
ar
X

iv
:2

20
5.

11
22

0v
1 

 [
ee

ss
.S

P]
  2

3 
M

ay
 2

02
2

Exploiting Array Geometry for Reduced-Subspace

Channel Estimation in RIS-Aided Communications
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Abstract—A reconfigurable intelligent surface (RIS) can be
used to improve the channel gain between a base station (BS)
and user equipment (UE), but only if its N reflecting elements
are configured properly. This requires accurate estimation of
the cascaded channel from the UE to the BS through each
RIS element. If the channel structure is not exploited, pilot
sequences of length N must be used, which is a major practical
challenge since N is typically at the order of hundreds. To
address this problem without requiring user-specific channel
statistics, we propose a novel estimator, called reduced-subspace
least squares (RS-LS) estimator, that only uses knowledge of
the array geometry. The RIS phase-shift pattern is optimized
to minimize the mean-square error of the channel estimates.
The RS-LS estimator largely outperforms the conventional least-
squares estimator, and can be utilized with a much shorter pilot
length since it exploits the fact that the array geometry confines
the possible channel realizations to a reduced-rank subspace.

Index Terms—RIS, channel estimation, reduced-subspace least
squares, reduced pilot length, pilot design.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS)-aided communica-

tion is one of the key areas explored for the next-generation

wireless systems [1]–[3]. An RIS is a planar array of N
reflecting elements (meta-atoms) with sub-wavelength spacing.

Each element can be configured by adjusting its impedance to

induce a controllable phase-shift to the incident wave before

it is reflected. By optimizing the phase-shift pattern across the

RIS, the reflected wavefront can be shaped (e.g., as a beam

towards the intended receiver). To control each element based

on its unique propagation path, we need to estimate the related

channel coefficients. This is a key challenge since RISs are

envisaged to consist of hundreds of elements [4].

Conventionally, in RIS-aided communication between a

base station (BS) and a user equipment (UE), the minimum

pilot length for channel estimation is equal to N (neglecting

the uncontrollable direct BS-UE channel). Several methods

that exploit sparsity, spatial channel correlation, and/or other

specific characteristics of the channel can reduce the required

pilot training length [5]. In [2], [6], [7], the spatial correlation

among the channel coefficients is exploited to minimize either

the mean-square error (MSE), or effective noise variance of

the linear minimum MSE (LMMSE) estimator. However, the

proposed methods are only applicable when the pilot length

is at least N (in the absence of a direct BS-UE channel).
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In addition, the LMMSE estimator requires knowledge of the

complete high-dimensional spatial correlation matrices. These

statistics are rather demanding to acquire in cases with a large

number of BS antennas and/or RIS elements, and when the

transmission consists of small data packets. To alleviate such

difficulties, an alternative approach is to use the least squares

(LS) estimator, which does not require any channel statistics.

However, it requires the pilot length to be at least N .

Building on our recent paper [8] on multi-antenna communi-

cations without an RIS, we propose a novel channel estimator

for RIS-aided communications that exploits the reduced-rank

subspace created by the array geometry. This method improves

the estimation quality without requiring user-specific statistical

knowledge. The proposed reduced-subspace least squares (RS-

LS) estimator outperforms the LS estimator and also enables

shorter pilot lengths than N . We also derive the ideal RIS

configuration pattern in the training phase that minimizes the

MSE with the RS-LS estimator. Numerical results are used

to show that the projection of the ideal configurations to the

closest unit-modulus RIS configurations provide significantly

better performance than the benchmarks.

II. SYSTEM AND CHANNEL MODELING

We consider the RIS-assisted communication from an M -

antenna BS to a single-antenna UE. The BS antennas are

deployed as a uniform planar array (UPA) with MH and MV

number of elements per row and per column, and we have

M = MHMV antennas in total. The RIS has N reconfigurable

elements, which form a UPA with NH and NV number of

elements per row and per column, so that N = NHNV. Each

RIS element is passive and introduces a phase-shift to the

signals that impinge on it before reflection.

We consider a time-varying narrowband channel. Adopting

the conventional block fading model, the time resources are

divided into coherence blocks with static channel realizations

[9]. We let τp denote the total number of samples allocated

to pilot transmission per block. The channel from the UE

to the RIS array is denoted by h ∈ CN . In a planar array,

there is always spatial correlation between the elements [8],

[10]. To account for this, we adopt the spatially correlated

Rayleigh fading model so that h ∼ NC(0N ,Rh) and it takes

an independent realization in each coherence block. The spatial

correlation matrix Rh can generally be computed as

Rh = βh

∫∫ π/2

−π/2

fh(ϕ, θ)a(ϕ, θ)a
H(ϕ, θ)dθdϕ (1)
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where βh ≥ 0 is the channel gain, ϕ and θ are the azimuth

and elevation angles. Here, a(ϕ, θ) ∈ C
N denotes the array

response vector and fh(ϕ, θ) is the normalized spatial scat-

tering function. We assume the RIS is deployed along the

y and z axis and the waves only arrive from directions in

front of it. Therefore, we have that ϕ, θ ∈ [−π
2 ,

π
2 ]. The rank

and subspaces of Rh are determined by the array geometry

(via a(ϕ, θ)) but also by the non-isotropic scattering and

directivity pattern of the elements (via fh(ϕ, θ)) [8], [11].

In an isotropic scattering environment where the multipath

components are equally strong in all directions and the anten-

nas are isotropic, the spatial scattering function is given by

fh(ϕ, θ) = cos(θ)/(2π).1 We denote the resulting normalized

correlation matrix by Riso and the (m, l)th entry is [10]

[Riso]m,l = sinc

(
2

√(
dml
H

)2
+
(
dml
V

)2
)

(2)

where sinc(x) = sin(πx)/(πx) is the sinc function. The hor-

izontal and vertical distances (normalized by the wavelength)

between antenna (or RIS element) m and l are denoted by dml
H

and dml
V , respectively.

Let gm,n ∈ C denote the channel from RIS element n
to BS antenna m, for n = 1, . . . , N and m = 1, . . . ,M .

We let gm = [gm,1 . . . gm,N ]T ∈ CN be the vector

collecting the channels from the RIS to BS antenna m and

g′
n = [g1,n . . . gM,n]

T ∈ CM the vector collecting channels

from RIS element n to the BS. Using the Kronecker model

[11], [12] with the receive and transmit correlation matrices

for the BS and RIS, Rg′ ∈ CM×M and Rg ∈ CN×N ,

respectively, the channel vectors are distributed as gm ∼
NC(0N , [Rg′ ]m,mRg) and g′

n ∼ NC(0M , [Rg]n,nRg′). We

assume h and gm are independent.

III. PILOT TRANSMISSION AND CHANNEL ESTIMATION

In this paper, we assume the direct link between the BS and

UE is negligible to focus on the RIS phase-shift design during

pilot transmission. Note that no generality is lost by this as-

sumption since the direct channel can be estimated separately

by an orthogonal pilot scheme [2], [11]. To optimize the RIS

phase-shifts and signal precoding during data transmission,

in each coherence block, the BS must estimate the cascaded

channel

hm , h⊙ gm ∈ C
N (3)

for m = 1, . . . ,M , where ⊙ denotes the Hadamard product.

The UE sends a predefined pilot sequence ψ ∈ Cτp during τp
channel uses and the RIS switches its configuration between

each channel use to explore different channel dimensions. The

received signal at BS antenna m during this training phase is

ym =
√
ρdiag(ψ)Φhm + nm, m = 1, . . . ,M, (4)

where diag(ψ) ∈ Cτp×τp is the diagonal matrix with entries

from ψ, and nm ∼ NC

(
0τp , Iτp

)
is the thermal noise

vector whose samples are independent between different BS

1The cosine of the elevation angle, cos(θ), comes from the differential of
the solid angle in the spherical coordinate system.

antennas. Also, ρ > 0 is the pilot signal-to-noise ratio (SNR)

and Φ ∈ C
τp×N is the RIS phase-shift matrix with elements

[Φ]t,n = e−jφt,n where φt,n represents the phase-shift used by

RIS element n at pilot time index t. For simplicity, we select

ψ as the all-ones vector.2 With this selection and collecting

the received signals for all the BS antennas, we obtain


y1

...

yM




︸ ︷︷ ︸
,y

=
√
ρ (IM ⊗Φ)︸ ︷︷ ︸

,ΦM



h1

...

hM




︸ ︷︷ ︸
,x

+



n1

...

nM




︸ ︷︷ ︸
,n

. (5)

We assume that the spatial correlation matrix Rx of the

channel vector x is not known at the BS (due to the practical

challenge of acquiring M2N2 entries). In these circumstances,

x can be estimated by the LS estimator [13], but it requires

τp = N , which can be large. In the context of holographic

massive MIMO channels, [8] proposed a more efficient estima-

tor that only exploits knowledge of the UPA geometry. Inspired

by [8], we will now propose a RS-LS channel estimator for

RIS-aided communications that can be applied for τp < N .

A. Reduced-Subspace Least Squares Estimation

The spatial correlation matrix of x is given by Rx =
Rg′ ⊗ (Rh ⊙Rg) from the independence of the channels h

and {gm}. Let Rx = UDUH be the eigendecomposition

of Rx and denote the rank as r = rank(Rx). The idea

of RS-LS channel estimation is that the channel vector x

can be expressed as U1w where the elements of w are

independent and U1 ∈ CMN×r is the matrix whose columns

are the orthonormal eigenvectors of Rx corresponding to its

r non-zero eigenvalues. The elements of w have different and

unknown variances. We propose to obtain the RS-LS estimate

of x as follows:

1) Obtain the LS estimate of w in the subspace spanned

by the columns of U1;

2) Bring the estimate back to the original MN -dimensional

space by multiplying the signal by U1.

Assuming Mτp ≥ r, the RS-LS estimate of x takes the form

x̂RS−LS =
1√
ρ
U1 (U

H

1Φ
H

MΦMU1)
−1

UH

1Φ
H

My. (6)

The RS-LS estimation method relaxes the original requirement

Mτp ≥ MN for the LS estimation of x to Mτp ≥ r
and removes noise from all unused channel dimensions when

r < MN . Using Kronecker product identities, we can express

U1 as U1 = UBS,1 ⊗ URIS,1 where UBS,1 ∈ CM×rBS

and URIS,1 ∈ CN×rRIS consist of the orthonormal eigen-

vectors (corresponding to the non-zero eigenvalues) of the

correlation matrices Rg′ and Rh ⊙ Rg, respectively. These

matrices represent the spatial correlation characteristics at the

BS and RIS side, respectively. We have rBS = rank(Rg′),
rRIS = rank(Rh ⊙Rg), and r = rBSrRIS.

2This selection does not lead to loss of generality since the cumulative
phase-shift of the pilot signals and the RIS can be represented by the entries
of the RIS phase-shift matrix Φ.



The RS-LS estimator defined above requires knowledge of

the subspace spanned by Rx. However, we can alleviate this

by instead considering the subspace spanned by another spatial

correlation matrix Rx representing the union of the span of

all plausible correlation matrices. The following lemma proves

that we can select Rx based on the isotropic scattering case.

Lemma 1. Let Rx = Rg′ ⊗
(
Rh ⊙Rg

)
and Rx = Rg′ ⊗

(Rh ⊙Rg) be two spatial correlation matrices for the cas-

caded channel obtained using the same RIS and BS array

geometry. The spatial scattering functions corresponding to

the correlation matrices Ri and Ri, according to the model

in (1), are denoted by f i(ϕ, θ) and fi(ϕ, θ), respectively, for

i ∈ {g′, h, g}, ϕ ∈ [−π/2, π/2] and θ ∈ [−π/2, π/2]. Assume

that the spatial scattering functions are either continuous at

each point on its domain or contain Dirac delta functions.

If the domain of f i(ϕ, θ) for which f i(ϕ, θ) > 0 contains

the domain fi(ϕ, θ) for which fi(ϕ, θ) > 0, for i ∈ {g′, h, g}
then the subspace spanned by the columns of Rx contains the

subspace spanned by the columns of Rx.

Proof. The proof follows similar steps as in [8, Lem. 3] and is

omitted due to the limited space. Apart from mathematical ma-

nipulations, the key new aspects are to define the new spatial

scattering functions fg′(ϕ1, θ1)fh(ϕ2, θ2)fg(ϕ3, θ3) and array

response vectors aBS(ϕ1, θ1)⊗ (aRIS(ϕ2, θ2)⊙ aRIS(ϕ3, θ3))
for the UPAs in terms of (ϕ1, θ1, ϕ2, θ2, ϕ3, θ3) on the six-

dimensional angular domain.

The spatial scattering function is non-zero for all angles

in the isotropic scattering case. Following Lemma 1, when

we use Rx = RBS,iso⊗ (RRIS,iso ⊙RRIS,iso), where RBS,iso

and RRIS,iso are the spatial correlation matrices for isotropic

scattering from (2) (according to the BS or RIS array ge-

ometry, respectively) in the RS-LS estimator, we ensure that

all plausible channel subspaces are included. Hence, any x

can be expressed as U1w for some reduced-dimension vector

w ∈ Cr. The columns of U1 ∈ CMN×r are the orthonormal

eigenvectors corresponding to the r non-zero eigenvalues of

Rx. We call this the conservative RS-LS estimator:

x̂conserv
RS−LS =

1√
ρ
U1

(
U

H

1Φ
H

MΦMU1

)−1

U
H

1Φ
H

My

= U1w︸ ︷︷ ︸
=x

+
1√
ρ
U1

(
U

H

1Φ
H

MΦMU1

)−1

U
H

1Φ
H

Mn (7)

where we assume r ≤ Mτp ≤ MN . The respective MSE is

MSEconserv
RS−LS =

1

ρ
tr

(
U1

(
U

H

1Φ
H

MΦMU1

)−1

U
H

1

)

=
1

ρ
tr

((
U

H

1Φ
H

MΦMU1

)−1
)

(8)

and depends on the RIS phase-shift matrix Φ. In the next

section, we will search for the Φ that minimizes MSEconserv
RS−LS .

IV. OPTIMIZED RIS CONFIGURATION FOR ESTIMATION

Our aim is to find the phase-shift matrix Φ that mini-

mizes (8) under the unit-modulus constraints | [Φ]t,n | = 1,

for t = 1, . . . , τp and n = 1, . . . , N . To obtain a closed-form

solution, we first relax this problem as

minimize
tr(ΦHΦ)≤Nτp

tr

((
U

H

1Φ
H

MΦMU1

)−1
)

(9)

where the non-convex unit-modulus constraints are replaced

by a Frobenius norm constraint on the matrix Φ. After

obtaining the optimal solution to the relaxed problem in (9),

we will project it to guarantee | [Φ]t,n | = 1, for t = 1, . . . , τp
and n = 1, . . . , N . Let the Kronecker decomposition U1 =
UBS,1 ⊗ URIS,1 be constructed based on the eigenspaces

of the BS and RIS spatial correlation matrices selected for

the conservative RS-LS estimation. By using the fact that

ΦM = IM ⊗Φ, the objective function in (9) is written as

tr

(((
U

H

BS,1 ⊗U
H

RIS,1

)
(IM ⊗ΦH) (IM ⊗Φ)

×
(
UBS,1 ⊗URIS,1

))−1
)

= tr

((
IrBS

⊗
(
U

H

RIS,1Φ
HΦURIS,1

))−1
)

= rBS × tr

((
U

H

RIS,1Φ
HΦURIS,1

)−1
)

(10)

where we have used the distributive properties of the Kro-

necker product. We have also implicitly assumed that A ,

ΦURIS,1 ∈ Cτp×rRIS has full column rank, i.e., rank(A) =
rRIS ≤ τp. Denote by A = SAΛAV

H

A the singular value

decomposition of A with non-zero singular values λA,1 ≥
. . . ≥ λA,rRIS

> 0. Then, we can rewrite (10) as

rBS

rRIS∑

i=1

1

λ2
A,i

(11)

whose minimum over the singular values is a monotonically

decreasing function of
∑rRIS

i=1 λ2
A,i = tr(AHA), which is equal

to

tr
(
URIS,1U

H

RIS,1Φ
HΦ
)

= tr
(
URISU

H

RISΦ
HΦ
)
− tr

(
URIS,2U

H

RIS,2Φ
HΦ
)

= tr (ΦHΦ)− tr
(
U

H

RIS,2Φ
HΦURIS,2

)
≤ Nτp (12)

where URIS,2 ∈ CN×(N−rRIS) is the matrix whose columns

are the orthonormal eigenvectors of Rh ⊙ Rg correspond-

ing to the zero-valued eigenvalues. The above inequality is

satisfied with equality when the right singular vectors of Φ

corresponding to non-zero singular values lie in the subspace

spanned by URIS,1, i.e., ΦURIS,2 = 0τp×(N−rRIS). In this

way, the objective value in (11) is minimized. Moreover,

λA,i =
√
Nτp/rRIS, for i = 1, . . . , rRIS to minimize (11). We

can construct the optimal Φ that satisfies all these constraints

as

Φ⋆ =

√
Nτp
rRIS

SΦ,1U
H

RIS,1 (13)



where SΦ,1 ∈ Cτp×rRIS is an arbitrary matrix with orthonor-

mal columns. Lastly, a unit-modulus phase-shift matrix is

obtained as Φ = ej∠Φ⋆

, where we only keep the phase-shifts.

V. NUMERICAL RESULTS

Numerical results are now used to quantify the performance

of the proposed channel estimation method and phase-shift

design, and to compare them with benchmarks, in terms of

the normalized MSE (NMSE). We assume the BS is equipped

with M = 64 antennas, and deployed as a square UPA with

MH = MV = 8. The horizontal and vertical inter-antenna

distances are λ/4, where λ is the wavelength. The RIS is

equipped with N = 256 elements, which are deployed as

a square UPA with NH = NV = 16. The horizontal and

vertical inter-element distances are λ/8. The spatial correlation

matrices are generated as in [8, Sec. IV] that follows the

clustered scattering model with the exponential power delay

profile from [14, p. 54-58]. For the proposed conservative RS-

LS estimation, the spatial matrices for isotropic scattering,

namely RBS,iso and RRIS,iso, are computed according to (2).

In Fig. 1, the pilot length τp is set to τp = N . The

“bound” in the legends represents the NMSE when we do

not project the optimal RIS phase-shift matrix to have unit-

modulus entries. The “optimized” scheme corresponds to the

proposed conservative RS-LS estimator in (7) when we use

the projected unit-modulus RIS phase-shift matrix from the

optimal Φ⋆. In addition, we consider three benchmarks: i)

the conventional LS estimator; ii) the conservative RS-LS

estimator with the DFT matrix as the RIS phase-shift matrix;

and iii) the LMMSE estimator with the same phase-shift

matrix as the proposed “optimized” scheme.3 The “DFT”

case corresponds to one of the alternative optimal phase-shift

matrices when τp = N = rRIS from (13). As expected,

the LMMSE estimator results in the lowest NMSE since it

exploits the full spatial correlation matrix. On the other hand,

the proposed conservative RS-LS method reduces the NMSE

significantly compared to the conventional LS estimator by

exploiting the spatial correlation that is induced by the array

geometries of BS and RIS. Note that this is all the information

the conservative RS-LS method needs to operate, while the

LMMSE estimator requires the full MN × MN correlation

matrix. We have a small performance drop when we project the

optimal RIS phase-shift matrix to obtain unit-modulus entries.

Nevertheless, using the optimized phase-shifts is advantageous

over using DFT with the RS-LS method.

Fig. 2 considers a reduced pilot length τp = rRIS +
1, where rRIS = 106 is the effective rank of RRIS =
(RRIS,iso ⊙RRIS,iso) containing a fraction 1 − 10−5 of the

sum of all eigenvalues.4 Due to τp < N and the resulting rank

deficiency in (6), the conventional LS estimator and the RS-LS

estimator with DFT configuration cannot be used in the setup

of Fig. 2. On the other hand, the proposed RS-LS estimator

3The best phase-shift configuration is adopted for the benchmark channel
estimators (LMMSE and LS) among the considered alternatives.

4We added one to the effective rank number rRIS to prevent numerical
issues due to having an ill-conditioned system.
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Fig. 1. NMSE versus SNR for different estimators and RIS phase-shift
configurations with τp = N = 256.
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Fig. 2. NMSE versus SNR for different estimators and RIS phase-shift
configurations with τp = rRIS + 1 = 107.

provides decent channel estimation accuracy when τp is less

than half of N . We also consider “random” phase-shifts as

the alternative benchmark for which the unit-modulus entries

have angles that are independently drawn from a uniform

distribution on [0, 2π). The gap between the randomized and

optimized phase-shifts is more than 20 dB, thus proving the

effectiveness of the proposed optimized phase-shift method.

VI. CONCLUSIONS

To overcome the channel estimation complexity issue in

RIS-aided communications with a large number of anten-

nas/elements, we proposed a novel estimator, called RS-LS

(reduced-space least-squares), that exploits only the array

geometries and the resulting low-rank structure of any channel.

This structure is not UE-specific or time-varying. Exploiting

this structure allows us to outperform the LS estimator sig-

nificantly. In addition, unlike the LS estimator, the RS-LS

estimator can be utilized with much shorter pilot length. When

the pilot length is small, optimizing the RIS configuration

during training is necessary to obtain accurate estimates.



REFERENCES

[1] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Transactions

on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.
[2] Q. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah,

and M. Alouini, “Intelligent reflecting surface-assisted multi-user MISO
communication: Channel estimation and beamforming design,” IEEE

Open Journal of the Communications Society, vol. 1, pp. 661–680, 2020.
[3] X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and

E. Björnson, “RIS-aided wireless communications: Prototyping, adaptive
beamforming, and indoor/outdoor field trials,” IEEE Transactions on
Communications, vol. 69, no. 12, pp. 8627–8640, 2021.
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