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Abstract—When using filter bank based multicarrier orthog-
onal quadrature amplitude modulation (FBMC/OQAM) tech-
niques in a multiple-input multiple-output (MIMO) environment,
its difficulty of dealing with inter-symbol interference (ISI) and
inter-carrier interference (ICI) is further exacerbated by the pres-
ence of spatial interference. In this paper, we describe the transfer
functions (including all temporal and spatial interference terms)
by polynomial matrices. The equalisation of this system can then
be performed by a proposed polynomial matrix pseudo-inverse.
Some numerical examples for this approach are presented.

I. INTRODUCTION

Filter bank based multicarrier (FBMC) modulation methods

are a strong candidate for 5th generation communications

systems and beyond because of their robustness to synchroni-

sation errors when compared to orthogonal frequency division

multiplexing (OFDM) systems [5]. Different from OFDM,

FBMC creates subcarriers that retain at least some frequency-

selectivity. Even though recent practical measurements in-

dicate that for a well-synchronised FBMC system, single

tap equalisers may be sufficient [14], generally significant

dispersion has to be considered [3], [12], if not through long

channel impulse response then through insufficient timing

synchronisation of the receiver [13]. As a result, significant

inter-symbol interference (ISI) arises.

Amongst the different FBMC choices, a critically sampled

DFT filter bank combined with judicious interleaving of

real- and imaginary parts akin to offset-quadrature amplitude

modulation (OQAM) has attracted attention as it reaches

maximum spectrum efficient yet retains orthogonality at least

for the real part of the transmitted symbols [18]. Due to

critical sampling, at least adjacent subbands overlap spectrally,

causing inter-carrier interference (ICI) in the receiver. Thus

equalisers cannot operate per-band but need to incorporate

cross-terms with at least adjacent bands akin early subband

filtering schemes such as [6]. Nevertheless, the high spectral

efficiency of FBMC/OQAM has motivated numerous solutions

that aim to solve this problem [13]–[15].

When considering FBMC/OQAM for transmission over

MIMO channels, the interference situation is worsened by

additional inter-antenna interference (IAI) terms in addition

to ISI and ICI. This is generally seen as a significant problem,

and substantial efforts have been undertaken to combat these

interference terms — see e.g. early works in [7], or more

recently in [3], [12] or the review in [15]. The majority of

these publications has targetted the joint design of precoders

and equalisers, which can enable significant benefits if the

channel is know to both receiver and transmitter.

In the absence of channel state information at the trans-

mitter, often efforts have to be restricted to equalisation, and

the aim of this paper is propose such an approach. Our

design is based on the modelling of the inner part of the

FBMC/OQAM system — including the filter banks and the

MIMO channel, which are responsible for dispersion and

synchronisation errors — by an equivalent polynomial channel

matrix. We then use algebraic techniques for such matrices to

find an equaliser implementation. The polynomial notation and

problem formulation of a broadband communication systems

is not news — see e.g. [11] for a SISO and [12] for a MIMO

precoder and equaliser — but solutions to such problems have

not been straightforward. We here rely in novel polynomial

matrix formulations [21] and associated algorithms [4], [9],

[16], [17] to calculate a polynomial matrix pseudo-inverse

as equaliser as a MIMO extension of the work in [13]. The

advantage of these polynomial matrix techniques lie in the

coherent treatment of the problem, which avoids the challenge

of association of bin-wise solution from DFT bin to DFT

bin [12].

This paper is organised as follows: Sec. II reviews the

FBMC/OQAM system model, which motivates the descrip-

tion of the MIMO channel combined with the synthesis and

analysis filter banks of the FBMC/OQAM system by an

equivalent channel matrix in Sec. III. The equalisation of the

MIMO-FBMC/OQAM system via the pseudo-inversion of this

equivalent channel matrix is the topic of Sec. IV, followed

by a numerical example and conclusions in Secs. V and VI,

respectively.

II. SYSTEM MODEL

An FBMC/OQAM system for a MIMO channel with NT

transmitters and NR receivers is outlined in Fig. 1. For a brief

description of FBMC/OQAM, with reference to Fig. 1 we

first assume the single input single output case with NT =
NR = K = 1, and W[n] ◦—• W (z) = IM . In the inner,

shaded part of the FBMC system in Fig. 1, a DFT-modulated

filter bank with a synthesis filter bank (SFB) and an analysis

filter bank (ASB) multiplexes a signal vector u[n] ∈ CM

across the channel, employing an upsampling ratio of M/2.

In the receiver, the signal is demultiplexed into x[n] ∈ CM .

For a DFT filter bank to permit maximum symbol density

(and hence maximum spectral efficiency) while satisfying
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Fig. 1. FBMC/OQAM system transmultiplexing signals over a MIMO channel
C[n] with NT transmitters and NR receivers with equaliser W[n].

good localisation in both time and frequency domains, the

orthogonality of the system has to be relaxed.

In FBMC/OQAM the relaxation of conditions is achieved

by restricting orthogonality to the real part only by judiciously

assigning alternating real and imaginary values in d[ℓ] ∈ CM

to u[n] ∈ CM through a staggering and de-staggering pro-

cess [18] akin to an OQAM modulation. As a result, the index

n runs twice as fast as the time index ℓ. Through this, partial

orthogonality is enforced, such that d̂[ℓ] = d[ℓ] if the channel

is transparent.

For the MIMO case, we assume that K spatial transmit

channels can be formed, where K = min{NT, NR}. An

FBMC/OQAM block is applied to each of the transmitters

and receivers, as shown in Fig. 1. An equaliser W[n] ∈
CMK×MNR , applied prior to the OQAM de-staggering in the

receiver, has the aim of equalising and synchronising the over-

all system. This is similar to the equaliser and synchroniser

and [13], but here also aims to cancel cancel spatial or inter-

antenna-interference.

III. EQUIVALENT POLYNOMIAL CHANNEL MATRIX

In order to later define the equaliser W (z) •—◦ W[n],
we first seek a description of the inner FBMC component

of Fig. 1. For this, we utilise a polyphase notation of the

analysis and synthesis filter banks. With M channnels and

an oversampling factor of 2, the polyphase analysis matrix

H(z) : C → CM×M/2 is an M × M
2 polynomial ma-

trix. Similarly, a synthesis filter bank can be described by

a polyphase synthesis matrix G(z) : C −→ CM/2×M ,

where for a DFT filter bank, the polyphase synthesis matrix

G(z) is the parahermitian of the polyphase analysis matrix,

i.e. G(z) = H
P(z) = H

H(1/z∗). To form filter banks,

these polyphase realisations are combined with parallel-to-

serial (p/s) and serial-to-parallel (s/p) converters, as depicted

in Fig. 2.

If CnR,nT
(z) is the channel transfer function between the

nTth transmitter, nT = 1 . . .NT, and the nRth receiver, nR =
1 . . .NR, the MIMO system transfer function between the p/s

input vector snT
[n] and the s/p output vector rnR

[n] is the
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Fig. 2. Inner component of the MIMO FBMC/OQAM system in polyphase
notation.

pseudo-circulant matrix CnR,nT
(z) : C → CM/2×M/2 [13],

[16],
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For notational brevity, the subscripts {·}nR,nT
have been

omitted from the r.h.s. of the above equation, which comprises

of the M
2 type-I polyphase components Cµ(z), , µ = 1 . . . M2

of CnR,nT
(z) [19] such that

CnR,nT
(z) =

M

2
−1

∑

µ=0

Cµ(z
M

2 ) z−µ (1)

describes the channel between the nTth transmitter and nRth

receiver.

The overall MIMO transfer function between the concate-

nated filter bank inputs [uH
1 [n] . . .u

H
NT

[n]]H in the trans-

mitter and the concatenated vector of filter bank outputs

[xH
1 [n] . . .x

H
NR

[n]]H in the receiver is described by the matrix

F[n] ◦—• F (z), which forms the shaded system parts in

Figs. 1 and 2. With the demultiplexed MIMO channel matrix

C(z) : C −→ C(NRM/2)×(NTM/2),

C(z) =







C1,1(z) . . . C1,NT
(z)

...
. . .

...

CNR,1(z) . . . CNR,NT
(z)






(2)

which spans the system between [sH1 [n] . . . s
H
NT

[n]]H and

[rH1 [n] . . . r
H
NR

[n]]H in Fig. 2, we can write

F (z) =
(

INR
⊗H

P(z)
)

C(z)
(

INT
⊗H(z)

)

, (3)

where ⊗ denotes the Kronecker product.

A few properties of F (z) can be inferred from its structure

in (3). Firstly, even though F (z) : C → C(NRM)×(NTM), the

reduced dimension of C(z) forces the polynomial rank [1] of

F (z) to

rank{F (z)} ≤
KM

2
, (4)
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Fig. 3. Example for an equivalent polynomial channel matrix
F (z) •—◦ F[n] for a channel with NT = 2 transmitters and NR = 2
receivers, and M = 4 subchannels.

where K = min{NR, NT}. Secondly, if the DFT fil-

ter bank described by H(z) is constructed for a standard

FBMC/OQAM system via [2], then energy will only leak

between adjacent bands at most. Therefore, F (z) will be

sparse with a block structure, where each M ×M sub-block

only contain nonzero elements along its diagonal, its first off-

diagonals, and in its upper right and lower left corner elements.

Example. The channel matrix F[n] for a MIMO-

FBMC/OQAM system with a 2 × 2 random MIMO channel

containing impulse responses of length 5, and M = 4
subbands is shown in Fig. 3. Therefore, the transfer function

F (z) is an 8× 8 sparse polynomial matrix.

IV. MIMO FBMC/OQAM EQUALISATION

Based on the equivalent channel model derived in Sec. II,

we now explore the equalisation of this system. The overall

setup in) Fig. 1 contains a subblock W[n] ◦—• W (z which

actions upon the equivalent channel F[n] ◦—• F (z) prior to

OQAM de-staggering of the retrieved K spatial channels of

the system. The purpose of this equaliser block is to restore

the real orthogonality of the combined system W (z)F (z).
Due to the rank-deficiency of F (z), we here have to rely on

its pseudo-inverse, which we calculate via the singular value

decomposition of a polynomial matrix [8], [9].

While the SVD of a polynomial matrix can also be cal-

culated directly [8], we form two matrices R1(z) : C →
C

MNR×MNR and R2(z) : C → C
MNT×MNT such that

R1(z) = F (z)FP(z) ≈ U(z)Λ1(z)U
P(z) (5)

R2(z) = F
P(z)F (z) ≈ V (z)Λ2(z)V

P(z) . (6)

The factorisations on the r.h.s. of (5) and (6) are polyno-

mials EVDs with paraunitary U(z) and V (z), such that

e.g. U(z)UP(z) = U
P(z)U(z) = I. The approximation sign

accounts for the iterative nature of polynomial EVD algorithms

in e.g. [4], [9], [16], [17] but also for the fact that the true

EVD of the parahermitian matrices R1(z) and R2 is almost

time index n

jΣ
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Fig. 4. Matrix Σ[n] ◦—• Σ(z) of approximate singular values of F[n] as
characterised in Fig. 3.

always infinite in length [21], such that only approximations

by polynomials are possible. The terms Λi(z), i = 1, 2 are

diagonal parahermitian matrices that approximate the – again

likely infinite [21] — eigenvalues of R1(z) and R2 by Laurent

polynomials.

With the help of (5) and (6) via the evaluation S(z) =
U

P(z)F (z)V (z), we can now determine the approximate

polynomial SVD

F (z) ≈ U(z)Σ(z)V P(z) . (7)

The not necessarily square but diagonal matrix Σ(z) : C →
CMNR×MNT ,

Σ(z) = diag{σ1(z), σ2(z), . . . σMK(z)} , (8)

holds the approximate singular values of F (z) [9], extracted

from the diagonal of S(z) by neglecting any of its remaining

small off-diagonal elements.

The approximate pseudo-inverse of F (z) is now possible

via its SVD in (7), such that

F
†(z) ≈ V (z)Σ†(z)UP(z) . (9)

Pseudo-inverting Σ(z) means inverting all singular values

σi(z), i = 1 . . .MK , as long as these are non-zero, and matrix

transposition such that Σ†(z) : C → CMNT×MNR . Due to the

rank deficiency of F (z), at least half of the singular values will

be zero, i.e. σi(z) = 0 ∀ i = (M K
2 +1) . . .MK . The inversion

of polynomial terms can be accomplished analytically by

partial fraction expansion of 1/σi(z) and approximation of

first order terms by geometric series [20], or adaptively using

LMS or RLS algorithms [13].

V. NUMERICAL EXAMPLE

We first elaborate on the example of the equivalent poly-

nomial channel matrix F (z) as characterised in Fig. 3. The

matrix Σ[n] ◦—• Σ(z) of approximate singular values is

calculated via the multiple-shift SMD algorithm [4], and yields

the coefficients shown in Fig. 4. The singular values are
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Fig. 5. Evaluation of non-singular values of F (z) in Fig. 3 on the unit circle.
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Fig. 6. Overall response of the equivalent channel F (z) •—◦ F[n], including
inner FBMC system of Fig. 2, and the equaliser W (z) •—◦ W[n].

arranged in descending order; moreover, algorithms such as

SMD encourage (or in the case of SBR2 can be proven to

converge to [10]) spectral majorisation. With K = 2, the

MK/2 = 4 non-zero singular values can be found in the

top left-hand corner of Σ(z).
The spectra of the non-zero singular values, i.e. the evalua-

tion of σi(z) on the unit circle for z = ejΩ, is shown in Fig. 5,

which shows the approximate spectral majorisation, such that

σi(e
jΩ) ' σi+1(e

jΩ) , i = 1 . . . 3, ∀ Ω . (10)

If singular values exhibit strong attenuation or even spectral

nulls, their inversion should include a regularisation term,

which is particularly advantages in order to avoid noise

amplification by the equaliser in the presence of channel noise.

The response of the concatenation of equivalent polynomial

channel matrix and equaliser, W (z)F (z) •—◦ W[n] ∗ F[n],
is shown in Fig. 6. Since F (z) is rank deficient, the system

inversion cannot yield an identity matrix. However, sounding

the overall MIMO-FBMC/OQAM system of Fig. 1 between

time index `

jA
[`
]j

Fig. 7. Response A[ℓ] of the overall MIMO-FBMC/OQAM system as
highlighted in Fig. 1.

the inputs di[ℓ] and outputs d̂j [ℓ], i, j = 1, 2, i.e. we

measure the system A[ℓ] such that d̂[ℓ] = A[ℓ] ∗ d[ℓ] with

d[ℓ] =
[

d
H
1 [ℓ], d

H
2 [ℓ]

]H
and d̂[ℓ] =

[

d̂
H
1 [ℓ], d̂

H
2 [ℓ]

]H

as

shown in Fig. 1, it yield the response depicted in Fig. 7. This

response approximates an identity matrix, i.e. inter-symbol,

inter-carrier, as well as inter-antenna interference terms have

been suppressed by the proposed equaliser.

VI. CONCLUSIONS

We have investigated the equalisation of an FBMC/OQAM

system when extended to a multiple-input multiple-output

channel. The equivalent response of the inner MIMO-

FBMC/OQAM system comprising the filter banks for trans-

multiplexing as well as the MIMO channel itself, was pre-

sented in the form of a polynomial matrix which reflects the

different types of distortion (inter-symbol, inter-carrier, and

inter-antenna interferences) affecting the system performance.

Our proposed equaliser is based on this equivalent channel

model characterised by a polynomial matrix. Its structurally

imposed rank-deficiency has motivated pseudo-inverse. In a

numerical example, we have shown that this system is capable

of equalising the overall MIMO-FBMC/OQAM system.
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