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Abstract—In this contribution, a new class of planar
coprime MIMO radar systems based on quadratic integers
is proposed where the antenna locations are represented by
lattice points generated by prime integers in quadratic num-
ber fields. By exploiting the coprimality of certain quadratic
integers, the virtual coarrays of proposed structures enjoy a
quadratic gain in parameter identifiability according to the
Chinese Remainder Theorem (CRT). To avoid holes in the
coarray, we present Hole-free CRT arrays with guaranteed
full-rank autocorrelation matrices for subspace-based target
estimation. The ring of Gaussian integers and the ring of
Eisenstein integers are chosen as examples of designing
coprime MIMO radar systems. It is shown that the proposed
arrays achieve enhanced angular resolutions and improve the
side lobe suppression. In the context of target estimation,
simulations show the superior performance of the coprime
MIMO structures based on CRT.

Index Terms—Coprime sensing, MIMO, sparse arrays,
quadratic integers, Chinese Reminder Theorem.

I. INTRODUCTION

Multiple-input and multiple-output (MIMO) radar sys-
tem is a novel radar technology which enjoys a broad
range of applications including the direction of arrival
estimation (DOA) [1], beamforming [2] and imaging [3].
An M -by-N MIMO radar system refers to M transmitting
antennas and N receiving antennas where each trans-
mitting antenna radiates multiple waveforms independent
from other transmitters with receiving antennas being able
to receive and extract these signals by matched filters,
which allows transmitting and extracting MN mutually
orthogonal signals because of the enlarged virtual coarray
[4].

Previous studies have investigated one dimensional (1D)
arrays such as generalized coprime arrays [5] and super
nested arrays [6] by exploiting the concept of the vir-
tual coarray where the spatial smoothing technology was
employed on Multiple Signal Classification (MUSIC) for
superior angle resolutions. In the two-dimensional (2D)
array processing, lattices have been well studied wherein
physical antenna subarrays can be placed on related lat-
tices. Here the virtual coarray is naturally defined as a set
of all difference vectors between lattices as an extension
of the concept of 1D coarray [7]. In [8] a novel approach
to further investigate the theory of the coprime array
was proposed based on the Chinese remainder theorem
(CRT). This paper addresses the problem of parameter
identifiability and proposes a new class of array configura-
tions, namely CRT arrays where the antenna locations are
presented by lattices generated by two or more pairwisely
coprime ideals in quadratic fields.

The main contribution of this paper is that it further
completes the design method of coprime arrays by means
of CRT and addresses the issues of geometrical configu-
rations of CRT arrays including lattice representations of
coarrays. By exploiting Eisenstein integers in the quadratic
field, we put forward applications of hexagonal lattices
which form the tightest packing in 2D and hence pro-
vide the potential to decrease the physical array aperture
without sacrificing the parameter identifiability. The ad-
vantages of CRT arrays are presented in the context of
MIMO radar system.

The rest of the paper is organized as follows. The
fundamentals of MIMO radar are briefly reviewed in
Section II. In Section III we present sparse arrays based on
quadratic integers, namely CRT arrays, after which Section
IV proposes a novel method which extends the spatial
smoothing method for target estimation to hexagonal shape
arrays. Section VI concludes the paper.

II. FUNDAMENTALS OF MIMO RADAR

A. Radiation pattern

Let CE(θ, φ) represent the radiation pattern of one
antenna element and AF ′(θ, φ) denote the normalization
of array factor AF (θ, φ) of this antenna element:

AF ′(θ, φ) = |AF (θ, φ)/AF (θ, φ)max|, (1)

then we can express the radiation pattern of an antenna
array with identical elements by

C(θ, φ) = CE(θ, φ)AF ′(θ, φ). (2)

A MIMO radar system consisting of M transmitting
antennas allocated at lattice points zm ∈ Zm and N
receiving antennas allocated at zn ∈ Zn possesses the
two-way radiation pattern CMN which is the product of
the transmitting radiation pattern and the receiving antenna
pattern, i.e.,

CMN = CM (θ, φ)CN (θ, φ), (3)

where the array factors of transmitting and receiving arrays
are given by

AFM (θ, φ) =

M∑
m=1

IM,m exp
(
j

2πd

λ
zm sin(θ) cos(φ)

)
(4)

and

AFN (θ, φ) =

N∑
n=1

IN,n exp
(
j

2πd

λ
zn sin(θ) sin(φ)

)
(5)



respectively, where IM,m (IN,n) is determined by the
weights of the mth transmitter (the nth receiver), d denotes
the minimum interelement spacing and λ represents the
wavelength. From Equation (2) and (3), the two-way
radiation pattern can be rewritten using the normalized
array factors of transmitters and receivers:

CMN (θ, φ) = CE(θ, φ)2AF ′M (θ, φ)AF ′N (θ, φ). (6)

Therefore we can consider a virtual array with normalized
array factor AF ′MN (θ, φ) = AF ′M (θ, φ)AF ′N (θ, φ). Sub-
stituting Equation (4) and Equation (5) to AFMN (θ, φ)
results

AFMN (θ, φ) =

M∑
m=1

N∑
n=1

IM,mIN,n exp
(
j

2πd

λ
vθ,φd

T
m,n

)
,

where vθ,φ = sin(θ)
[

cos(φ) sin(θ)
]

and dm,n is the
(m,n)th element in sum coarray set S = {d : d =
zm + zn} whose cardinality limits the maximum number
of targets that can be identified.

B. Data Model
Herein, the data model is similar to that in [9] where

clutter is absent. Let K denote the number of reflective
signals of K far-field uncorrelated targets which are with
unit power and can be denoted as s1(t), s2(t), · · · sK(t).
The signals generated by the matched filter at the receiving
antennas can be described by

x(t) =

K∑
k=1

am(θk, φk)⊗ an(θk, φk)sk(t) + n(t), (7)

where

am(θk, φk) = exp
(
−j 2πd

λ
zm sin(θk)

[
cos(φk) sin(θk)

])
;

an(θk, φk) = exp
(
−j 2πd

λ
zn sin(θk)

[
cos(φk) sin(θk)

])
.

Assuming all targets are non-coherent, the autocorrelation
matrix of received data can be expressed as

Rx = E[xxH ] = ARsA
H + nnH , (8)

whereby we can apply the spatial smoothing technique
which was described and employed in [2], [5]–[8] to
estimate the target directions.

III. CRT ARRAYS

A. CRT Array Configurations
Definition 1 (CRT arrays): Given two coprime ideals I

and J in ring R, a CRT-based array is defined as:

Z = σ(I)/σ(IJ ) ∪ σ(J )/σ(IJ ), (9)

where σ denotes the canonical embedding between alge-
braic integers and Euclidean space.

Definition 2 (Sum coarray of CRT arrays): The virtual
coarray S generated by an CRT array is given by:

S = {zm+zn | zm ∈ σ(I)/σ(IJ ), zn ∈ σ(J )/σ(IJ )}.
(10)

In the special case when IJ = (p), expressions for the
number of antennas and the parameter identifiability can
be derived as follows:

Proposition 1: If IJ = (p), the total number of physical
antennas is 2p − 1 and the its parameter identifiability is
p2.

Proof : Let I = p1 and J = p2. By assumption p1p2 =
(p), the number of elements in (p1)/pR is p which is the
same as (p2)/pR. Therefore the total number of elements
in (p1/pR) ∪ (p2/pR) is 2p.

Herein, we define parameter identifiability as the max-
imum number of sources that can be identified which is
also know as degrees of freedom [2], [3], [10]. Let | · |
represent the cardinality of a set. According to CRT, all the
sum vectors generated by coprime lattices are nonidentical,
thus the total number of elements in (p1 + p2)/pR can be
written as:

|I/pR| · |J /pR| = p2. (11)

Note that as canonical embedding σ(·) is bijective, the
number of lattice points in σ(J )/σ(IJ ) is the same as
the number of elements in (J )/(IJ ) �
For example given p = 7 in ring of Eisenstein integers, a
decomposition of p is p1 = (2+

√
3i) and p2 = (2−

√
3i)

[8]. An integral basis of p1 in Z[w] can be calculated by

(2 +
√

3i)(1, ω) =

(
2 +
√

3i,
−1 + 3

√
3i

2

)
,

therefore the corresponding generator matrix G1 is

G1 =

(
2 − 1

2√
3 3

√
3

2

)
(12)

=

(
1 1

2

0
√
3
2

)(
1 −2
2 3

)
.︸ ︷︷ ︸

B1

(13)

where B1 is the matrix representation of σ(p1). Analo-
gously, G2 can be obtained from p2, therefore the antenna
location of this array is given by the sets

Zm = {zm = G2x1,∀x1 ∈ A2/σ(2 +
√

3i)}, and
Zn = {zn = G1x2,∀x2 ∈ A2/σ(2−

√
3i)},

for transmitting and receiving antennas respectively.

B. Hole-free CRT-based Arrays

Definition 3 (Hole-free CRT array): Let Λ be the lattice
corresponding to OK of a quadratic field K. Assume
prime decomposition p = p1p2 in OK , with G1 and
G2 their generator matrices. A Hole-free CRT array is
a extended CRT-based array where x1 ∈ Λ ∩ 2σ(p1) and
x2 ∈ Λ ∩ σ(p2).

Let SC ⊂ S denote the set of consecutive elements in
the coarray aperture. According to [8, Proposition 3], the
minimum aperture of SC is Λ ∩ pΛ, i.e., Λ ∩ pΛ ⊂ SC .
Generally, SC can be defined within a convex polygon,
whereas in this paper, we only consider regular poly-
gons such as square and hexagon. Next, we define the
contiguous coarrays of Hole-free CRT over Z2 and A2

respectively as examples.
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Figure 1. Hole-free CRT over Z[i] (a) whose contiguous sum coarray is
within 13Z2 (b) and Hole-free CRT over Z[w] (c) whose contiguous sum
coarray is within 13A2 (d). The two constituting subarrays are shown in
red stars and blue dots respectively. Voronoi cells of 13Z2, 26Z2, 13A2

and 26A2 are also shown.

1) Z2: The consecutive set of Z2 array is a uniform
rectangular array (URA) which can be expressed as

SC,G = {d = (dx,m, dy,n) ∈ S | − lG ≤ dx,m ≤ lG,
− lG ≤ dy,n ≤ lG,m, n = 1, 2, · · · lG},

(14)
where lG ∈ Z quantizes the aperture of Λ ∩ pΛ and lG ≥
1
2 (p−1). It can be calculated that the cardinality of SC,G is
l2G. Fig. 1(a) and Fig. 1(b) depict the Z2 hole free structure
and its sum coarray respectively where p = 13, p1 =
(3 + 2i) and p2 = (3− 2i).

2) A2: The Hole-free part of the A2 coarray is the
hexagonal lattice whose basis is given by

GE =

(
1 1

2

0
√
3
2

)
.

Likewise, let lr denote the maximum circumradius of the
contiguous hexagonal cell. According to the geometry
property of hexagonal lattice, it can be calculated that
lr ≥ 1

2 (p + 1). The contiguous part of the coarray of
Hole-free CRT over A2 can be described as

SC,E = {d = (dx,m, dy,m) | d ∈ S,

−
√

3

2
lr < dy,m <

√
3

2
lr,

−
√

3lr < ±
√

3dx,m + dy,m <
√

3lr}

(15)

where m = 1, 2, · · · , 3l2r + 2lr + 1. An illustration of A2

hole-free configuration and its hole-free virtual array is
shown in Fig. 1(c) and Fig. 1(d) respectively where p =
13, p1 = (1 + 2

√
3i) and p2 = (1− 2

√
3i).

C. Properties of Hole-free CRT Arrays

1) Number of Physical Antennas: According to Propo-
sition 1, the number of elements in Λ1/pR and Λ2/pR
both equal to p. After doubling the range of x1 to
x1 ∈ Λ ∩ 2σ(p1) and removing the duplicated sensors
at the origin, the total sensor number in 2Λ1 becomes
4p− 3. Thus the number of physical sensors by Hole-free
CRT can be written as

4p− 3 + p = 5p− 3. (16)

2) Perimeter and Area: Assuming the minimum inter-
element spacing is d. Given a prime p the perimeters of
Hole-free CRT over Z2 denoted as CG and of Hole-free
CRT over A2 denoted as CE can be calculated as

CG = 8pd, CE = 6pd tan(
π

3
) ≈ 6.928pd

and the areas acquired by the two array configurations are

AG = 4p2d2, AE = 2p2d2(tan(30)+sec(30)) ≈ 3.464p2d2.

It can be calculated that the perimeter and the area of A2

array are 86% of those Z2 array.

IV. HEXAGON-TO-RECTANGULAR TRANSFORMATION

In this section we transfer the hexagon shaped arrays
to rectangular-like arrays by exploiting the transformation
technique developed in [11]. To begin with, let us replace
zm by GE [Ex, Ey]T and rewrite am(θk, φk) as follows:

am(θk, φk) = exp
(
− j 2πd

λ
vkGE [Ex, Ey]T

)
(17)

where vk = sin(θk)
[

cos(φk) sin(θk)
]
. Since

[Ex, Ey]T = G−1E zm, Ex, Ey are integers with
−lr ≤ Ex ≤ lr and −lr ≤ Ey ≤ lr. The transformation
from the A2 lattice into the equivalent rectangular lattice
is realized by introducing an incident wave vector in the
u space. For every source k, its wave vector is defined
by wk = 2π

λ uk where uk is expressed as

uk = sinφk[cos θk, sin θk]GE . (18)

By substituting (18) to (17), the steering vector of the cor-
responding rectangular-like array on the u space becomes

am(θk, φk) = exp
(
− j 2πd

λ
uk[Ex, Ey]T

)
. (19)

The same transformation can be done with the receiving
steering vectors an(θk, φk). Here the affine transformation
for an arbitrary point (dx, dy) ∈ SC,E from Cartesian
coordinate to u space is(

Ex
Ey

)
=

(
1 − 1√

3

0 2√
3

)(
dx
dy

)
. (20)

In short, we transformed the CRT arrays described by the
Cartesian system with vk into an equivalent rectangular
array based on the u space whose the wave vector is wk.
After this hexagon-to-rectangular transformation, SC,E
becomes a parallelogram-like polygon in u space. Spatial
smoothing is done using this parallelogram-like polygon
array then the estimated angles are relocated back to the
Euclidean space using Cartesian coordinates.
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Figure 2. Radiation patterns of Z2 array, A2 array and 2D nest array.
The minimum interelement distance d is chosen to be 1

2
λ. The azimuthal

angle φ is set for the largest occurring side lobe.

V. NUMERICAL RESULTS

Within the MIMO framework, the superiority of the
proposed arrays is demonstrated and compared with 2D
nested arrays in the context of the radiation pattern as well
as the target estimation performance. When the decompo-
sition parameter is selected to be p = 13, configurations
of Z2 array and A2 array are presented in Fig. 1(a) and
Fig. 1(c) respectively, whereas the array configuration of
2D nested array is given in [12] where the dense array
configuration corresponding to N1 = 4 acts like the
transmitting array and the sparse array with N2 = 4 is
the receiving array.

A comparison of MIMO concepts is shown in Fig. 2.
It can be measured that the side lobe suppression (SLS)
of A2 array is dramatically reduces to SLSA2

= −25.8dB
which is less than SLSnested = −11.25dB of the 2D nested
array. As a result, the A2 array configuration can target
sources at a better separation. The least half power beam
width is exhibited by Z2 array followed by A2 array and
finally 2D nested array. Z2 array improves the angular
resolution by 0.8◦ compared to the nested array. In short,
all the proposed arrays outperform the known sparse array
in terms of SLS and the angular resolution.

Next, the proposed arrays are employed for the target
estimation on the MIMO platform. Let K = 6 be the
number of uncorrelated sources modeled as Gaussian and
buried in temporally and spatially WSS noise (SNR = 0
dB). The received data is generated by (7) and the DOA
estimation is done by 2D ESPRIT technique using only 1
snapshot. From Fig. 3, it is evident that CRT arrays resolve
all the sources successfully while the nested array misses
one target. The root mean-square error (RMSE) is calcu-

lated by RMSE =
√

1
K

∑K
k=1((θ̄k − θ̂k)2 + (φ̄k − φ̂k)2),

where (θ̄k, φ̄k) and (θ̂k, φ̂k) are real and estimated DOAs
respectively. The results of the estimation accuracy are
shown in Table I.

VI. CONCLUSIONS

In this paper, it has been demonstrated that the problem
of designing closed-form sparse arrays can be resolved
by means of quadratic integers. Inspired by the bijective
mapping between the ring of algebraic integers and lat-
tices, Chinese remaindering is performed over Z[i] and

0 50 100 150

Azimuth (degrees)

0

20

40

60

80

E
le

v
a

ti
o

n
 (

d
e

g
re

e
s

)

(a)

0 50 100 150

Azimuth (degrees)

0

20

40

60

80

E
le

v
a

ti
o

n
 (

d
e

g
re

e
s

)

(b)

0 50 100 150

Azimuth (degrees)

0

20

40

60

80

E
le

v
a

ti
o

n
 (

d
e

g
re

e
s

)

(c)

Figure 3. The true target reflectivities (in circles) and the estimated target
directions (in crosses) for (a) 2D nested array, (b) A2 array and (c) Z2

array

Table I
COMPARISON OF TARGET ESTIMATION

Array
RMSE

Azimuth angle Elevation angle

Z array 0.16◦ 0.14◦

A2 array 0.34◦ 1.09◦

2D Nested array 14.75◦ 8.92◦

Z[ω] to generate two coprime lattices on which the trans-
mitting and receiving arrays are allocated respectively.
The proposed methodology provides a high-resolution and
accuracy sensing to the allocated MIMO radar system.
The superior advantages of CRT-based arrays are verified
through numerical results.
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