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‡LEME, EA 4416, Université Paris-Ouest, Ville d’Avray, France

Abstract—Robust estimation is an important and timely re-
search subject. In this paper, we investigate performance lower
bounds on the mean-square-error (MSE) of any estimator for
the Bayesian linear model, corrupted by a noise distributed
according to an i.i.d. Student’s t-distribution. This class of
prior parametrized by its degree of freedom is relevant to
modelize either dense or sparse (accounting for outliers) noise.
Using the hierarchical Normal-Gamma representation of the
Student’s t-distribution, the Van Trees’ Bayesian Cramér-Rao
bound (BCRB) on the amplitude parameters is derived. Further-
more, the random matrix theory (RMT) framework is assumed,
i.e., the number of measurements and the number of unknown
parameters grow jointly to infinity with an asymptotic finite
ratio. Using some powerful results from the RMT, closed-form
expressions of the BCRB are derived and studied. Finally, we
propose a framework to fairly compare two models corrupted
by noises with different degrees of freedom for a fixed common
target signal-to-noise ratio (SNR). In particular, we focus our
effort on the comparison of the BCRBs associated with two
models corrupted by a sparse noise promoting outliers and a
dense (Gaussian) noise, respectively.

Index Terms—Bayesian hierarchical linear model, Bayesian
Cramér-Rao bound, sparse outlier noise, dense noise, random
matrix theory

I. INTRODUCTION

In the context of robust data modeling [1], the measure-

ment vector may be corrupted by noise containing outliers.

This class of noise is sometimes referred to as sparse noise

and is described by a distribution with heavy-tails [2]–[7].

Conversely, we usually call dense a noise that does not share

this property and the most popular prior is probably Gaussian

noise. Depending on the application context, outliers may be

identified, e.g., as corrupted information or incomplete data

[8].

A robust and relevant noise prior which is able to take

into account outliers is the Student’s t-distribution with low

degrees of freedom [9]–[12]. In addition, dense noise can also

be encompassed thanks to the Student’s t-distribution prior

for an infinite degree of freedom. A convenient framework to

deal with a wide class of distributions is well known under

the name of hierarchical Bayesian modeling. The Bayesian

hierarchical linear model (BHLM) with hierarchical noise

prior is used in a wide range of applications, including fusion
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[13], anomaly detection of hyperspectral images [5], channel

estimation [14], blind deconvolution [15], segmentation of

astronomical times series [16], etc.

In this work, we adopt such hierarchical prior framework

due to its flexibility and ability to modelize a wide class of

priors. More precisely, the noise vector is assumed to follow a

circular i.i.d. centered Gaussian prior with a variance defined

by the inverse of an unknown random hyper-parameter. In

addition, if this hyper-parameter is Gamma distributed [17,18],

then the marginalized joint pdf over the hyper-parameter is the

Student’s t-distribution.

The Van Trees’ Bayesian Cramér-Rao bound (BCRB) [19]

is a standard and fundamental lower bound on the mean-

square-error (MSE) of any estimator. The aim of this work is

to derive and analyze the BCRB of the amplitude parameters

(i) for the considered noise prior and (ii) using some powerful

results from the random matrix theory (RMT) framework [20]–

[22]. Regarding reference [23], the proposed work is original

in the sense that the noise prior is different and the asymptotic

regime is assumed. Finally, note that reference [24] tackles a

similar problem but does not assume the asymptotic context.

We use the following notation. Scalars, vectors and ma-

trices are denoted by italic lower-case, boldface lower-case

and boldface upper-case symbols, respectively. The symbol

Tr[·] stands for the trace operator. The K × K identity

matrix is denoted by IK and 0K×1 is the K × 1 vector

filled with zeros. The probability density function (pdf) of

a given random variable u is denoted by p(u). The sym-

bol N (·, ·) refers to the Gaussian distribution, parametrized

by its mean and covariance matrix, G(·, ·) is the Gamma

distribution, described by its shape and rate (inverse scale)

parameters, while IG(·, ·) is the inverse-Gamma distribution.

If we have u ∼ G(a, b) then p(u|a, b) = baua−1e−bu

Γ(a) , where

Γ(·) is the Gamma function. And if u ∼ IG(a, b), then

p(u|a, b) = bau−a−1e
−

b
u

Γ(a) . The non-standardized Student’s t-

distribution is defined by three parameters, through the pdf

p(u|µ, σ2, ν, ) =
Γ( ν+1

2 )

Γ( ν
2 )

√
πνσ2

(1 + 1
ν

(u−µ)2

σ2 )−
ν+1
2 such that

u ∼ S(µ, σ2, ν). As regards the bivariate Normal-Gamma

distribution, if we have (u,w) ∼ NormalGamma(µ, λ, a, b),

then p(u,w|µ, λ, a, b) = ba
√
λ

Γ(a)
√
2π

wa− 1
2 e−bwe−

λw(u−µ)2

2 . Fi-

nally, the symbol
a.s.→ denotes almost sure convergence, O(·)
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is the big O notation, λi(·) is the i-th eigenvalue of the con-

sidered matrix and the symbol Eu|w refers to the expectation

with respect to p(u|w).

II. BAYESIAN LINEAR MODEL CORRUPTED BY NOISE

OUTLIERS

A. Definition of the random model

Let y be the N × 1 vector of measurements. The BHLM is

defined by

y = Ax+ e, (1)

where each element [A]i,j of the N×K matrix A, with K <
N , is drawn from an i.i.d. as a single realization of a sub-

Gaussian distribution with zero-mean and variance 1/N [22,

25]. The unknown amplitude vector is given by

x = [x1, . . . , xK ]T ∼ N (0K×1, σ
2
xIK), (2)

where σ2
x is the known amplitude variance. In addition, the

measurements are contaminated by a noise vector e which is

assumed statistically independent from x.

B. Hierarchical Normal-Gamma representation

The i-th noise sample is assumed to be circular centered

i.i.d. Gaussian according to

ei|γ ∼ N
(

0,
σ2

γ

)

, (3)

where γ

σ2 is usually called the noise precision, γ is an unknown

hyper-parameter and σ2 is a fixed scale parameter.

If the hyper-parameter is Gamma distributed according to

γ ∼ G
(ν

2
,
ν

2

)

, (4)

where ν is the number of degrees of freedom, the joint

distribution of (ei, γ) follows a Normal-Gamma distribution

[26] such as

(ei, γ) ∼ NormalGamma

(

0,
1

σ2
,
ν

2
,
ν

2

)

. (5)

The marginal distribution of the joint pdf over the hyper-

parameter γ leads to a non-standardized Student’s t-

distribution, given by [11,27]

S(ei|0, σ2, ν) =

∫ ∞

0

N
(

ei|0,
σ2

γ

)

G
(

γ|ν
2
,
ν

2

)

dγ, (6)

such that ei ∼ S(0, σ2, ν).
As ν → ∞, the distribution tends to a Gaussian with zero-

mean and variance σ2, while it becomes more heavy-tailed

when ν is small [12,28]. With (3) and (4), and knowing that
1
γ
∼ IG(ν2 , ν

2 ) , we notice that the variance, noted σ2
e of each

noise entry of e, is given by the following expression

σ2
e = EγEei|γ

{

e2i
}

= σ2
Eγ

{

1

γ

}

= σ2 ν

ν − 2
, (7)

in which ν > 2.

III. BCRB FOR STUDENT’S T-DISTRIBUTION

The vector of unknown parameters, denoted by θ, encom-

passes the amplitude vector and the noise hyper-parameter,

i.e.,

θ = [xT , γ]T . (8)

Given an independence assumption between x and γ, the joint

pdf p(y, θ) can be decomposed as

p(y, θ) = p(y|θ)p(θ) = p(y|θ)p(x)p(γ). (9)

Let us note θ̂ an estimator of the unknown vector θ. Then,

the mean square error (MSE), directly linked to the error

covariance matrix, verifies the following inequality

MSE(θ) = Tr
[

Ey,θ

{

(θ − θ̂)(θ − θ̂)T
}]

≥ Tr [C] , (10)

where C is the (K + 1)× (K + 1) BCRB matrix defined as

the inverse of the Bayesian Information Matrix (BIM) J. We

can show that the BIM has a block-diagonal structure due to

the independence between parameters. Thus, we write

J =

[

Jx,x 0K×1

01×K Jγ,γ

]

. (11)

We assume an identifiable BHLM model so that, under weak

regularity conditions [19], the BIM is given by

J = Eθ

{

J
(θ,θ)
D

}

+ J
(θ,θ)
P + J

(θ,θ)
HP , (12)

in which

[J
(θ,θ)
D ]i,j = Ey|θ

{

−∂2 log p(y|θ)
∂θi∂θj

}

, (13)

[J
(θ,θ)
P ]i,j = Ex

{

−∂2 log p(x)

∂θi∂θj

}

, (14)

[J
(θ,θ)
HP ]i,j = Eγ

{

−∂2 log p(γ)

∂θi∂θj

}

(15)

for (i, j) ∈ {1, . . . ,K + 1}2, and where J
(θ,θ)
D is the Fisher

Information Matrix (FIM) on θ, J
(θ,θ)
P is the prior part of the

BIM and J
(θ,θ)
HP is the hyper-prior part.

Correspondingly, we have

C = J−1 =

[

Cx,x 0K×1

01×K Cγ,γ

]

. (16)

Conditionally to θ, the observation vector y has the follow-

ing Gaussian distribution

y|θ ∼ N
(

µ,R
)

, (17)

where µ = Ax and R =
(ν−2)σ2

e

νγ
IN . In what follows, we

directly make use of the Slepian-Bangs formula [29, p. 378]

[J
(θ,θ)
D ]i,j =

(

∂µ

∂θi

)T

R−1 ∂µ

∂θj
+

1

2
Tr

[

R

∂θi
R−1 R

∂θj
R−1

]

.

(18)

This leads to

J
(x,x)
D =

νγ

(ν − 2)σ2
e

ATA. (19)



Using the fact that R−1 = γ

σ2 IN , we obtain

J
(γ,γ)
D =

σ4

2γ4
Tr

[

R−2
]

=
N

2γ2
. (20)

According to (2) and considering independent amplitudes, we

have

− log p(x) =

K
∑

i=1

(

1

2
log(2πσ2

x) +
x2
i

2σ2
x

)

. (21)

Consequently,

J
(x,x)
P =

1

σ2
x

IK . (22)

The BIM J is therefore composed of the following terms:

Jx,x = Eγ

{

J
(x,x)
D

}

+ J
(x,x)
P , (23)

Jγ,γ = Eγ

{

J
(γ,γ)
D

}

+ J
(γ,γ)
HP . (24)

The hyper-prior part of the BIM is given by

J
(γ,γ)
HP = Eγ

{

−∂2 log p(γ)

∂γ2

}

=
ν − 2

2
Eγ

{

1

γ2

}

. (25)

The second-order moment of an inverse-Gamma distributed

random variable is given by

Eγ

{

1

γ2

}

=
ν2

(ν − 2)(ν − 4)
, (26)

where ν > 4. This finally leads to

Jγ,γ =
Nν2

2(ν − 2)(ν − 4)
+

ν2

2(ν − 4)
. (27)

Inverting the BIM, we obtain the BCRB for the amplitude

parameters

BCRB(x) =
Tr [Cx,x]

K
with Cx,x = σ2

x

(

rATA+ IK
)−1

,

(28)

where r = SNR ν
ν−2 with SNR =

σ2
x

σ2
e

(signal-to-noise ratio).

IV. BCRB IN THE ASYMPTOTIC FRAMEWORK

A. RMT framework

In this section, we consider the context of large random

matrices, i.e., for K,N → ∞ with K
N

→ β ∈ (0, 1). The

derived BCRB in this context is the asymptotic normalized

BCRB defined by

BCRB(x)
a.s.→ BCRB∞(x). (29)

Using (28) with [21, p. 11], we obtain

BCRB∞(x) = σ2
x

(

1− f(r, β)

4rβ

)

(30)

and f(r, β) =
(

√

r(1 +
√
β)2 + 1−

√

r(1 −√
β)2 + 1

)2

.

B. Limit analytical expressions

• For β ≪ 1, i.e., K ≪ N , after some manipulations and

discarding the terms of order superior or equal to O(β2),
we obtain

f(r, β) ≈
4βr2

r + 1
. (31)

Therefore, an asymptotic analytical expression of the

BCRB, in the RMT framework, is given by

BCRB∞(x) ≈ σ2
x

r + 1
=

(ν − 2)σ2
x

ν(1 + SNR)− 2
. (32)

• For small r, also meaning small SNR, according

to the Neumann series expansion [30], we have
(

rATA+ IK
)−1 ≈ IK − rATA if the maximal eigen-

value λmax(rA
TA) < 1. Observe that rλmax(A

TA)
a.s.→

r(1+
√
β)2 [20]–[22]. In addition, if SNR is sufficiently

small with respect to (ν − 2)/(4ν) then

BCRB(x) ≈ σ2
x

K

(

Tr [IK ]− rTr
[

ATA
])

a.s.→ σ2
x(1− r) =

σ2
x

ν − 2
(ν − 2− νSNR).

(33)

• For large r, also meaning large SNR, we have

BCRB(x) ≈ σ2
x

rK

(

Tr
[

(

ATA
)−1

]

− 1

r
Tr

[

(

ATA
)−2

]

)

a.s.→ σ2
x

r

(

1

1− β
− 1

r

1

(1 − β)3

)

=
(ν − 2)σ2

x

νSNR(1− β)

(

1− ν − 2

νSNR(1 − β)2

)

,

(34)

since [20]–[22]

1

K
Tr

[

(

ATA
)−1

]

a.s.→ 1

1− β
, (35)

1

K
Tr

[

(

ATA
)−2

]

a.s.→ 1

(1− β)3
. (36)

C. Comparison between two models with a target common

SNR

We consider two different models:

(M0) : y0 = Ax+ e0 with ei0 ∼ S(0, σ2
0 , ν0), (37)

(M1) : y1 = Ax+ e1 with ei1 ∼ S(0, σ2
1 , ν1). (38)

Model (M0) is the reference model and model (M1) is the

alternative one. According to (30), the asymptotic normalized

BCRB for the k-th model with k ∈ {0, 1} is defined by

BCRB∞
k (x) = σ2

x

(

1− f(rk, β)

4rkβ

)

(39)

where rk = SNRk
νk

νk−2 with SNRk =
σ2
x

σ2
ek

. A fair methodol-

ogy to compare the bounds BCRB0(x) and BCRB1(x) is to

impose a common target SNR for the models (M0) and (M1),
i.e., SNR0 = SNR1. A simple derivation shows that to reach
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Fig. 1. BCRB(x) as a function of SNR in dB with specific limit approxi-
mations, in the RMT framework.

the target SNR, we must have r1 = ν1(ν0−2)
ν0(ν1−2)r0. Specifically,

the corresponding BCRBs are the following ones:

BCRB∞
0 (x) = σ2

x

(

1− f(r0, β)

4r0β

)

, (40)

BCRB∞
1 (x) = σ2

x



1−
ν0(ν1 − 2)f(ν1(ν0−2)

ν0(ν1−2)r0, β)

4ν1(ν0 − 2)r0β



 .

(41)

Recall that the Student’s t-distribution is well known to

promote noise outliers thanks to its heavy-tails property unlike

the Gaussian distribution. So, an interesting scenario arises

when ν1 → ∞. In this case, the Student’s t-distribution

converges to the Gaussian one [10] and (41) tends to

BCRB∞
1 (x)

ν1→∞
= σ2

x



1−
ν0f

(

ν0−2
ν0

r0, β
)

4(ν0 − 2)r0β



 . (42)

D. Numerical simulations

In the following simulations, we consider N = 100 and

K = 10 so that β ≪ 1. The amplitude variance σ2
x is fixed

to 1. In Fig. 1, we plot the BCRB of the amplitude vector x,

as defined by equations (28) and (30) (asymptotic expression),

(32) (small β), (33) (small SNR) and (34) (large SNR), as a

function of the SNR in dB for ν = 6.

We notice that BCRB(x) coincides precisely with its

asymptotic expression in (30). Thus, the RMT framework

predicts precisely the behavior of the BCRB of the amplitude

as K,N → ∞ with K
N

→ β and allows us to obtain a closed-

form expression. Such limit remains correct even for values of

N and K that are relatively not quite large. The expression of

the BCRB obtained with (32) is a good approximation since

here, we have β = 0.1 ≪ 1. Finally, we notice that the curves

obtained for low and high SNR approximate very well the

BCRB of the amplitude, asymptotically.

In Fig. 2, as exposed in section IV-C, we consider two

different models, with a different value for the number of

degrees of freedom ν. We notice that a lower performance

bound is achieved with ν0 = 6, especially in the low noise

regime, than with ν1 = 100. Furthermore, the approximation

in (42) is correct, since ν1 has a large value. A low value
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BCRB∞

0 (x) with ν0 = 6
BCRB∞

1 (x) with ν1 = 100
Analytic expression (44) for BCRB∞

1 (x)

Fig. 2. Asymptotic normalized BCRBs for models (M0) and (M1) vs. a
common SNR

for the number of degrees of freedom is well-adapted for

the modelization of sparse (outlier) noise, characterized by a

heavy-tailed distribution [31,32]. This large level in heavy-

tailedness leads to robustness [1,33,34] while a Gaussian

noise model (large degree of freedom) corresponds to a dense

noise type. Thus, we can hope to achieve better estimation

performances if we consider a model, which promotes sparsity

and the presence of outliers in data.

V. CONCLUSION

This work discusses fundamental Bayesian lower bounds

for multi-parameter robust estimation. More precisely, we

consider a Bayesian linear model corrupted by a sparse noise

following a Student’s t-distribution. This class of prior can

efficiently modelize outliers. Using the hierarchical Normal-

Gamma representation of the Student’s t-distribution, the Van

Trees’ Bayesian lower bound (BCRB) is derived for unknown

amplitude parameters in an asymptotic context. By asymptotic,

it means that the number of measurements and the number of

unknown parameters grow to infinity at a finite rate. Conse-

quently, closed-form expressions of the BCRB are obtained

using some powerful results from the large random matrix

theory. Finally, a framework is provided to fairly compare two

models corrupted by noises with different degrees of freedom

for a fixed common target SNR. We recall that a small degree

of freedom promotes outliers in the sense that the noise prior

has heavy-tails. For the amplitude, a lower performance bound

is achieved when the number of degrees of freedom is small.
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