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Abstract—In this paper, a gridless DOA estimation method
with coexistence of non-circular and circular signals is proposed
by employing an enhanced sparse nested array, whose virtual
array has no holes. The virtual signals derived from both sum
and difference co-arrays are constructed based on atomic norm
minimization. Simulation results are provided to demonstrate the
performance of the proposed method.

Index Terms—DOA estimation, Enhanced nested sparse array,
Virtual array, Atomic norm, Circular and non-circular signals

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a key topic in

array signal processing and plays an important role in radar,

sonar, navigation, geophysics, acoustic tracking and many

other applications [1]. In contrast to a uniform linear array,

a sparse array can increase the array aperture and degrees

of freedom (DOFs) through equivalent signals of the virtual

array [2]. For instance, sparse array can identify up to O(N2)
sources with N physical sensors.

Nested array and coprime array are two well-studied sparse

array structures, as their number of DOFs has a closed-form

expression. The nested array proposed in [3] combined two

uniform line arrays (ULAs) with increased sensors spacing,

and the difference co-array of this nested array is uniform and

has no holes. Since this specific nested array is susceptible to

mutual coupling given its close sensor spacing, a new class of

nested arrays was proposed in [4], which can increase DOFs

and reduce mutual coupling, but their sum co-array has holes.

In [5], the coprime array was proposed with reduced mutual

coupling, however, its number of DOFs is smaller than nested

arrays given the same number of sensors [6]. A generalized

coprime array was presented in [7], which can increase DOFs

and extend the consecutive part of the virtual array. Yet it is

generally not attractive compared to the nested array and its

This work is sponsored by the National Natural Science Foundation of
China under Grant (No. 61871282, No. 61805189), the Key Laboratory
of Intelligent Perception and Advanced Control of State Ethnic Affairs
Commission under Grant MDIPAC-2019102, and by Zhejiang Provincial
Natural Science Foundation of China under Grant (No. LQ19F010002).
*Corresponding author: Hua Chen, Email: dkchenhua0714@hotmail.com

virtual array also has holes. Recently, a sparse conventional

nested array with uniform sum and difference co-arrays was

constructed in [8], and it can provide a basis for further

exploring the DOA estimation methods based on both sum

and difference co-arrays.

Most of the methods assume either explicitly or implicitly

that the source signals are circular. In [9] and [10], an

ESPRIT-like joint diagonalization method was proposed with

uniform arrays for a mixture of circular and strictly non-

circular sources. In [11], a new data vector was constructed by

combining the received uniform array data with its conjugate

counterparts. In [12], a DOA estimation method was achieved

by concatenating the original data and the conjugate ones;

however, this method does not work when the directions

of non-circular and circular sources are the same. In [13],

acircularity difference-based method was proposed which can

realize the estimation of the same DOA for mixed signals and

is suitable for uniform arrays. In [14], polarization channel

estimation was achieved for a mixture of circular and non-

circular signals based on the unconjugated covariance matrix

and covariance matrix differrencing, respectively.

Considering these two trends, the DOA estimation problem

for a mixture of circular and non-circular signals employing

sparse arrays is studied in this work, based on sparse signal

represention (SSR). In SSR, since the array signal parameter

space is continuous, the mesh of parameter space will cause

the problem of base mismatch. To avoid this problem, some

gridless methods have been proposed for DOA estimation. In

[15], a low-rank matrix reconstruction (LRMR) method was

developed with the rank norm replaced by the nuclear norm. A

virtual array interpolation-based algorithm for coprime array

DOA estimation was proposed in [16], where the atomic norm

of the second-order virtual array signals was defined based on

the interpolated virtual array.

In this paper, a DOA estimation method based on atomic

norm is developed, which can still work when the sources are

circular and non-circular signals. The sparse convolution array

proposed in [8] is employed here for DOA estimation for the



first time, where the no-hole virtual difference and sum will

be exploited.

Notations: ⊗ , || · ||A and || · ||F denotes the Kronecker

product, atomic norm and frobenius norm, respectively. (·)H ,

(·)T and (·)∗ respectively stand for conjugate transpose, trans-

pose and complex conjugation. The symbol E(·) represents

the statistical expectation, diag(·) denotes a diagonal matrix

composed of the involved elements and vec(·) stands for the

vectorization of a matix.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

In this paper, a coexistence signal model is adopted,

including both non-circular and circular signals. Consider

a sparse array S , consisting of N sensors spaced by d,

with N being an integer and d being half wavelength, i.e

d = λ/2. Assume there are Knc non-circular and Kc cir-

cular narrow-band uncorrelated far field sources from direc-

tions θ = [θnc,1, θnc,2, . . . , θnc,Knc
, θc,1, θc,2, . . . , θc,Kc

]. The

source signals can be expressed in a vector form as

s(t) = [
snc(t)
sc(t)

] (1)

where

snc(t) = [snc,1(t), snc,2(t), . . . snc,Knc
(t)]T (2)

sc(t) = [sc,1(t), sc,2(t), . . . sc,Kc
(t)]T (3)

The signals received by the sparse array S can be expressed

as

x(t) = As(t) + n(t) (4)

where, n(t) is the independent and identically distributed

zero-mean additive white Gaussian noise vector, n(t) ∼
CN (0, pnI) with pn being the noise power and I the identity

matrix, and A represents the array manifold matrix given by

A = [Anc,Ac] ∈ CN×K (5)

with

Anc = [a(θnc,1),a(θnc,2), . . .a(θnc,K)] ∈ CN×Knc (6)

Ac = [a(θc,1),a(θc,2), . . .a(θc,K)] ∈ CN×Kc (7)

where a(θc/nc,k) represents the steering vector of the kth

source, k ∈ [1, 2, . . .K], K = Knc +Kc .

The covariance matrix of the recived signals is given by

RS = E[x(t)xH(t)] =

K
∑

k=1

pka(θk)aH(θk) + pnI (8)

where pk is the power of source signals.

The pseudo covariance matrix of the recevived array signals

is given by [17]

R
′

S = E[x(t)x
T(t)] =

K
∑

k=1

ρke
jϕkpka(θk)a

T(θk) (9)

Fig. 1. Sparse array and virtual array construction. (a) Coprime array, M=3,
N=5. (a1) Difference co-array of coprime array. (b) Sum co-array of coprime
array. (b) Nested array, N1=3, N2=3. (b1) Difference co-array of nested array.
(b2) Sum co-array of nested array. (c) ENested array, N=9, N1=3, N2=3. (c1)
Difference co-array of ENested array. (c2) Sum co-array of ENested array.

where ϕk is the non-circularity phase and ρk is the non-

circularity rate; for non-circular signals, 0 < ρk ≤ 1 and

for circular signals, ρk = 0. Therefore, the pseudo covariance

matrix has only the information of non-circular signals, and

its corresponding elements are zero for circular signals. For

the covariance matrix, the non-circular and circular signals

are both non-zero [17].

In practice, the covariance and pseudo covariance matrices

are normally replaced by their respective finite sample approx-

imation as follows

R̂S =
1

L

L
∑

t=1

x(t)xH(t) (10)

R̂
′

S =
1

L

L
∑

t=1

x(t)xT(t) (11)

where L is the number of snapshots.

B. Sparse Array Construction

The enhanced nested (ENested) array consists of the original

nested array and an additional array [8]. N1 and N2 is the

integer, N = N1 ∗N2. The position set of the ENested array

can be expressed as

SENested = {n|n = 0, 1, . . . . . . N1 − 1}
∪ {nN1|n = 0, 1, . . . . . . N2 − 1}
∪ {n|n = N −N1, . . . . . . N − 1}

(12)

Fig. 1(c) shows the ENested array with N1 = 3 and N2 = 3
N = 9 as an example.

The coprime array [16] and nested array are shown in the

Fig. 1(a) and Fig. 1(b). The difference and sum co-array of

coprime array, nested array and ENested array are shown in the

Fig. 1(a1) (a2), (b1) (b2) and (c1) (c2), respectively. Obviously,

the sum and difference co-array of ENnested array have no

holes as shown Fig. 1(c1) and Fig. 1(c2), and in this paper, we

will further explore DOA estimation performance based on the

ENnested array for the coexistence of circular and non-circular

signals.



III. ENESTED ARRAY FOR DOA ESTIMATION

A. DOA Estimation for Non-circular Signals

For the pseudo covariance matrix in Eq. (9), due to the

coexistence of circular and non-circular signals, we can further

write it as

R
′

S = AncR
′

ncA
T

nc +AcR
′

cA
T

c (13)

where R
′

nc = E[sncs
T

nc] and R
′

c = E[scs
T

c ]. Since the non-

circular ratio of the circular signal ρk = 0, R
′

c = 0. Then Eq.

(13) is simplified as

R
′

S = AncR
′

ncA
T

nc (14)

The Usum is defined as the distinct elements in the sum

coarray position set Ũsum. The virtual vector of sum coarray

can be obtained by vectorizing R
′

S as

y
Ũsum

= vec(R
′

S) =

Knc
∑

k=1

ρke
jϕkpka

′
nc (θk) (15)

where

a′nc(θk) = anc(θk)⊗ anc(θk) (16)

The virtual array signals of sum coarray can be obtained

from vector y
Ũsum

yUsum
=

Knc
∑

k=1

ρkpke
jϕkvnc(θk) (17)

where vnc(θk) is the chosen equivalent steering vector from

the a′nc(θk). The information in a′nc(θk) correspond to the

elements in the Ũsum array and the information in vnc(θk)
correspond to the elements in the Usum array.

Inspired by the atomic norm theory [18], [19], we absorb the

non-circular phase ϕk and the ejϕk into the following atomic

set

A = {v(θk, ϕk) |θk ∈ [0◦, 180◦], ϕk ∈ [0◦, 180◦]} (18)

The virtual measurements can be expressed in the form of

atomic norm minimization as follows

‖yUsum
‖
A
= inf

ρk,pk























Knc
∑

k

ρkpk :

yUsum
=

Knc
∑

k=1

v(θk, ϕk)ρkpk,

pk ≥ 0, 0 < ρk ≤ 1























(19)

Taking the error into account in the semi-definite program-

ming (SDP) constraints [18], [19], the optimization problem

can be expressed as

min
T ,u

1

2
u+

1

2NUsum

Tr [T ′] +
1

2
‖ŷUsum

− yUsum
‖2
2

s.t.

[

u yH

Usum
.

y T ′

]

≥ 0,

(20)

where T ′ is a Hermitian Toeplitz matrix.

T ′ =

Knc
∑

k=1

ρkpkv(θk, ϕk)v
H(θk, ϕk) (21)

NUsum
denotes the sensors numbers of sum co-array. If ϕk

are all zero-valued, we have v(θk, 0), leading to

T ′ =

Knc
∑

k=1

ρkpkv(θk, ϕk)v
H(θk, ϕk)

=

Knc
∑

k=1

ρkpkv(θk, 0)v
H(θk, 0)

(22)

According to Eq. (22), the T ′ corresponding to the atomic set

containing θk and ϕk is equal to the T ′ corresponding to the

atomic set only containing θk.

Eq. (20) is convex, we can solve the optimization problem

by the CVX Tool box in MATLAB, the covariance matrix T ′

of sum virtual array is obtained by solving Eq. (20), and a

MUSIC method can be used to estimate DOA θnc,k of non-

circular signals.

B. DOA estimation for Circular Signals

For estimating DOA of circular sources, we need analyse

the convariance matrix shown as Eq. (8), it can be expressed

as

RS = AncRncA
H

nc +AcRcA
H

c (23)

where Rnc = E[sncs
H

nc] and Rc = E[scs
H

c ].
Based on the DOAs of non-circular signals and Eq. (14),

we can obtain R
′

nc, and the Rnc can be expreseed as [13]

Rnc = diag{
∣

∣

∣
R

′

nc(1, 1)
∣

∣

∣
, . . .

∣

∣

∣
R

′

nc(Knc,Knc)
∣

∣

∣
} (24)

Then, based on Rnc, we can estimate the covariance matrix

of non-circular signals. The covariance matrix of circular

signals can be obtained by subtracting the covariance matrix

of the non-circular part from Eq. (23) [13], giving

R = RS −AncRncA
H
nc (25)

The difference virtual vector can be obtained by vectorizing

R as

y
Ũdiff

= vec(R) =

Kc
∑

k=1

pka
′
c(θk) + pni (26)

where

a′c(θk) = ac(θk)⊗ a∗c(θk) (27)

The virtual signals of the difference co-array are obtained

from vector y
Ũdiff

as

yUdiff
=

Kc
∑

k=1

pkz(θk) + pn̄i (28)

where z(θk) is the obtained equivalent steering vector from

the a′c(θk).
Based on the atomic norm theory, we have the the atomic

set of difference coarray and virtual measurements as follows

A = {z(θk) |θk ∈ [0◦, 180◦]} (29)
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∥

∥yUdiff

∥

∥

A
= inf

pk

{

Kc
∑

k

pk : yUdiff
=

Kc
∑

k=1

z(θk)pk, pk ≥ 0

}

(30)

Note that the equivalent SDP form of Eq. (30) is given by

min
T ,t

1

2
t+

1

2NUdiff

Tr [T ]

s.t.

[

t yH

Udiff

yUdiff
T

]

≥ 0

(31)

where T is a Hermitian Toeplitz matrix

T =

Kc
∑

k=1

pkz(θk)z
H(θk) (32)

L denotes the sensor number of virtual array, and NUdiff

denotes the sensor numbers of the difference co-array or the

sensor numbers of the difference co-array with holes.

Considering the error of virtual signals into account in

the SDP constraints, the optimization problem can be finally

expressed as

min
T ,t

1

2
t+

1

2NUdiff

Tr [T ] +
1

2

∥

∥ŷUdiff
− yUdiff

∥

∥

2

2

s.t.

[

t yH

Udiff

yUdiff
T

]

≥ 0,

(33)

Using the CVX tool to solve the convex problem, we can

obtain T , and the covariance matrix of the difference coarray

signals. Again the MUSIC method is used to estimate the DOA

of the circular signals.

IV. SIMULATION RESULTS

In the simulation, an Enested array with N1 = 3 and N2 = 3
is used, which has a total number of 7 physical sensors, with

their locations shown in Fig. 1(c). The virtual arrays are shown

as Fig. 1(c1) and Fig. 1(c2). As a comparison, the coprime
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Fig. 3. RMSE versus the snapshot number.

array of M = 3 and N = 5, with 7 physical sensors, and the

signals of non uniform sum and difference virtual arrays are

obtained via interpolation [16]. Besides, two uniform linear

arrays with 7 and 9 physical sensors respectively are also

considered for comparison.

There are four non-circular uncorrelated sources uniformly

distributed in [40◦, 100◦], and four circular uncorrelated

sources uniformly distributed in [45◦, 105◦]. We investigate the

RMSE of DOA estimation for the ENested array, the coprime

array, the seven-sensor ULA and the nine-sensor ULA. The

snapshot number is L = 500. The result of 200 Monte Carlo

trials is presented in Fig. 2. It is observed that the RMSE

of the ENested array is close to the nine-sensor ULA and

better than the seven-sensor ULA. This is because the sum

and difference co-arrays of the ENested array have a virtual

aperture of the same size as the nine-sensor ULA. Besides,

the DOA estimation result of the coprime array is worse than

other arrays due to existence of holes in its virtual array. The

RMSE result versus the snapshot number from the four arrays

is presented in Fig. 3, where the SNR is set as 30dB.

V. CONCLUSION

In this paper, the DOA estimation problem with coexistence

of circular and non-circular signals has been studied. By

employing the recently proposed ENested array, whose sum

and difference co-arrays have no holes, the proposed method

reconstructs the covariance matrix of the virtual signals of the

sum and difference co-arrays based on atomic norm minimiza-

tion, respectively. As demonstrated by computer simulations,

the proposed method can achieve a performance close to the

ULA with a physical aperture that is the same as the difference

and sum combined virtual aperture of the employed ENested

array. This is because two arrays have same numbers virtual

sensors.
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