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Abstract—MultiDimensional (MD) Harmonic Retrieval is a
challenging multi-parameter estimation problem and is useful
for a plethora of operational applications as for instance channel
sounding or MIMO radar processing. The MD-harmonic model
follows a structured Canonical Polyadic Decomposition (CPD)
in the sense that the factors of the CPD are Vandermonde. A
standard and popular estimation scheme to derive the CPD is the
Alternating Least Squares (ALS) algorithm. Unfortunately, the
ALS algorithm does not exploit the a priori known factor struc-
ture, which considerably degrades the estimation performance. In
this work, a modified ALS-type algorithm is proposed. This new
algorithm, called Rectified ALS (RecALS), is able to take into
account the Vandermonde structure of the factors. The RecALS
algorithm belongs to the Lift-and-Project family and exploits
iterated projections on the set of Toeplitz rank-1 matrices. It
exhibits a fast convergence and is very accurate in the sense that
its Mean Square Error (MSE) is close to the Cramér-Rao Bound
for a wide range of Signal to Noise Ratio (SNR).

Index Terms—Structured Canonical Polyadic Decomposition,
Vandermonde factors, MultiDimensional Harmonic Retrieval,
modified Alternating Least Squares algorithm, Toeplitz rank-1
matrix approximation

I. INTRODUCTION

An increasing number of signal processing applications deal
with multidimensional data. In particular, MultiDimensional
(MD)-harmonic retrieval [1]-[4] is an important and challeng-
ing multi-parameter estimation problem. Multilinear algebra
provides a powerful framework to exploit these data [5]-[7] by
conserving the multidimensional structure of the information.

Nevertheless, generalizing matrix-based algorithms to the
multilinear algebra framework is not a trivial task. In partic-
ular, there exist several multilinear extensions of the matrix
Singular Value Decomposition (SVD) [8], each enjoying only
some properties of the matrix SVD. The Canonical Polyadic
Decomposition (CPD), also sometimes referred to as Cande-
comp/Parafac may be seen as one possible extension of the
SVD to the multilinear case; see [6] and references therein.
Recall that a rank-M matrix is defined as the sum of M rank-1
matrices and the best low-rank approximation is provided by
the truncated-SVD [25]. The CPD straightforwardly extends
this principle, i.e., a rank-M tensor follows a CPD of order
M or equivalently can be expressed as the sum of M rank-1
tensors, which can be stored in matrix factors. In addition,
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like SVD, it is essentially unique under mild conditions.
Unfortunately, in contrast to matrices, the set of tensors of
rank at most M is in general not closed, which renders the
problem of finding a tensorial best low-rank approximation
ill-posed [27]. As a consequence, we have to resort to sub-
optimal algorithms to derive the CPD.

Despite of this difficulty, the Alternating Least Squares
(ALS) algorithm [7,9,10] has proven to be powerful in a
wide range of operational contexts. To such an extent that
the ALS algorithm is now considered as the gold standard
method to estimate the factors entering the CPD. However, in
the standard ALS algorithm, all factor entries are estimated
independently while ignoring an a priori known structure.
In addition, practical problems are encountered when factor
matrices have a linear structure [11,12] such as Toeplitz,
circulant or Hankel. In order to fill this gap, several algorithms
have been proposed and their estimation accuracies have been
studied in [13]. But less attention has been dedicated to
Vandermonde structured factors [1]-[3] involved in the CPD
of the MD-harmonic model.

A class of well-known methods called projections onto
convex sets (POCS) continues to receive great attention
[15,17,24,26]. The POCS method is based on an infinite
sequence of iterated projections onto closed convex subsets.
This method is simple to implement and its convergence has
been proved in [28] for instance. Unfortunately, in many
operational applications, the considered subsets are nonconvex
and generally no convergence guarantees exist. A typical ex-
ample of nonconvex problem is the well-known phase recovery
problem [29]. Despite this, a method called Lift-and-Project
has been the subject of many publications [16] and has been
used successfully in several operational contexts [18,23]. In
this work, we propose a new methodology belonging to the
Lift-and-Project algorithm family to tackle the MD-Harmonic
Retrieval problem, breaking with the standard approaches as
proposed for instance in [14].

II. MD-HARMONIC MODEL AND ALS ALGORITHM
A. Structured Canonical Polyadic Decomposition (CPD)

The MD-harmonic model assumes that the measurements
can be modeled as the superposition of M undamped expo-



nentials sampled on a P-dimensional grid according to

M P
— n
[X]m.--np = E Am H Zmpo
m=1 p=1

in which the m-th complex amplitude is denoted by «,, and
Zmp = €“mr where wy,, is the m-th angular-frequency
along the p-th dimension. Tensor X can be expressed as
the linear combination of M rank-1 tensors, each of size
N1 X ...x Np (the size of the grid), and follows a generalized
Vandermonde decomposition:

0<n,<N,—1 (1)

X=(Vi,...,Vp)- A
where A is a M x ... x M diagonal tensor with [A],, ., =
oy and 'V, = [v(z1p) v(zmp)| is a Ny x M

Vandermonde matrix, where each column v(z,,w,) depends on
a single parameter, 2, ,, of unit modulus. We define a noisy
MD-harmonic tensor model of order P as: Y = X +oc& where
o€ is the noise tensor, o is a positive real scalar, and each
entry [E]n,..np follows an ii.d. circular complex Gaussian
distribution A/(0,1), and X has rank M.

B. Limit of the ALS algorithm for structured CPD

The CPD of any order-P rank-M tensor X involves the
estimation of P factors F, of size IV, x M. As pointed out
above, in the context of the MD-harmonic model, the factors
F, of the CPD are Vandermonde matrices. Consider, Y, the
p-th mode unfolding [6] of tensor Y, at the k-th iteration with
1 < k < I, I denoting the maximal number of iterations. The
ALS algorithm solves alternatively for each of the P dimen-
sions the minimization problem [7,9]: ming, ||Y, — F,G,|[?
where G =F1©...0F,_1 ©F,11 ©... ©Fp, where ©
denotes the Khatri-Rao product [6]. It aims at approximating
tensor Y by a tensor of rank M, hopefully close to X. The LS
solution conditionally to matrix G, is given by F,, = YPGL
where t stands for the pseudo-inverse. Now, remark that
there is no reason that the above LS criterion promotes the
Vandermonde structure in the estimated factors in the presence
of noise. In other words, ignoring the structure in the CPD
leads to estimate an excessive number of free parameters.
This mismatched model dramatically decreases the estimation
performance [13]. Hence there is a need to rectify the ALS
algorithm to take into account the factor structure.

III. RECTIFICATION STRATEGIES
A. Iterated projections and splitted LS criterion

Let V be the set of the complex Vandermonde vectors. The
structured LS optimization problem is the following [15]-[17]:

win Trace{ (F, — V,)(F, = V)7 } sV, € VM (2)

where VM is the set of Vandermonde matrices with A/
columns. The proposed strategy is to split the optimization
problem (2) into the resolution of M independent LS sub-
problems:

min [|f) —v||? st.veV 3)
v

where f}gf ) is the m-th column of F(®),

Assume that set V is the intersection of K closed convex
subsets {V; ..., Vk} in which each subset encodes a desired
algebraic property. Then the solution of eq. (3) can be rewritten
as vV = Ty,n.. AV (fr(f ) ), where my denotes the projector onto
V. A standard approach to solve this optimization problem is
the method of iterated projections. More precisely, define the
following recursion:

£ (h) = (mv,e .., ) (EF (h = 1)) = (my,c ... m0,) " (EF)

with f,(f ) (0) = ﬂgf ). Under rather mild conditions, convergence
is ensured: [15,16]:

)" (EF)) = .o (B9 = 0.

Unfortunately, many operational applications involve non-
convex sets, as for instance the set of rank deficient matrices.
In this case, the projection may be multivalued, and there is
no guarantee of convergence, even if numerical convergence
has often been observed [18].

lm ||(7yg .-
h—o00

B. Standard strategies

1) Column-averaging: The most intuitive way to exploit
the Vandermonde structure is to note that w = %Lz” where
/ stands for the angle function. Define the sets

Jz{v:[fﬁl:feCN}

L
Ag _ {V(Z _ ei&)) Tw = % Z il[f]nJrl}

where 1 < ¢ < N — 2. This method exploits the Vandermonde
structure in a heuristic way. So, the rectified strategy is to
consider the iterated vector f(h) = (ma,my)"(f).

2) Periodogram maximization: Under Gaussian noise and
for a single tone amz:;’{j p, the maximum likelihood estimator
(MLE) is optimal and is given by the location of the maxi-
mal peak of the Fourier-periodogram [2,19]. To increase the
precision of the estimation, it is standard to use the well-
known zero-padding technique at the price of an increase in
computational cost.

IV. RECTIFIED ALS (RECALS) ALGORITHM

The RecALS algorithm belongs to the family of Lift-and-
Project Algorithms [16,17]. The optional lift step computes
a low rank approximation and the projection step performs
a rectification toward the desired structure. In Section IV-A
the basic RecALS algorithm is described. In Section IV-B, an
improved version of the RecALS algorithm is proposed.

A. Principles of the RecALS algorithm

The RecALS algorithm is based on iterated projections and
splitted LS criteria. Its algorithmic description is provided
in Algorithm 1 for P = 3. We insist that several iterations
in the while loops are necessary, since restoring the struc-
ture generally increases the rank, and computing the low-
rank approximation via truncated SVD generally destroys the
structure.



Algorithm 1 Rectified ALS (RecALS)

Require: Yl, YQ, Y3, I, Fl, Fg, {Vl, ..

Ensure: {zqp,...,2nmp} for 1 <p <3
1. fork=1,...,1 do

., Vk}, CritStop

2:

3: F3s=Y3 ((Fl ® FQ)T)T

4 for m=1,...,M do

5: f:= [F3]m

6: while (CritStop is false) do
7 f:TrVK...’lTVl(f)

8 end while

9: Zm,3 = min, ||v(z) — f||?
10: end for

11: Fj = [V(Zlyg) V(ZM73)}
12:

13: Fs =Y, ((F3 ® Fl)T)T
14: form=1,...,M do

15: f:=[Fa]m

16: while (CritStop is false) do
17: f=7TVK...7TV1(f)

18: end while

19: Zm,2 = min, ||v(z) — f||?

20: end for

21: Fy = [V(ZLQ) V(Z]V[’Q)}
22:

23 Fi =Y, (Fa0F)7)
24: form=1,...,M do

25: f:=[Fi]m

26: while (CritStop is false) do
27: f:WVK...Wvl(f)

28: end while

29: Zm,1 = min, ||v(z) — f||?

30: end for

31: F, = [V(Zl_’l) V(Zj\i,l)}
32: end for

B. Toeplitz Rank-1 Approximation (TR A)

In this section, we propose better strategies than brute-
force ALS. This is made possible by noting that columns
of Vandermonde matrices can be computed one by one, and
that the outer product between a Vandermonde vector and its
Hermitian transpose is a rank-one Toeplitz matrix.

1) Equivalent matrix-based criterion:

Property 4.1: Let T be the set of Hermitian Toeplitz rank-
1 matrices of size N x N. For x € R x CV~1, define the
Hermitian Toeplitz matrix:

Ty T2 T3 TN
.23; X1 i) TN—-1
* *
Toep(x) = | ¥3 ) 1 TN-2
* * *
Ty Tn_1 TnN_o --- T

For v(z) € V, it is straightforward to prove that:
T(z) = Toep(v(2)) = v(2)*v(z)T € T.

Property 4.2: Recall that in virtue of the Carathéodory’s
theorem [20], there exist a one-to-one mapping between
T(z) € T and v(z) € V with a unique z. This means that
minimizing criteria ||v(2) — v(2)||? or ||T(2) — T(2)||? are
equivalent.

So, thanks to the two above properties, we propose the
following estimation methodology.

Result 4.3: The aim is to find the minimizer, 2, of criterion
||T(2) — T(2)||* conditionally to T(z) for unknown z. The
solution is given by 2 = ¢*“([U1[u2) where T(z) = Toep(u).

Proof As matrix T(z) is by construction Toeplitz and rank-1,
we have T(z) "2° Auu’l. Identifying the (n,n’)-th term of
the Toeplitz matrix T(Z) and the (n,n’)-th term of the SVD of
T(z) we have 27" = ¢ (="+1) = \[u],41[u%,, ;. So,
for n = 0 and n’ = 1, we have 2 = ¢ with & = Z([u]1[u]}).

2) lIterated projections: In preamble, the two following sets
are introduced.

o Define the set of Hermitian Toeplitz matrices:
D = {T = Toep(x) € C"*N x e Rx CN"'}.

o Introduce the non-convex set of Hermitian rank-1 N x N
matrices:

Q= {QE(CNXN,ranszl}.

Clearly, the set T is nothing else but Q NID. From Property
4.1, we consider the sequence (mpmg)" (Toep(myf)). As m;f ¢
V, Toep(myf) is full-rank with probability one. In practice,
projector mg is implemented by just retaining the dominant
singular triplet, which is known to yield the optimal rank-1
approximation [8,21]: Q* = mp(Q) = Amax(Q)ss’’ where s
is the singular vector of matrix Q associated with the largest
singular value, Apax(Q).

In the remainder, we shall use the following iterates, with
T = Toep(f) as initialization:

T « WDWQ(T).

Once (mp7g)"(T) has converged to a matrix in set T, we
use Result 4.3 to estimate parameter z.

V. NUMERICAL SIMULATIONS

We fix M = 2 sources with ay = €™/3 and ay = i7/4
and P = 3 in eq. (1). In Fig. 1, the MSE with respect to the

SNR is drawn for

1) the RecALS algorithm using the column-averaging de-
fined in section 3.2.1.

2) The RecALS-T'R; A algorithm exploiting iterated pro-
jections on the set of Toeplitz rank-1 matrices described
in section 4.2.

3) The standard ALS algorithm rectified in a post-
processing way with the maximization periodogram pro-
cedure, called ALS+max Perio.

4) The deterministic CRB has been derived in several
publications as for instance [4,22] and we use the scalar



expressions given in [3] defined by Trace{CRB}
> p.m CRB(Wm,p) where CRB(wy,,p) =

]\f2 Hp#p/ Np/
10°
OQLSAI—LmaxPerio
KA TR 4
% —=Trace{CRB}
10’
i}
%)
>
107
10 ‘ ‘ ‘
10—20 0 20 40
SNR [dB]
Fig. 1. MSE Vs. SNR in dB with N7 = N2 = N3 = 6. The zero-padding

factor in the ALS+max Perio is 210.

SNR [dB] -20 0 10 20 40 50

ALS+max Perio 204.8 | 48.2 | 33.5 | 50.5 | 449 | 66.9

RecALS 20 19.9 20 20 20 20

RecALS + TR1 A 20 19 19 18.9 19 18.6
TABLE T

MEAN NUMBER OF ITERATIONS Vs. SNR IN DB

As shown in Fig. 1, the accuracy of the ALS+max Perio
is saturated in the high SNR regime due to the zero-padding
processing. Conversely, the two RecALS algorithms do not
suffer from this drawback. In addition, according to Table
I, the RecALS algorithms converge much faster than the
ALS+max Perio. Fig. 2 illustrates the fast convergence of the
iterated projections on the set of Toeplitz rank-1 matrices.
Finally thanks to Fig. 1, we can observe the RecALS-T'R; A
algorithm has the smallest MSE remaining close to the CRB
for a wide range of SNR.

VI. CONCLUSION

MultiDimensional (MD) Harmonic Retrieval is a challeng-
ing multi-parameter estimation problem. The MD-harmonic
model can be decomposed as a Vandermonde-structured
Canonical Polyadic Decomposition (CPD). A popular way
to derive the CPD is the Alternating Least Squares (ALS)
algorithm. Unfortunately, this scheme ignores the structure
in the CPD factors and thus the number of free parameters
is overestimated. As a consequence, discarding this a priori
knowledge considerably degrades the estimation performance.
In this work, we propose a modified ALS-type algorithm,
called Rectified ALS (RecALS), which enforces the Vander-
monde structure of the CPD factors at each iteration. We

Mean numerical rank

-

3
Iteration : h

Fig. 2. Mean numerical rank of (ﬂ'Qﬂ'D)h(fl(p)) with N1 = 6, N2 = 8 and
N3 =4 and SNR = 10 dB

first show that the RecALS algorithm converges much faster
than the ALS algorithm. Next, an improved RecALS scheme,
based on iterated projections on the set of Toeplitz rank-1
matrices, is introduced. This last scheme is shown to have a
fast convergence and its MSE is close to the CRB for a wide
range of SNR values.
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