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Abstract—This paper studies the impact of estimation errors
in the sample space-time covariance matrix on its parahermitian
matrix eigenvalue decomposition. We provide theoretical bounds
for the perturbation of the ground-truth eigenvalues and of the
subspaces of their corresponding eigenvectors. We show that
for the eigenvalues, the perturbation depends on the norm of
the estimation error in the space-time covariance matrix, while
the perturbation of eigenvector subspaces can additionally be
influenced by the distance between the eigenvalues. We confirm
these theoretical results by simulations.

Index Terms—broadband array processing; space-time covari-
ance estimation; parahermitian matrix; eigenvalue decomposi-
tion.

I. INTRODUCTION

In the field of broadband array processing, polynomial

matrix algebra can extend the relative ease of formulating nar-

rowband problems to the broadband case [12], [26]. Optimal

solutions to such problems then often depend on extending

the utility of eigen- or singular value decompositions to the

polynomial case [27]. A number of practiable algorithms such

as the 2nd order sequential best rotation (SBR2) [12], [17] or

the sequential matrix diagonalisation (SMD) algorithms [4],

[18] have been designed to iteratively calculate approximate

solutions for these decomposition.

Algorithms such as SBR2 and SMD in turn have enabled a

wide field of applications ranging from broadband MIMO sys-

tems [22], to beamforming [16], [26], source separation [19] or

angle of arrival estimation [25]. The accuracy of e.g. broad-

band subspace decompositions has been investigated in [1],

[6] in order to compare the performance of such algorithms.

Known limiting factors for this accuracy are due to the

conditioning of the underlying source model [3] as well as

algorithm-internal order reductions [4], [5], [7], [23].

In most applications, the cross-spectra density matrix is not

readily available but must be estimated from a finite set of

data, which results in estimation errors. Therefore, this paper

aims to investigate what impact such estimation errors have on

the eigenvalues and eigenvectors of a parahermitian matrix.

Since we are interested in isolating the errors due to finite

sample size from any inaccuracies that arise from iterative

algorithms, we here restrict ourselves to the extraction of

analytic eigenvalues and vectors from such a parahermitian

matrix, which are guaranteed to exist [27], and will restrict

our analysis to the unit circle only.

We will first define space-time covariance matrices and their

associated CSD matrices in Sec. II. Based in the definition
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Fig. 1. Source model with L uncorrelated unit variance Gaussian sources
uℓ[n], ℓ = 1 . . . L and a convolutive MIMO mixing matrix H[n] ∈ CM×L

generating M measurements xm[n], m = 1 . . .M .

of parahermitian matrix EVD in Sec. III, we then exploit

perturbation theory to analyse the problem in Sec. IV. The

results are confirmed by simulations in Sec. V.

II. DATA MODEL

A. Space-Time Covariance Matrix

We assume that an M -element array records data into a

vector x[n] ∈ CM with discrete time index n. For narrowband

processing, where phase shifts experienced between array

elements bear information e.g. on the angle of arrival, it is

sufficient to consider the second order statistics contained in

the instantaneous covariance matrix R = E
{
x[n]xH[n]

}
. For

broadband processing, where explicit delays τ between array

elements rather than just phase shifts must be considered, the

second order statistics are captured by a space-time covari-

ance matrix R[τ ] = E
{
x[n]xH[n− τ ]

}
. Its z-transform, the

cross-spectral density (CSD) R(z) =
∑

τ R[τ ]z−τ — short

R(z) •—◦ R[τ ] — contains functions in z as entries.

Since R[τ ] contains auto- and cross-correlation sequences,

it inherits certain symmetries, namely that R[τ ] = R
H[−τ ].

This implies that the CSD matrix R(z) is a parahermitian

matrix such that RP(z) = R
H(1/z∗), and thus is identical to

its time-reversed Hermitian transposition.

B. Source Model

To describe the ground truth of the space-time covariance

matrix, we use the source model [18] shown in Fig. 1, which

assumes that the data vector x[n] is generated by convolu-

tively mixing L independent source signals. The individual

power spectral densities (PSD) of these source signals sℓ[n],
ℓ = 1 . . . L, are Sℓ(z), which can be tied to uncorrelated zero

mean, unit variance Gaussian signals uℓ[n] via the innovation

filters [15] fℓ[n] ◦—• Fℓ(z), such that Sℓ(z) = Fℓ(z)F
P
ℓ (z).



With the convolutive mixing system described by a network

of transfer functions H(z) : C → C
M×L •—◦ H[n], the CSD

matrix of x[n] is

R(z) = H(z)S(z)HP(z) , (1)

where the diagonal S(z) contains the source PSDs

S(z) = diag{S1(z) S2(z) . . . SL(z)} . (2)

C. Sample Space-Time Covariance Matrix and Estimation

Errors

We now investigate the effect of determining an estimate

R̂(z) of R(z) from N snapshots for data. W.r.t. Fig. 1,

these snapshots can be represented as vectors x[n] ∈ CM ,

n = 0 . . . (N − 1). The estimation of R[τ ] is based on these

samples,

R̂[τ ] =
1

N − τ

N−1∑

n=τ

x[n]xH[n− τ ] , ∀0 ≤ τ < N , (3)

with values for τ < 0 obtainable through R̂[τ ] = R̂
H[−τ ].

The approach in (3) assumes ergodicity, which implies that

limN →∞ R̂(z) = R(z).
We assume that N > M , so that there is a chance that the

rank of R̂(z) matches that of R(z). Further, we assume that

N ≫ τmax, where τmax is the maximum lag for which we

want to evaluate R̂[τ ], to minimise the impact of shorter time

series on the estimation as τ → ±τmax.

Determining the distribution of the sample space-time co-

variance matrix R̂[τ ] or R̂(z) is challenging. In the case

where [x][n] is only spatially but not temporally correlated,

the instantanious sample covariance matrix R̂[0] is Wishart-

distributed [11], [29]. For such a matrix, the distribution of

elements depends both on the size of the sample set, N , and

also the entries in the ground truth R[0]. If [x][n] is temporally

correlated, which is the case here due to the filters fℓ[n] and

the convolutive nature of H(z), then the information contained

in the sample set [x][n],n = 0 . . . (N − 1) is reduced. This

has been well-described for the auto-correlation of simple

time series that are generated by a first order auto-regressive

innovation filters [2], [8], [20].

For the potentially complicated spatial and temporal cor-

relations expressed in R[τ ], we can qualitatively state that

the entries will depend on the values in R[τ ], as well as

some fraction (due to the temporal correlation, and potentially

different for each entry) of the sample size N . However, we

have been unable to find a description of the exact distribution

of R̂[τ ], and therefore will operate based on the estimation

error

E[τ ] = R̂[τ ]−R[τ ] (4)

and its norms independent of any particular distribution of

E[τ ]. Note that we have

lim
N−→∞

E[τ ] = 0 , ∀τ (5)

based on erodicity of R̂[τ ] and the unbiased estimate in (3).

III. PARAHERMITIAN MATRIX EVD

The parahermitian matrix EVD of the matrix R(z) is the

decomposition

R(z) = U(z)Λ(z)UP(z) , (6)

where U(z) is a paraunitary matrix of eigenvectors and Λ(z)
is a diagonal parahermitian matrix of eigenvalues. We are

concerned with how well the matrix EVD of R(z) matches

that of R̂(z) = Û(z)Λ̂(z)ÛP(z). We note that if the mixing

matrix H(z) of the source model in Fig. 1 is restricted to be

paraunitary, then the factorisation on the r.h.s. of (1) represents

the parahermitian matrix EVD of R(z) in (6).

If R(z) is based on stable and causal system components in

Fig. 1 and (1), it will be analytic within an annulus containing

the unit circle. Since R̂(z) is based on a finite-length sequence,

it will also be analytic. It is shown in [27] that for such R(z)
and R̂(z), it is possible to ensure that the parahermitian matrix

EVD factors U(z), Λ(z), ˆU(z) and Λ̂(z) are also analytic.

In this case, the eigenvalues in Λ(z) and Λ̂(z) are unique,

while the eigenvectors in the columns of U(z) and ˆU(z) can

be multiplies with arbitrary allpass filters. Note, however, that

analyticity of the factors is lost when eigenvalues cross, but are

spectrally majorised, a property that is enforced by a number

of algorithms [12], [13], [17], [18] that approximate (6).

IV. PERTURBATION OF EIGENVALUES AND

EIGENVECTORS

In the following, we explore how an estimation error E(z)
in (4) impacts on the parahermitian matrix EVD in (6), i.e. how

much the factors ˆU(z) and Λ̂(z) of the sample CSD matrix

R̂(z) deviate from the ground truth U(z) and Λ(z). For

this analysis, we concentrate on the behaviour on the unit

circle, i.e. for z = ejΩ, and utilise a number of results

from matrix perturbation theory [10], [21] to first investigate

the eigenvalues in Sec. IV-A, and then the eigenvectors in

Sec. IV-B.

A. Impact of Estimation Error on Eigenvalues

At any frequency Ω0, evaluation of (4) at z = ejΩ0 on unit

circle gives E(ejΩ0) = R̂(ejΩ0)−R(ejΩ0) so that, by Weyl’s

theorem [21] we have the following bounds on the perturbation

of the mth eigenvalue λm(ejΩ0) of R(ejΩ0),

λmin(e
jΩ0) + λm(ejΩ0) ≤λ̂m(ejΩ0)

λ̂m(ejΩ0) ≤λmax(e
jΩ0) + λm(ejΩ0) ,

where λ̂m(ejΩ) is the mth eigenvalue of R̂(ejΩ0), and

λmin(e
jΩ0) and λmax(e

jΩ) are the minimum and maximum

eigenvalue of E(ejΩ0). After reshuffling,

λmin(e
jΩ0) ≤ λ̂m(ejΩ0)− λm(ejΩ0) ≤ λmax(e

jΩ0) (7)

provides bounds for the change between the ground-

truth eigenvalues λm(ejΩ0) and the sample estimate-based

λ̂m(ejΩ0).



Alternatively, the Hoffman-Wielandt theorem states that for

all M eigenvalues

M∑

m=1

(

λ̂m(ejΩ0)− λm(ejΩ0)
)2

≤ ‖E(ejΩ0)‖2F (8)

holds. Further, the Bauer-Fike theorem [28] guarantees that

|λ̂m(ejΩ0)− λm(ejΩ0)| ≤ κ{Û(ejΩ0)}‖E(ejΩ0)‖2, (9)

with κ{A} the condition number of the matrix A. Since

Û(ejΩ0) is unitary by definition, κ{Û(ejΩ0)} = 1, and (9)

simplifies further.

Overall, both the bounds (7) and (9) relate the deviation be-

tween the ground-truth eigenvalues and their sample estimate-

based counterparts directly to the estimation error E(ejΩ),
but are independent of the absolute size and relative distance

between eigenvalues. In particular, because of (5) we have

limN−→∞ λ̂m(ejΩ0) = λm(ejΩ0).

B. Impact of Estimation Error on Eigenvectors

Assume that the mth eigenvectors corresponding to the

mth eigenvalues λm(ejΩ) and λ̂m(ejΩ) are um(ejΩ) and

ûm(ejΩ), respectively. Assume further that for the sample

set N , limN→∞ λ̂m(ejΩ) = λm(ejΩ), m = 1 . . .M . Due

to the phase ambiguity of eigenvectors, a robust comparison

between um(ejΩ) and ûm(ejΩ) must be based on subspace

angles or -correlations [9], [14]. This is even more pivotal

if eigenvalues have a C-fold algebraic multiplicity, such that

e.g. λm(ejΩ) = . . . λm+C−1(e
jΩ) at a particular frequency Ω,

since in this case the corresponding eigenvectors can form

any orthonormal basis within a C-dimensional subspace. In

the vicinity of such an algebraic multiplicity, eigenvectors can

be sensitive, while the subspace in which they are contained

remains invariant. We therefore focus on the subspaces in

which eigenvectors of R(ejΩ) and R̂(ejΩ) exist.

To analyse the subspace of eigenvectors belonging to a

C-fold algebraic multiplicity of eigenvalues at a frequency

Ω0, we reorder both eigenvalues and eigenvectors as follows.

We let Λ(ejΩ0) = blockdiag{Λ1(e
jΩ0), Λ2(e

jΩ0}, where

Λ1(e
jΩ0) ∈ R

C×C contains the multiple eigenvalues, and

Λ2(e
jΩ0) the remaining M−C eigenvalues. We similarly par-

tition U(ejΩ0) = [U1(e
jΩ0), U2(e

jΩ0)], such that U1(e
jΩ0) =

range
{
U1(e

jΩ0)
}

is the subspace containing the eigenvectors

corresponding to the C multiple eigenvalues in Λ1(e
jΩ0). We

now want to measure the distance between U1(e
jΩ0), and

the subspace Û1(e
jΩ0) of the corresponding eigenvectors of

R̂(ejΩ0).

A suitable metric for the distance between two sub-

spaces is based on the projection operators P 1(e
jΩ0) =

U1(e
jΩ0)UH

1 (e
jΩ0) and the similarly defined P̂ 1(e

jΩ0) based

on the estimated eigenvectors. In this case [9],

dist{U1(e
jΩ0), Û1(e

jΩ0)}=‖P 1(e
jΩ0)−P̂ 1(e

jΩ0)‖2 .

Similar to above, we also partition the perturbation

E(ejΩ0) =

[

E11(e
jΩ0) E

H
21(e

jΩ0)

︸ ︷︷ ︸

C

E21(e
jΩ0)

︸ ︷︷ ︸

M − C

E22(e
jΩ0)

]

. (10)

By defining the spectral distance δ between the cluster of

C eigenvalues in Λ1(e
jΩ0) and the next-nearest neighbour in

Λ2(e
jΩ0),

δ = min
λ1 ∈ Λ1(e

jΩ0)

λ2 ∈ Λ2(e
jΩ0)

|λ1 − λ2| > 0 , (11)

we find that the subspace distance in (10) is bounded such that

dist{U1(e
jΩ0), Û1(e

jΩ0)} ≤ 4

δ
‖E21(e

jΩ0)‖2 , (12)

as long as the overall perturbation is limited by ‖E(ejΩ0)‖2 <
δ/5 [9]. This can be satisfied by selecting the sample size N
sufficiently large.

The above analysis for assessing the subspace distance be-

tween ground truth and estimated eigenvectors can be applied

for all Ω = Ω0 and in turn for all eigenvectors. Similarly to

the perturbation of eigenvalues, the perturbation of eigenvector

subspaces depends on the estimation error, measured here by

‖E21(e
jΩ0)‖2 < ‖E(ejΩ0)‖2. However, the mismatch between

the ground truth and the estimated subspaces will also depend

on the distance between the associated eigenvalues: the closer

eigenvalues are located, the more perturbed the subspaces of

individual associated eigenvectors can become.

V. SIMULATIONS AND RESULTS

We use two scenarios with reference to the source model in

Fig. 1, and a number of metric to underpin the above analysis.

Model 1. For M = L = 2, the innovation filters F1(z) =
1 + z−1 and F2 = 1 + jz−1 are followed by an elementary

paraunitary mixing matrix H(z) = I − vv
H + z−1

vv
H

with v = [1, j]T/
√
2 [24]. Evaluated on the unit circle,

the ground truth eigenvalues of R(z) are the source PSDs

λ1(e
jΩ) = 2 + cosΩ and λ2(e

jΩ) = 2 + sinΩ, which cross at

Ω = π
4 and Ω = 5π

4 .

Model 2. A controlled set of innovation filters and a convo-

lutive mixing matrix, each of order 10, creates a system of

L = 3 sources, whos PSDs define well-separated (i.e. naturally

spectrally majorised) eigenvalues on the unit circle.

Each model can be excited by different instantiations of in-

dependent and identically distributed complex Gaussian noise,

and estimates R̂(z) can be calculated from N snapshots of

data x[n], n = 0 . . . (N − 1). By performing the EVD on

discrete DFTs bins, we measure a number of samples of

λ̂m(ejΩk ) and û(ejΩk ) along the frequency axis for Ωk = 2πk
K

,

k = 0 . . . (K−1), which we can compare to the ground truth.

For Model 1, the distribution of the estimation error metric

‖E(ejΩ)‖2 for N = 103 over an ensemble of 105 simulations

is shown in Fig. 2, which demonstrates a range of error distri-

butions and hence error powers over frequency. The measured

distribution of λ̂m(ejΩ) in Fig. 3 suggests that the deviation

from the ground truth depends on ‖E(ejΩ)‖2 as established in



Fig. 2. Distribution of estimation error for Model 1 with 5, 25, 75 and 95th
percentiles. The median is shown as a solid line.

Fig. 3. Distribution of estimated eigenvalues for Model 1, with percentiles
as defined in Fig. 2 and the ground truth as solid lines.

Fig. 4. Distribution of γm(ejΩ) in (13), with percentiles as defined in Fig. 2.

(9), but also on the absolute value of λm(ejΩ). The assignment

of λ̂m(ejΩ) to the correct ground truth λj(e
jΩ), m, j = 1, 2,

is difficult in the vicinity of the crossing points of the PSD,

leading to some disturbance in the percentiles around these

frequencies in Fig. 3.

To measure how close the subspaces spanned by the ground

truth and estimated eigenvectors um(ejΩ) and ûm(ejΩ) are, we

use a modified version of the subspace correlation,

γm(ejΩ) = 1− |ûH
m(ejΩ)um(ejΩ)| . (13)

where the Hermitian angle is insensitive to the eigenvectors’

arbitrary phase shifts. Small values of γm(ejΩ) means that sub-

spaces are aligned, while γm(ejΩ) = 1 indicates orthogonality.

In Fig. 4, the measured distribution* of γm(ejΩ) shows higher

subspace alignment where eigenvalues according to Fig. 3 are

clearly separated. Near algebraic multiplicities, a mismatch in

subspaces arises as analysed in (12).

For Model 2, the distance between the ground truth eigen-

values reduces the problem of associating estimates λ̂m(ejΩk )
correctly at every frequency. In order to measure the statistics

across the ensemble and the frequency bins relative to the
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Fig. 6. Measured distribution of total eigenvalue mismatch for Model 2, with
percentiles as defined in Fig. 2.
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Fig. 7. Measured distribution of total subspace mismatch for Model 2, with
percentiles as defined in Fig. 2.

boundary in (9), we employ a normalised metric

χm(ejΩ0) =
|λ̂m(ejΩ0)− λm(ejΩ0)|

max{|λmax(ejΩ0)}|, |λmin(ejΩ0)|} , (14)

such that 0 ≤ χm(ejΩ0) ≤ 1. The estimated probability

density function of χm(ejΩ0), measured over an ensemble of

5000 runs and across 512 frequency bins, is shown in Fig. 5,

demonstrating that the normalised bound χm(ejΩ0) ≤ 1 is

satisfied. The distribution of total metrics — i.e. averaged

over frequency — for the subspace and eigenvalue mismatches

χm(ejΩ) and γm(ejΩ) are depicted in Figs. 6 and 7, demon-

strating the improved estimation of the parahermitian matrix

EVD factors as the sample size N increases.

VI. CONCLUSIONS

When estimating a cross-spectral density matrix from a

finite data set, the arising estimation error results in pertur-

bations of the ground truth eigenvalues and eigenvectors of its

parahermitian matrix eigenvalue decomposition. Evaluated on

the unit circle, bounds for the perturbation of both quantities

can be stated, which in case of the eigenvalues depends

on the estimation error, while the eigenvector perturbation

additionally depends on the distance between the ground truth

eigenvalues. These findings have been demonstrated in and

underpined by a number of simulations.
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