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Abstract—A variety of algorithms have been developed to
compute an approximate polynomial matrix eigenvalue decom-
position (PEVD). As an extension of the ordinary EVD to poly-
nomial matrices, the PEVD will generate paraunitary matrices
that diagonalise a parahermitian matrix. While iterative PEVD
algorithms that compute a decomposition in the time domain
have received a great deal of focus and algorithmic improvements
in recent years, there has been less research in the field of
frequency-based PEVD algorithms. Such algorithms have shown
promise for the decomposition of problems of finite order, but
the state-of-the-art requires a priori knowledge of the length
of the polynomial matrices required in the decomposition. This
paper presents a novel frequency-based PEVD algorithm which
can compute an accurate decomposition without requiring this
information. Also presented is a new metric for measuring a
function’s smoothness on the unit circle, which is utilised within
the algorithm to maximise eigenvector smoothness for a compact
decomposition, such that the polynomial eigenvectors have low
order. We demonstrate through the use of simulations that the
algorithm can achieve superior levels of decomposition accuracy
to a state-of-the-art frequency-based method.

I. INTRODUCTION

The expression of broadband multichannel problems via
polynomial matrix representations [1] has been identified as a
viable approach for broadband beamforming [2], [3], broad-
band angle of arrival estimation [4]-[6], and polyphase anal-
ysis and synthesis matrices for filter banks [7]. Parahermitian
polynomial matrices, which are identical to their parahermitian
conjugate, i.e., R(z) = R(z) = R"(1/z*) [7], are often
central to these applications, and can arise as the z-transform
of a space-time covariance matrix: R(z) = ) _Rl[r]z77.

A polynomial matrix eigenvalue decomposition (PEVD),
which is defined in [8] as an extension of the eigenvalue
decomposition to parahermitian matrices, uses finite impulse
response (FIR) paraunitary matrices [9] to approximately di-
agonalise a space-time covariance matrix. Given an input para-
hermitian matrix R(z) € CM*M and its associated coefficient
matrix R[7], PEVD algorithms generate an output diagonal
matrix D(z) containing eigenvalues, and a paraunitary matrix
Q(z) containing eigenvectors, such that

D(z) ~ Q(2)R(2)Q(2) - (D
Equation (1) has only approximate equality, as the PEVD of a
finite order polynomial matrix is generally not of finite order.
Note that the decomposition in (1) is unique up to permuta-
tions and arbitrary allpass filters applied to the eigenvectors,
provided that Q(z) and D(z) are selected analytic [10].
Existing PEVD algorithms include second-order sequential
best rotation (SBR2) [8], sequential matrix diagonalisation
(SMD) [11], and various evolutions of the algorithm fami-
lies [12]-[14]. These algorithms employ iterative time domain
schemes to approximately diagonalise a parahermitian matrix,

and typically encourage spectral majorisation [15] such that
the resulting eigenvalues are ordered.

A DFT-based PEVD formulation, which transforms the
problem into a pointwise-in-frequency standard matrix decom-
position, is provided in [16]. The method can either return a
spectrally majorised decomposition, or attempt to approximate
maximally smooth eigenvalues. This algorithm has been shown
to perform well for finite order problems [17], but requires an
a priori guess of the length of the paraunitary matrix Q(z) in
the decomposition.

Here, we present a novel frequency-based PEVD algorithm
which can compute an accurate PEVD without requiring an es-
timate of the paraunitary filter length. It has been demonstrated
in [10] that the lowest order approximation to (1) is possible
if we attempt to approximate analytic eigenvectors which —
on the unit circle — are characterised by being infinitely
differentiable. We utilise a cost function that measures the
power in derivatives based on the Fourier coefficients of their
discrete samples on the unit circle. This permits us to maximise
eigenvector smoothness for a low order decomposition.

Below, Sec. II and Sec. III will introduce the smoothness
metric and the proposed algorithm, respectively. A comparison
of the algorithm’s performance relative to the method in [16]
is presented in Sec. IV, with conclusions drawn in Sec. V.

II. SMOOTHNESS METRIC

A PEVD produces eigenvalues \,,(¢’?) and eigenvectors
am (e’?), where A, (e’*) is the mth diagonal element of
D(2)|,—cio and g, (e’*?) is the mth column of Q(2)|,—.e.
For the eigenvectors q.,(e’!) to be compact in the time
domain, they must be maximally smooth on the unit circle [10].
In this section, we propose a novel metric to measure the
smoothness of eigenvectors.

If K is sufficiently large and odd, the samples Fj, =
F(e?%), Qp =225 | =0...(K — 1), of a function F/(e/%)
permit its reconstruction via the Dirichlet kernel P(e/$):
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We are interested in the power contained within the pth
derivative of F(e’?),

1 (™| dar
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which provides some measure of the smoothness of F'(e7‘?).

Note that due to orthogonality of the complex exponential

terms and integration over an integer number of fundamental
periods, for a Fourier series with arbitrary coefficients ay,

Xp = 5 F(e?)| e, (6)
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If we want to consider smoothness up to the Pth derivative,
we can form the metric
P
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which calculates the sum of all powers of derivatives of f up
to and including the Pth derivative. For even K, the derivation
is similar to above and produces
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III. PROPOSED ALGORITHM
A. Overview

The PEVD approach presented here uses a frequency-based
scheme to obtain a solution to (1). In the discrete frequency
domain, this equation has the form

R[k] = Q[k|D[K]Q"[k], k=0,1,..., K — 1, (14)

where Q] contains eigenvectors, D[k] contains eigenvalues,
and R[k] is obtained from the K -point DFT of R[],

R[K = R(2)|.s, = X, Rlrhwl?  k=0,1,..., K ~1,

where wyx = e 727/K_ An approximate PEVD is therefore

obtained via K independent EVDs.

Noting that the decompositions in (1) and (14) are only
unique up to permutations and phase shifts [10], an advantage
of the frequency-based approach proposed here is the option to
rearrange the eigenvalues and eigenvectors at each frequency

bin if desired. If the eigenvalues in D[k] are arranged in de-
scending order, approximate spectral majorisation of the result-
ing polynomial eigenvalues occurs. A smooth decomposition,
whereby both eigenvalues and eigenvectors are continuous in
frequency, typically produces a more compact decomposition,
but requires aditional effort. Sec. III-B discusses the method
used to form a smooth decomposition.

Each eigenvector at each frequency bin can be influenced
by an arbitrary scalar phase angle and still be valid. Discon-
tinuities in phase between adjacent frequency bins can arise
due to this ambiguity in eigenvector phase. When assessed
via the metric of Sec. II, eigenvectors containing such phase
discontinuities are not smooth and return high values of y(*).
For a short paraunitary matrix Q(z), these discontinuities must
be smoothed [10] and X(P ) decreased. This is achieved through
the use of a phase alignment function, described in Sec. III-C,
which uses Powell’s ‘dogleg’ algorithm [18], [19] to maximise
eigenvector smoothness.

Following the reordering (if desired) and phase alignment
of Q[k], Q[r] is computed via the inverse DFT as

Qlrl = Yy QlkJwg™, 7=0,1,....K -1,  (15)
and DJr] is found in a similar fashion.

B. Smooth Decomposition

In a smooth decomposition, the eigenvalues — and their
eigenvectors — are arranged such that discontinuities between
adjacent frequency bins are minimised. Such discontinuities
can occur when the eigenvalues intersect at some frequencies.
A relatively low complexity method for reordering the eigen-
values and eigenvectors from [16] is used in this algorithm,
and is described below.

For a smooth decomposition, the eigenvectors in adjacent
frequency bins are rearranged using the inner product

cij[k] = a;' [k — Lay[k] , (16)
where, q;[k] is the ith column of Q[k]. For each eigenvector
qi[k—1],i=0... M — 1, a subsequent eigenvector q; [k] is
chosen from an initial set S = {0...M — 1} of the columns
of Q[k] such that

g B
v = arg ?€a§{|cu (]I} (17)

Once ¢ is identified, it is removed from the set: S =

— {i’}, and the next eigenvector is chosen. The selected
elgenvectors are combined in a rearranged matrix Q'[k] =
[qo[k] ... qr—1y [F]], and Q[k] is set equal to Q'[k]. The
eigenvalues D[k] are rearranged according to the reordering of
the eigenvectors. This process is completed fork =1... K—1.

C. Phase Alignment

1) Overview: Phase alignment of eigenvectors in adjacent
frequency bins is vital for a compact-order decomposition.
Phase alignment can be achieved by finding the phase changes
required for each eigenvector q,,[k] V m, k to be maximally
smooth according to metric x(*). The phase of the mth
eigenvector at frequency bin k£ can be adjusted by an angle
0 according to §,,[k] = €% q,,[k]. Below, we define an ob-
jective function which, when minimised via an unconstrained
non-linear optimisation algorithm, can be used to determine the
optimal 6 V k to maximise the mth eigenvector’s smoothness.

2) Objective Function Formulation: The smoothness met-
ric defined for odd K in (12) and even K in (13) is able



to measure the smoothness of a single function. We wish to
compute a vector of phases 8 = [0, 01, - ,0x_1]7 € REX!
such that all elements of the mth eigenvector q,,[k] V k are
maximally smooth. Our objective function therefore measures
the smoothness of all elements of q,,[k] and takes the form

0)=R{Y.£1Cpf.} (18)

where we choose fi! = v, diag{[e’?, .-  e/%%-1]} and v,, =
[Qm.n[0], -, Am,n[ KX — 1]], where q, ,[k] denotes the nth
element (row) of eigenvector q,,[k] at frequency bin k. Only
the real component of the sum in the above equation is taken,
as the imaginary component should be zero.

The above equation can be rearranged to form

M-—1
f(0) = R{u" (Z diag{vn}qp)diag{vi‘}) u}, (19)
n=0

H _ [ejﬁo7 - ,ej(’K—l]_

where u©
Setting I' = S°M° ! diag{v, }C(pydiag{vi} € CK*K

allows for the following compact representation:

f(8) = R{u"Tu} . (20)
We therefore wish to obtain 6 by solving
6 = argmin f(0) . 21)

3) Minimising the Objective Function: Given its simplicity
and relatively low cost [19], we employ Powell’s iterative
‘dogleg’ trust region strategy [18] for the unconstrained min-
imisation of (20). In iteration ¢, a trust region strategy uses the
gradient vector g and approximate Hessian matrix H of the
objective function to construct a second-order Taylor model:

mi(p®) = F(07) + @V Tg+ o THEY . (22)
This model approximates f (6 6" +g0(1)) within a trusted region

of radius R around the current point 8\ for some step ¢(*),
which is identified according to

) = arg min mi(e®) @ <RY . (23)
e
The selected method first finds the minimiser of (22) along

the steepest descent direction:

(z) _ g g
C
THg
If this point lies outside of the trusted region, the intersection of

the line from the origin to gogi) with the trust region boundary
is used for ("), Otherwise, the quasi-Newton point is found:

o) =-H'g. (25)
(@)

If this point lies within the trust region, go(i) = @gn. and the
method moves to the next iteration. Otherwise, a solution is
found at the intersection of the trust region boundary with the
line from ¢ to go((ﬂz

A parameter p, which compares the predicted reduction
in the objective function with the actual reduction, is used to
measure the strength of the approximation given by (22):

_J0") — f(0" + 1)

my,(0) — mui (™)
In practice, if p > 0.75, the approximation is good and the
trust region is expanded. If p < 0.25, the approximation is

poor and the trust region is decreased in size. Furthermore, if
p> 0,00 = 0@ 4 o0 otherwise, U1 = 9.

(24)

(26)

4) Gradient Vector and Hessian Matrix Formulation: The
objective function in (20) can also be written as

K-1K-1 K-1K-1
0)=>" > uiypur =Y > e/ (@27)
i=0 k=0 i=0 k=0
Taking the derivative with respect to 6;:
K—1
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K—1
=—j de 0D 4§ eI 000 (28)
k=0
Note: e, = 'yu as I' is Hermitian. Converting to matrix
notation, the gradient vector is
0
g = 6_£ —jdiag{u}TTu* + jdiag{u} Ty

= 2R{jdiag{u} " u} = —2I{diag{u"}Tu} .
(29)
Taking the derivative of (28) with respect to 6,, with 6,
now fixed, we get the equation for the off-diagonal elements
of the Hessian matrix:
of
00,00,

'(91)_0[)

— e —i(0p=0¢)

— J*e

=00 eI 00) (30)
So the off-diagonal (OD) terms of the Hessian matrix are:
Hop = diag{u}TTdiag{u*} + diag{u"}T"diag{u}

= 2R{diag{u"}Tdiag{u}} . (31)

Taking the derivative of (28) with respect to 6y, we get the
equation for the diagonal elements of the Hessian matrix:

K—1
892 _ Z Wea(@ Z Wkej(t‘)e—Ok)' (32)
i=0,i#0 k=0,k£t

In matrix form, this equates to
Hp = diag{—diag{u}Tu* — diag{u"}I"u}
= —2R{diag{diag{u}Tu*}} , (33)

where I' = I’ — diag{diag{T'}} contains zeroes on its diagonal.
The Hessian matrix is then given by

H = Hop — diag{diag{Hop}} + Hp
= 2R{diag{u"}Tdiag{u}}
- diag{diag{2R{diag{uH}Fdiag{u}}}}
— 2R{diag{diag{u}TTu*}}
= 2R{diag{u"}Tdiag{u}}
— 2R{diag{diag{T} + diag{u}TTu*}}

= 2R{diag{u}Tdiag{u}} — 2R{diag{diag{u} T Tu*}},
(34)

— el

since diag{diag{u"} I'diag{u}} = diag{I'}.
The second part of (34) is typically less significant when
compared to the first part; i.e.,
| 2R {ding{diag{u}TTu*}} |
[2R{diag{u"}I'diag{u} }||r
where || - ||p is the Frobenius norm. In numerical experi-
ments, (34) is not always positive definite, which is a re-
quirement for this method of minimisation [19]; however,

~ 1073, (35)



2R{diag{u"}T'diag{u}} is positive semi-definite, as C(p)
and I' are positive semi-definite. We propose the following
approximation to the Hessian matrix, which is guaranteed to
be positive definite and eliminates unnecessary computation:

H = 2R{diag{u"}Tdiag{u}} + ol x , (36)

where « is very small and Ik is a K x K identity matrix.

D. Algorithm Complexity

The complexity of the phase alignment step for a single
eigenvector is O(K?®) due to matrix inversion [16]; thus,
the total complexity of the phase alignment step for M
eigenvectors is of order O(M K?). The computation of the
frequency domain representation of R[7] V 7, the execution of
K EVDs, and the formulation of a smooth decomposition are
of lower complexity than this step; thus, the total complexity
of the proposed algorithm is approximately O(M K?).

IV. ALGORITHM PERFORMANCE

To benchmark the proposed approach against the existing
method in [16], this section first defines performance metrics
for evaluating the performance of PEVD algorithms before
setting out two simulation scenarios, over which an ensemble
of simulations will be performed.

A. Performance Metrics

Denote the mean-squared reconstruction error for an ap-
proximate PEVD as

MSE = 157 >, IEr[7]|} (37)

where Ex[7] = R[r] — R[7] V 7, R(z) = Q(2)D(2)Q(=).
and L’ is the length of Eg(z). Furthermore, define the
paraunitarity error as

=17 2 |Eelr] — ulrllE (38)
where Eg(2) = Q(2)Q(z), In[0] is an M x M identity
matrix, and Iy[r] for 7 # 0 is an M x M matrix of
zeroes. The output paraunitary matrix Q(z) can be used in

signal processing applications; a useful metric for gauging the
implementation cost of this matrix is its length, L.

B. Simulation Scenarios

The simulations below have been performed over an en-
semble of 10 instantiations of R(z) € CM*M M = 5, based
on the randomised source model in [11]. In this source model,
which generates ground truth D(z) and Q(z), the order of
D(z) is 18 and the order of Q(z) is 10, such that the total
order of R(z) is 38. The dynamic range of the eigenvalues is
constrained to ensure that the average is around 50 dB.

The proposed algorithm considers smoothness up to the
third derivative; i.e., we use the metric x(?’). A maximum of
50 minimisation steps according to Sec. III-C3 are allowed,
and a parameter of o = 1074 is used.

1) Scenario 1: The method in [16], henceforth referred to
as the ‘existing’ algorithm, requires knowledge of L¢ prior
to execution, and typically chooses a number of frequency
bins K, = 2Ly + L — 2, where L is the length of the input
matrix R(z). Our method, referred to as ‘proposed’, does
not require an input value of L¢, but instead outputs Q(z)
with length equal to the number of frequency bins K, used
in the decomposition. Note: outer lags of Q[7] may contain
negligible energy and can be trimmed using a threshold y in a
process detailed in [8]. The first scenario provides the existing

TABLE 1.

AVERAGE MSE, 17, AND A POSTERIORI L COMPARISON.

[ Method [[ MSE [ n [ Lo |
existing!, K. =47 0.2139 0.03696 5
existing!, K. =57 6.923 x 1076 | 2.319 x 1076 10
existingZ, K. =131 || 1.251 x 1079 | 8.596 x 10710 | 47
existingZ, K. =151 || 5.854 x 1079 | 3.296 x 109 | 57
proposed™2, K, = 47 9.648 x 10718 | 1.011 x 10715 | 47
proposed™2, K, = 57 1.197 x 10722 | 6.179 x 10719 | 57
proposed™ 2 K, = 47 2.341 x 10710 | 8.116 x 10~ | 23.35
proposed™2 ¥ K, = 57 3.278 x 1010 | 8.211 x 10~ | 23.22

1 Simulation scenario 1 2 Simulation scenario 2

¥ Q[r] truncated using threshold ;1 = 10~'9 and scheme from [8]

method with values of Ly € {5, 10}, and uses the same
generated values of K. = K, € {47, 57} for both algorithms.
Note that each algorithm is instructed to produce a smooth
decomposition.

2) Scenario 2: To test the case where both algorithms
produce Q(z) of the same length, the second scenario provides
the proposed method with values of K, € {47, 57}, and

provides the existing method with Ly = K, such that
K. € {131, 151}.
C. Results

The ensemble-averaged mean squared reconstruction error,
1, and Lg were calculated for both algorithms for both
simulation scenarios, and can be seen in Tab. I. The table
demonstrates that the proposed approach is able to provide
extremely low decomposition MSE and paraunitarity error.
Furthermore, the existing method is not capable of achieving
such performance even when using significantly more fre-
quency bins and generating paraunitary filters of the same
length. The algorithmic complexity of both algorithms is
approximately O(M K?3) [16], [17]; thus the choice of DFT
length K is extremely significant. Also shown is the impact
of truncation on performance: if paraunitary filter length is
of critical importance, then MSE and 7 can be sacrificed to
generate shorter filters. Typically, increasing K is shown to
improve MSE and 7 at the expense of higher L.

V. CONCLUSION

In this paper, we have introduced a novel frequency-based
algorithm capable of computing a compact PEVD. This algo-
rithm makes use of a newly developed metric for measuring the
smoothness of a function on the unit circle. By minimising this
metric for the eigenvectors produced by the algorithm, we have
successfully modified the phase responses of the eigenvectors
and enforced their compactness in the time domain.

Simulation results have demonstrated that the proposed al-
gorithm offers superior performance to an existing frequency-
based PEVD algorithm, with the advantage of not requiring a
priori information regarding the paraunitary filter length.

When designing PEVD implementations for real applica-
tions, the algorithm described in this paper could be extremely
useful, provided that K is not prohibitively large.
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