| ≥ Ω̂l,L and the lower bound is determined by Ω̂l,L when

Ω̂l,L > 0. On the contrary the lower bound is determined by |Ω̂l,U |
when Ω̂l,L < Ω̂l,U < 0.

Therefore, the output spectrum of the signal part of ql[n] cor-

responding to the l-th row vector will then be highpass filtered as

illustrated in Fig. 2. Since the noise at the array sensors is spatially

white, the output noise spectrum of the row vector is still a constant,

covering the whole spectrum. More importantly, since B is unitary,

there is no change to the total noise power after the transformation.

As shown in Fig. 1, each ql[n], l = 0, · · · ,M − 1 is the input

to the corresponding highpass filter hl[n], l = 0, · · · ,M − 1, and

that filter should cover the whole bandwidth of the signal part, i.e.

having the same highpass frequency response as shown in Fig. 2.

As a result, in the ideal case, the highpass filters will not have any

effect on the signal part, and the signal part should pass through the

highpass filter without any distortion. On the contrary, frequency

components of the white noise which fall into the stopband of the

highpass filters will be removed. The output of these highpass filters

is given by

z[n] =











z0[n]
z1[n]

...

zM−1[n]











=











q0[n] ∗ h0[n]
q1[n] ∗ h1[n]

...

qM−1[n] ∗ hM−1[n]











, (9)

where * denotes the convolution operator.

Now we consider the noise reduction effect of these filters. Each

filter removes part of the noise except for the one corresponding

to the row vector with a frequency response covering the zero fre-

quency component, which should allow all the frequencies to pass.

Assume that the size M of the array is an odd number. Then in the



ideal case, the ratio between the total noise power after and before

the processing of the M highpass filters can be expressed as

Pno

Pni

=
1

M

(

1 + 2

(

M − 1

M
+

M − 3

M
+ · · ·+

2

M

))

, (10)

where Pno is the total noise power at the output of the filters and Pni

is the total noise power at their input. If the size of the array is an

even number, then this ratio is given by

Pno

Pni

=
1

M

(

1 + 2

(

M − 1

M
+

M − 3

M
+ · · ·+

3

M

)

+
1

M

)

.

(11)

As a result, we have

r(M) =
Pno

Pni

=











M2+2M−1

2M2 , if M is odd

M2+2M−2

2M2 , if M is even.

(12)

When M → ∞, the noise power will be reduced by half. Since

the filters have no effect on the signal part, the ratio between the total

signal power and the total noise power will be improved by almost

3dB in the ideal case. For a finite M , the improvement will be less

than 3dB. For example, when M = 16, it is about 2.5dB.

Applying the inverse of the transformation matrix B−1 = BH

to z[n], we obtain the estimates of the original input sensor signals

x̂m[n], m = 0, 1, · · · ,M − 1. In vector form, we have

x̂[n] = B
−1

z[n], (13)

where x̂[n] = [x̂0[n], x̂1[n], · · · , x̂M − 1[n]]T . After going through

these processing stages, there is no change in the signal part at the

final output x̂l[n], l = 0, 1, · · · ,M − 1 compared to the original

signal part in xl[n], l = 0, 1, · · · ,M − 1. On the contrary, since

B−1 is also unitary, the total noise power stays the same between

x̂[n] and z[n], which is almost half the total noise power in x[n].
Therefore, for a very large array size M , we have

∥x̂[n]∥22 ≈ ∥d[n]∥22 +
1

2
∥n̄[n]∥22 . (14)

where ∥.∥2 is the l2 norm

From above, in terms of the total signal power to total noise

power ratio (TSNR), we can easily find the following relationship

TSNRx̂ ≈
∥d[n]∥22
1

2
∥n̄[n]∥22

= 2TSNRx. (15)

So in the ideal case, for a very large M , the TSNR has almost been

doubled using the proposed noise reduction method. This can be

translated into better performance for different array processing ap-

plications such as DOA estimation.

3. COMPRESSIVE SENSING BASED DOA ESTIMATION

To demonstrate the improved array processing performance with an

improved TSNR, we focus here on the wideband DOA estimation

problem. The DOA estimation method adopted here is a direct adap-

tation and extension of the method developed in [17, 20] for co-

prime arrays.

First, for the received vector signal in (4), it is divided into P
non-overlapping groups with length L, and an L-point DFT is then

applied. The l-th frequency bin samples of the p-th group are placed

into one vector as:

X[l, p] = [X0[l, p], X1[l, p], ..., XM−1[l, p]]
T , (16)

where

Xn[l, p] =

L−1
∑

i=0

x1,n[Lp+ i].e−j 2π
L

il, (17)

with p = 0, 1, ..., P − 1 and l = 0, 1, ..., L− 1.

Define Sk[l, p] and N̄m[l, p] as the DFT of the p-th group

impinging signals sk[n] and noise n̄m[n], respectively. S[l, p] =
[S0[l, p], ..., SK−1[l, p]

T is a column vector holding signals from

the l-th frequency bin, and N̄[l, p] = [N̄1[l, p], ..., N̄M−1[l, p]]
T is

the column noise vector of the array. Then the output signal model

in the DFT domain can be expressed as:

X[l, p] = A(l, θ)S[l, p] + N̄[l, p], (18)

where A(l, θ) = [a(l, θ), ..., a(l, θK−1)] is the steering matrix at

frequency fl corresponding to the l-th frequency bin. The column

vector a(l, θk) is the steering vector at frequency fl and angle θk.

The auto-correlation matrix of the observed array vector X[l, p] is:

Rxx[l] = E
{

X[l, p]XH [l, p]
}

=

K−1
∑

k=0

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n[l]IM ,

(19)

where E{} denotes the statistical expectation, and IM is the M×M
identity matrix. σ2

k[l] represents the power of the k-th impinging

signal of the l-th frequency bin and σ2
n[l] is the corresponding noise

power. Vectorizing Rxx[l] yields:

u[l] = vec{Rxx} = Ã[l]̃s[l] + σ2
nĨM , (20)

where Ã[l] = [ã(l, θ0), ..., ã(l, θK − 1)], ã(l, θk) = a∗(l, θk) ⊗
a(l, θk) (⊗ is the Kronecker product), and s̃[l] = {σ2

0 [l], σ
2
1 [l], ...,

σ2
K−1[l]}

T . ĨM is an M2 × 1 column vector obtained by vector-

izing the identity matrix IM . Eq. (20) characterizes a virtual array

with Ã[l] and s̃[l] as its steering matrix and impinging signal vector,

respectively. Eq. (20) can be reduced to:

u[l] = Ã
◦

[l]̃s◦[l], (21)

where Ã
◦

[l] =
[

Ã[l], ĨM

]

and s̃◦ =
[

s̃T [l], σ2
n[l]

]T
. For the l-

th frequency, with a search grid of Kg potential arriving angles

(θg,0, ..., θg,K−1) , the steering matrix is

Ãg[l] =
[

ã(l, θg,0), ..., ã(l, θg,Kg−1)
]

.

Constructing a column vector ˜sg[l] consisting of Kg elements, with

each representing a potential arriving signal, yields

Ã
◦

g[l] =
[

Ãg[l], ĨM

]

; s̃
◦

g[l] =
[

s̃g[l], σ
2
n[l]

]T
. (22)

Now we construct two matrices, a block diagonal matrix D̃g using

Ã
◦

g[lq]

D̃g = blkdiag{Ã
◦

g[l1], Ã
◦

g[l2], · · · , Ã
◦

g[lQ]} (23)

and a (Kg + 1)×Q matrix R using s̃◦g[lq] with

R =
[

s̃
◦

g[l1], s̃
◦

g[l2], · · · , s̃
◦

g[lQ]
]

.
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Fig. 3: Magnitude response of the 16× 16 DFT matrix.

Then we can obtain the following wideband virtual array model ũ =

D̃g r̃ where ũ =
[

uT [l1], · · · , uT [lQ]
]T

and r̃ = vec(R) is a (Kg +
1) · Q × 1 column vector by vectorizing R. We use the row vector

rk, 1 ≤ k ≤ Kg + 1, to represent k-th row of matrix R. Then we

form a new (Kg + 1) × 1 column vector r̂ based on the l2 norm of

rk, 1 ≤ k ≤ Kg + 1, as given below

r̂ =
[

∥r1∥2 , ∥r2∥2 , · · · ,
∥

∥rKg+1

∥

∥

2

]T
. (24)

Finally, the group sparsity based wideband DOA estimation is for-

mulated as follows

min
r̃

∥r̂∥
1

subject to
∥

∥ũ − D̃g r̃
∥

∥

2
≤ ϵ . (25)

The problem in (25) can be solved using CVX, a software package

for specifying and solving convex programs [23, 24].

4. SIMULATION RESULTS

Our simulations are based on a ULA with M = 16 sensors. The

transformation matrix B is a 16× 16 DFT matrix with its frequency

responses shown in Fig. 3. There are 12 bandlimited impinging sig-

nals with a normalized frequency range from 0.5π to π and 0dB

SNR, and their DOAs are uniformly distributed between -60 to 60

degrees. The number of signals sampled in the time domain at each

sensor is 32768, and a DFT of L = 64 points is applied. The number

of data blocks used for estimating Rxx[l] in (19) at each frequency bin

is P = 512. The search grid is formed to cover the full DOA range

with a step size of 0.05◦. By applying the proposed noise reduction

method, 2.41dB improvement in SNR is achieved.

The DOA estimation results with and without noise reduction

are shown in Fig. 4, where we can see that in Fig. 4a there are a few

false directions detected and the results are not as accurate as Fig.

4b when the proposed noise reduction method is used.

Finally, the root mean square error (RMSE) for the DOA es-

timation result with respect to different SNRs is shown in Fig. 5.

The results are averaged from running the simulations 100 times. It

can be clearly seen that using the developed noise reduction method,

the DOA estimation result has been improved significantly over the

whole considered input SNR range.

5. CONCLUSIONS

A method for reducing the white noise level in wideband ULAs has

been introduced. With the proposed method, a maximum 3dB im-
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Fig. 4: DOA estimation results with/without the proposed noise re-

duction.

provement in total signal power to total noise power ratio (TSNR)

can be achieved. This increased TSNR can be translated into per-

formance improvement in various array signal processing applica-

tions and as an example, its effect on DOA estimation was studied.

As demonstrated by simulation results obtained by a simple com-

pressive sensing based method, a significant improvement in DOA

estimation accuracy has been achieved.
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