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Abstract—The low-cost legitimate intelligent reflecting surfaces
(IRSs) have been applied to the wiretap channel in physical
layer security to enhance the secrecy rate. In practice, the
eavesdropper can also deploy an IRS, namely illegitimate IRS,
to deteriorate the secrecy rate. This paper studies the interplay
between a transmitter, a legitimate IRS, and an illegitimate IRS
in a multiple-input single-output (MISO) wiretap channel. We
formulate a max-min secrecy rate problem, where the channel
state and resource allocation information are available at the
transmitter as well as the receivers. We aim to design an
efficient transmit beamforming and phase shifting strategy of the
legitimate IRS, under the worst-case secrecy rate achieved based
on optimizing the phase shifting strategy of the illegitimate IRS.
We propose three solution methods based on the gradient descent
ascent (GDA), the alternate optimization (AO), and the mixed
Nash equilibrium (NE) in zero-sum games in strategic form.
Numerical results are provided to demonstrate the performance
and convergence behavior of AO, GDA, and the mixed NE for
continuous and discrete domains of IRSs’ phase shifts.

Index Terms—Wiretap channel, multiple-input single-output
(MISO), intelligent reflecting surface (IRS), secrecy rate, resource
allocation, gradient descent ascent (GDA), Nash equilibrium

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) has been developed

as a key enabler to realize programmable and controllable

signal propagation environment [1], [2]. The IRS can be

thought of as a low-cost (smart) thin metasurface including

passive reflecting elements, each of which is capable of

modifying the amplitude and phase of the electromagnetic

waves by using external stimuli, resulting in higher spectral

efficiency [2], [3]. It has been shown that the passive elements

of IRSs lead to much less power consumption compared to the

traditional active transceivers or relays [1]–[3].

Recent research studies investigate the advantages of IRSs

to improve the physical layer security (PLS) of wireless

communications [4]–[13]. The research studies on IRS-aided

wiretap channels mainly focus on the advantages of legitimate

IRSs under the control of the transmitter (Alice) to provide

secure communications. However, the eavesdropper (Eve) can

also use low-cost IRSs, called illegitimate IRSs, to deteriorate

the secrecy rate. There are few works on PLS with the

existence of illegitimate IRSs. In [14], the authors consider
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a wiretap channel, where Eve uses an IRS to degrade the

legitimate receiver’s (Bob’s) reception by a passive jamming.

In [15], a P2P channel with the existence of an IRS jammer is

studied. To the best of our knowledge, the interplay between

legitimate and illegitimate IRSs on the secrecy rate is not

yet studied in the literature. In this work, we consider a

new scenario, where both Bob and Eve use independent IRSs

under the perfect channel state information1. Moreover, the

beamforming strategy (Alice’s strategy) as well as the phase

shifting strategy of Bob’s IRS (Bob’s strategy) are available at

Eve when she is tuning her own IRSs phase shifting elements

(Eve’s strategy). Our contributions are as follows:

• We study the impacts of legitimate and illegitimate IRSs

on the secrecy rate. In this scenario, we show that

depending on some channel conditions, each IRS acts as a

signal enhancer for its corresponding receiver or jammer

for the other one.

• We design an efficient joint Alice’s (beamforming) and

Bob’s (legitimate IRS) strategy to maximize the secrecy

rate. To make the algorithm robust, we consider the

worst-case secrecy rate achieved by optimizing Eve’s

(illegitimate IRS) strategy for any given Alice’s and Bob’s

strategies. Hence, we formulate a novel max-min secrecy

rate problem.

• We propose three solution methods based on gradient

descent ascent (GDA), alternate optimization (AO), and

non-cooperative game theory. We numerically evaluate

the convergence behavior and performance of AO and

GDA for continuous and discrete domains of IRSs’ phase

shifting elements.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the multiple-input single-output (MISO) wire-

tap channel, where a single transmitter (Alice) equipped with

M antennas communicates with a single-antenna legitimate

user (Bob) in the presence of a single-antenna eavesdropper

(Eve) overhearing the broadcast signal as shown in Fig. 1.

Moreover, an IRS with NB elements under the control of

Alice, namely legitimate IRS or Bob’s IRS, is deployed. Bob’s

1In our considered model, Eve needs to feedback the CSI to her own IRS’s
controller in order to efficiently tune her IRS’s phase shifting elements for
minimizing the secrecy rate. Hence, Eve is assumed to be active and detectable
by Alice. The impact of imperfect CSI, and the case that Eve (and/or Eve’s
IRS) is undetectable are considered as future works.
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Fig. 1. The exemplary model of an IRS-assisted MISO wiretap channel with
the existence of an illegitimate IRS.

IRS is responsible for enhancing the data rate of Bob and/or

degrading the data rate of Eve, thus enhancing the secrecy

rate. Besides, Eve’s IRS with NE reflecting elements is out

of Alice’s control, and is responsible for enhancing Eve’s

data rate and/or degrading Bob’s data rate, thus degrading

the secrecy rate. The sets of reflecting elements of Bob’s

and Eve’s IRS are denoted by NB = {1, . . . , NB}, and

NE = {1, . . . , NE}, respectively. Theoretically, the reflection

coefficient of each IRS element n is modelled by αne
jβn ,

where αn ∈ [0, 1] and βn ∈ [0, 2π) represent the amplitude

and phase shift of this element, respectively [16]. We assume

the reflecting amplitude αn = 1 for each reflecting element

of Bob’s and Eve’s IRSs, i.e., each reflecting element n can

only tune the phase shift βn. Thus the reflecting element is

referred to as phase shifting element. Let θB =
[
θB
1 , . . . , θ

B
NB

]T

and θE =
[
θE
1 , . . . , θ

E
NE

]T
denote the vectors of phase shift-

ing coefficients of Bob’s and Eve’s IRS, respectively, where

θB
m = ejφ

B
m , ∀m ∈ NB, and θE

n = ejφ
E
n , ∀n ∈ NE. The

parameters φB
m ∈ [0, 2π) and φE

n ∈ [0, 2π) represent the

phases of the m-th and n-th phase shifting elements of Bob’s

and Eve’s IRS, respectively. In practice, due to the hardware

limitation, the phase shifts can take only a finite number of

discrete values [17]. Denoted by LB and LE, the number of

discrete values that each phase shifting element of Bob’s and

Eve’s IRS can take, respectively. Without loss of generality, we

assume that φB
m ∈ { 2kπ

LB
|k = 0, . . . , (LB−1)}, ∀m ∈ NB, and

φE
n ∈ { 2kπ

LE
|k = 0, . . . , (LE − 1)}, ∀n ∈ NE, [3], [11]. Subse-

quently, we define the discrete set of possible phase shifting

coefficients of each phase shifting element of Bob’s and Eve’s

IRS, respectively, by LB = {ej
2kπ

LB |k = 0, . . . , (LB − 1)}, and

LE = {ej 2kπ

LE |k = 0, . . . , (LE − 1)}.

In this system, Alice intends to send a confidential message

by the independent and identically distributed Gaussian code

symbol x ∈ C with zero mean and unit variance to Bob

over a quasi-static flat-fading Gaussian wiretap channel. The

beamforming vector is denoted by w ∈ CM×1. The generally

complex channel vector/matrix from Alice to Bob, Alice to

Bob’s IRS, Bob’s IRS to Bob, Bob’s IRS to Eve, Alice to

Eve, Alice to Eve’s IRS, Eve’s IRS to Eve, and Eve’s IRS to

Bob are denoted by hA,B ∈ C1×M , hA,IB
∈ CNB×M , hIB,B ∈

C1×NB , hIB,E ∈ C1×NB , hA,E ∈ C1×M , hA,IE
∈ CNE×M ,

hIE ,E ∈ C1×NE , hIE,B ∈ C1×NE , respectively. We assume that

the perfect CSI of all the links is available at all the nodes.

The received signal at Bob and Eve can thus be formulated,

respectively by2

yB = (hA,B + hIB,BΘBhA,IB
+ hIE ,BΘEhA,IE

)
︸ ︷︷ ︸

hB(ΘB,ΘE)

wx+ nB, (1)

yE = (hA,E + hIE,EΘEhA,IE
+ hIB,EΘBhA,IB

)
︸ ︷︷ ︸

hE(ΘB,ΘE)

wx+ nE , (2)

in which ΘB = diag (θB), ΘE = diag (θE), and nB and

nE are the independent zero-mean additive white Gaussian

noises (AWGNs) at Bob and Eve with variances σ2
B and σ2

E ,

respectively. The row vectors hB (ΘB,ΘE) ∈ C1×M , and

hE (ΘB,ΘE) ∈ C1×M denote the effective/equivalent channel

gains between Alice and Bob, and between Alice and Eve,

respectively. The secrecy capacity is thus given by3

Cs(w,ΘB,ΘE) = log2

(

1 +
|hB (ΘB,ΘE)w|2

σ2
B

)

︸ ︷︷ ︸

Bob’s capacity

− log2

(

1 +
|hE (ΘB,ΘE)w|2

σ2
E

)

︸ ︷︷ ︸

Eve’s rate

. (3)

B. Problem Formulation

In this system, Alice intends to optimize the beamforming

and legitimate IRS’s phase shifting strategies to maximize the

secrecy rate. We consider the worst-case scenario, where Eve

can access the information about the adopted4 w, and ΘB,

and then optimize ΘE. The secrecy capacity in the worst-case

scenario is given by min
ΘE

Cs(w,ΘB,ΘE). In this work, we

aim at designing efficient joint active (w) and passive (ΘB)

beamforming strategies to maximize the worst-case secrecy

capacity. The max-min secrecy capacity problem is formulated

by

max
w,ΘB

min
ΘE

Cs(w,ΘB,ΘE) (4a)

s.t. ‖w‖22 ≤ P, (4b)

θB
m ∈ LB, ∀m ∈ NB, (4c)

θE
n ∈ LE, ∀n ∈ NE, (4d)

where P denotes the maximum available transmit power of

Alice. In (4a), we omit the operator {.}+ without loss of

optimality, since the optimal value is always non-negative5.

2Due to the ”double fading” effect, the powers reflected by IRSs two or
more times are much smaller than those of signals reflected one time, thus
the double reflection effect is ignored in this paper.

3The second term in (3) is to deteriorate the secrecy capacity. For con-
venience, we call it ”Eve’s rate” although Eve cannot decode the received
information.

4We assume that the optimized control bits (Bob’s strategy) sent from Alice
to Bob’s IRS over the wireless link can be eavesdropped by Eve.

5For the case that the optimal value is negative, Alice does not send any
data to Bob, and subsequently, the secrecy capacity will be zero.



III. SOLUTION ALGORITHMS

The optimization problem (4) is nonconvex, due to the

nonconcavity of the objective function (4a) with respect to

either w or (ΘB,ΘE), and nonconvexity of constraints (4c)

and (4d) with discrete domains. In this way, it is still difficult

to obtain the globally optimal solution of (4). In the following,

we propose efficient suboptimal solution methods.

A. Alternate Optimization

To make problem (4) more tractable, we propose a three-

step AO method as follows: 1) Finding ΘB for the given

(ΘE,w); 2) Finding w for the given (ΘB,ΘE); 3) Finding

ΘE for the given (ΘB,w). Note that we should optimize ΘE

at the last step of each AO iteration, due to considering the

worst-case secrecy rate.

1) Finding ΘB: For any given (w,ΘE), the main problem

(4) can be equivalently transformed to the following maxi-

mization problem as

max
ΘB

1
σ2
B

|hB (ΘB,ΘE)w|2 + 1

1
σ2
E

|hE (ΘB,ΘE)w|2 + 1
s.t. (4c). (5)

To make problem (5) tractable, we first relax (4c), by letting

each element in ΘB to be continuous. In this way, we replace

(4c) with the unit-norm constraint |θB
m| = 1, ∀m ∈ NB.

According to

hIB,BΘBhA,IB
= θ

T
B diag (hIB,B)hA,IB

,

and

hIB,EΘBhA,IB
= θ

T
B diag (hIB,E)hA,IB

,

we have [5]

1

σ2
B

|hB (ΘB,ΘE)w|2 = θ̄
H

B H̄B (ΘE) θ̄B + h̄B (ΘE) , (6)

and

1

σ2
E

|hE (ΘB,ΘE)w|2 = θ̄
H

B H̄E (ΘE) θ̄B + h̄E (ΘE) , (7)

where θ̄B =
[

θ
T
B , 1

]T

,

h̄B =
(hA,B + hIE ,BΘEhA,IE

)
∗
w∗wT (hA,B + hIE ,BΘEhA,IE

)
T

σ2
B

,

h̄E =
(hA,E + hIE ,EΘEhA,IE

)∗ w∗wT (hA,E + hIE,EΘEhA,IE
)T

σ2
E

,

and H̄B (ΘE) and H̄E (ΘE) are given by (8) and (9), respec-

tively. Here, the superscript ∗ denotes the complex conjugate

operation. According to (6) and (7), the relaxed form of (5)

can be rewritten as

max
θ̄B

θ̄
H

B H̄B (ΘE) θ̄B + h̄B (ΘE) + 1

θ̄
H

B H̄E (ΘE) θ̄B + h̄E (ΘE) + 1
(10a)

s.t. θ̄
H

B Emθ̄B = 1, ∀m ∈ NB, (10b)

where Em is an (NB +1)× (NB +1) diagonal matrix, whose

(i, j)-th element, represented by [Em](i,j), is

[Em](i,j) =

{
1, if i = j = m;

0, o.w.
(11)

The quadratic equality constraints in (10b) are nonconvex.

To this end, we apply the well-known semidefinite relaxation

(SDR) technique. In this approach, we define Θ̄B = θ̄Bθ̄
H

B

and formulate the relaxed form of (10) (without the rank-1

constraint rank(Θ̄B) = 1) as follows:

max
Θ̄B<0

tr
(
H̄B (ΘE) Θ̄B

)
+ h̄B (ΘE) + 1

tr
(
H̄E (ΘE) Θ̄B

)
+ h̄E (ΘE) + 1

(12a)

s.t. tr
(
EmΘ̄B

)
= 1, ∀m ∈ NB. (12b)

According to the Charnes-Cooper transformation (CCT) [18],

we define λ =
(
tr
(
H̄E (ΘE) Θ̄B

)
+ h̄E (ΘE) + 1

)−1
, and

Θ̃B = λΘ̄B. In this way, (12) can be rewritten as

max
Θ̃B,λ

tr
(

H̄B (ΘE) Θ̃B

)

+ λ
(
h̄B (ΘE) + 1

)
(13a)

s.t. tr
(

H̄E (ΘE) Θ̃B

)

+ λ
(
h̄E (ΘE) + 1

)
= 1 (13b)

tr
(

EmΘ̃B

)

= λ, ∀m ∈ NB, Θ̃B < 0, λ ≥ 0. (13c)

Problem (13) is a semidefinite program (SDP) which is convex,

and can be optimally solved by using the convex solvers, e.g.,

the interior point methods [18]. After finding the optimal Θ̃B,

we obtain Θ̄B = 1
λ
Θ̃B. Then, due to constraint rank(Θ̄B) = 1,

we apply the standard Gaussian randomization method and

obtain θ̄B. Finally, θB can be obtained by θ̄B =
[

θ
T
B , 1
]T

.

The output of the proposed algorithm for solving (13) may

be infeasible, due to the relaxation of constraints. In this line,

we apply the quantization method based on the Euclidean

distance [3], [11]. In this method, we apply the quantization

method to each random vector generated via the Gaussian ran-

domization algorithm. The quantization method is described

as follows: Let us denote a generated vector by the Gaussian

randomization algorithm as θ
(0)
B = [θ

B,(0)
m ], ∀m ∈ NB. The

feasible θ
(1)
B = [θ

B,(1)
m ], ∀m ∈ NB can be obtained as θ

B,(1)
m =

2k∗

n
π

LB
, ∀m ∈ NB, where k∗m = argmin

k=0,...,(LB−1)

∣
∣
∣θ

B,(0)
m − e

j 2kπ

LB

∣
∣
∣.

In this quantized Gaussian randomization method, we choose

the vector θ
(1)
B which leads to the maximum secrecy rate

formulated in (3).

2) Finding w: For any given (ΘB,ΘE), problem (4) can

be equivalently transformed to the following form

max
w

wHH̃B (ΘB,ΘE)w + 1

wHH̃E (ΘB,ΘE)w+ 1
s.t. wHw ≤ P, (14)

where H̃B (ΘB,ΘE) = 1
σ2
B

hH
B (ΘB,ΘE)hB (ΘB,ΘE),

H̃E (ΘB,ΘE) =
1
σ2
E

hH
E (ΘB,ΘE)hE (ΘB,ΘE), in which the

superscript H denotes the conjugate transpose operation. The

optimal beamforming wopt for problem (14) can be obtained

in closed form as follows:

wopt =
√
Pumax, (15)



H̄B (ΘE) =
1

σ2
B

[
diag (hIB,B)hA,IB

wwHhH
A,IB

diag (hIB,B) diag (hIB,B)hA,IB
wwH

(
hH

A,B + hH
A,IE

ΘH
E hH

IE,B

)

(hA,B + hIE,BΘEhA,IE
)wwHhH

A,IB
diag

(
hH

IB,B

)
0

]

, (8)

H̄E (ΘE) =
1

σ2
E

[
diag (hIB,E)hA,IB

wwHhH
A,IB

diag (hIB,E) diag (hIB,E)hA,IB
wwH

(
hH

A,E + hH
A,IE

ΘH
E hH

IE ,E

)

(hA,E + hIE ,EΘEhA,IE
)wwHhH

A,IB
diag

(
hH

IB,E

)
0

]

, (9)

where umax is the normalized eigenvector corresponding

to the largest eigenvalue of (H̃E (ΘB,ΘE) +
1
P
IM)−1(H̃B (ΘB,ΘE) + 1

P
IM), in which IM denotes

an M ×M identity matrix [19].

3) Finding ΘE: For any given (w,ΘB), problem (4) can

be rewritten as

min
ΘE

1
σ2
B

|hB (ΘB,ΘE)w|2 + 1

1
σ2
E

|hE (ΘB,ΘE)w|2 + 1
s.t. (4d). (16)

The resulting problem (16) has a similar structure to (5).

Therefore, the proposed algorithm for solving (5) can be easily

modified to be applied to (16). To avoid duplication, the details

of the modified algorithm for solving problem (16) is not

presented in the paper.

4) Initialization Method: Here, we initialize ΘB, w, and

ΘE, respectively, by using a low-complexity, yet suboptimal,

method. For initializing ΘB, we assume that w and ΘE are

unknown, thus ΘB is designed to maximize the effective chan-

nel of Bob, denoted by6 hB (ΘB) = (hA,B + hIB,BΘBhA,IB
).

The resulting problem is given by

max
ΘB

‖hA,B + hIB,BΘBhA,IB
‖2 s.t. (4c). (17)

To solve (17), we first relax the integer constraint (4c) by

replacing it with the unit-norm constraint |θB
m| = 1, ∀m ∈ NB.

The resulting problem has a similar structure to problem (13)

in [20]. Therefore, the proposed method in [20] is utilized

to solve (17) and find efficient ΘB. To meet constraint (4c),

we employ the quantized Gaussian randomization method

described in Subsection III-A1.

Similar to ΘB, we find ΘE such that the norm of

the effective channel of Eve, denoted by hE (ΘE) =
(hA,E + hIE ,EΘEhA,IE

), is maximized. The resulting problem

is

max
ΘE

‖hA,E + hIE,EΘEhA,IE
‖2 s.t. (4d), (18)

which has a similar structure to problem (17). Hence, the

utilized method for solving (17) can be modified for solving

(18).

After initializing ΘB and ΘE, we initialize w by using the

optimal closed-form expression (15). Finally, to consider the

worst-case secrecy rate, we update ΘE for the given ΘB and

w by using our proposed method in Subsection III-A3. The

pseudo code of the proposed AO-based method for solving (4)

is described in Alg. 1.

6In the simplified Bob’s effective channel formulation, the term
hIE,BΘEhA,IE

in (1) is ignored, since in this step, ΘE is unknown.

Algorithm 1 The alternating optimization method.

1: Initialize ΘB, w, and ΘE by solving (16). Set maximum

iterations T , and tolerance ǫ.

2: for l = 1 : L do

3: Find θ̄B by solving problem (13). Then, update θB by

using θ̄B =
[

θ
T
B , 1

]T

.

4: Update the beamforming vector w according to (15).

5: Update θE according to Subsection III-A3.

6: if |C(l)
s − C

(l−1)
s | ≤ ǫ then

7: break.

8: end if

9: end for

B. Gradient Descent Ascent

To invoke GDA, which is used to solve min-max problems,

we first transform the max-min problem (4) into a min-max

form as follows:

min
w,ΘB

max
ΘE

log2

(

1 +
|HE (ΘB,ΘE)w|2

σ2
E

)

−

log2

(

1 +
|HB (ΘB,ΘE)w|2

σ2
B

)

(19a)

s.t. (4b)-(4d).

Following the same steps to formulate (13), we define λ2 =
(

tr
(

H̄B2 (ΘB) Θ̃E

)

+ h̄B2 (ΘB) + 1
)−1

and Θ̃E = λ2Θ̄E

and then formulate a linearized inner optimization problem

with respect to Θ̃E and λ2 as follows:

max
Θ̃E, λ2

f(ΘB, Θ̃E,w, λ2) (20a)

s.t. tr
(

H̄B2 (ΘB) Θ̃E

)

+ λ2

(
h̄B2 (ΘB) + 1

)
= 1 (20b)

tr
(

ẼnΘ̃E

)

= λ2, ∀n ∈ NE (20c)

Θ̃E < 0, λ2 ≥ 0, (20d)

where

f(ΘB, Θ̃E,w, λ2)= tr
(

H̄E2(ΘB)Θ̃E

)

+λ2

(
h̄E2 (ΘB)+1

)
,

(21)

Θ̃E = λ2θ̄Eθ̄
H

E , θ̄E =
[

θ
T
E , 1
]T

, Q = wwH , (22)

h̄E2 = σ−2
E (hA,E + hIB,EΘBhA,IB

)Q (hA,E + hIB,EΘBhA,IB
)
H
,

(23)

h̄B2 = σ−2
B (hA,B + hIB,BΘBhA,IB

)Q (hA,B + hIB,BΘBhA,IB
)
H
,

(24)



and H̄B2 (ΘB) and H̄E2 (ΘB) are defined as (25) and (26),

respectively. The parameter Ẽn is an (NE + 1) × (NE + 1)
diagonal matrix, defined similar to (11). The GDA scheme

includes the following three main steps:

Step 1: Given ΘB, w, Θ̃E, and λ2 from the r-th round, we

can update ΘB in the (r + 1)-th round by GDA as follows:

Θ
(r+1)
B =

P(r+1)
TB

(

Θ
(r)
B − α∇ΘB

f
(

Θ̃
(r)
E ,ΘB

(r),w(r), λ
(r)
2

))

, (27)

where (for more details, please see Appendix A)

∇ΘB
f = λ2

(

h∗
A,IB

AH
θEh

∗
IB,E+

1

σ2
E

hH
IB,E (hA,E + hIB,EΘBhA,IB

)QThH
A,IB

)

, (28)

A = diag
(
h∗

IE ,E

)
h∗

A,IE
w∗wT ,

P(r+1)
TB

(ΘB0) = argmin
ΘB∈T

(r+1)
B

||ΘB −ΘB0||2F , (29)

in which T (r+1)
B =

{

ΘB : tr
(

ÊnΘB

)

= λ
(r)
2 , ∀n ∈

NB, ΘB � 0, tr
(

H̄B2 (ΘB) Θ̃
(r)

E

)

+λ
(r)
2

(
h̄B2 (ΘB)+1

)
= 1

}

,

and Ên is an NB×NB diagonal matrix, defined similar to (11)

except the last diagonal term. The optimization problem (29)

has a quadratic objective function with linear constraints, thus

it can be solved by using the standard convex solvers.

Step 2: After updating ΘB, we update w by using (15).

Step 3: Given ΘB and w from the (r + 1)-th round and

also Θ̃E and λ2 from the r-th round, we can update Θ̃E and

λ2 in the (r + 1)-th round as follows:

(Θ̃
(r+1)
E ,λ2

(r+1))=P(r+1)
TE

(

Θ̃
(r)
E +α∇̃

ΘE
f
(

ΘB
(r+1),Θ̃

(r)
E ,w(r),λ

(r)
2

)

,

λ2
(r) + α∇λ2f

(

Θ̃
(r)
E ,ΘB

(r+1),w(r), λ
(r)
2

))

= P(r+1)
TE

(

Θ̃
(r)
E , λ2

(r) + α
(

h̄E2

(

Θ
(r+1)
B

)

+ 1
))

, (30)

where (30) is from [21, Table 4.3] and ∇
Θ̃E

f = df

dΘ̃∗

E

with the

fact that
dtr(AΘ̃E)

dΘ̃∗

E

= 0, the projection in (30) is defined as:

P(r+1)
TE

(

Θ̃E0, λ0

)

= argmin
(Θ̃E, λ2)∈T

(r+1)
E

||Θ̃E−Θ̃E0||2F + |λ2−λ0|2,

where the set T (r+1)
E is defined as follows:

T (r+1)
E =

{(

Θ̃E, λ2

)

:

tr
(

H̄B2

(

Θ̃B

(r+1)
)

Θ̃E

)

+ λ2

(

h̄B2

(

Θ̃B

(r+1)
)

+ 1
)

= 1,

(31a)

tr
(

ẼnΘ̃E

)

= λ2, ∀n ∈ NE, Θ̃E � 0, λ2 ≥ 0

}

, (31b)

where ||.||2F is the Frobenius norm, (31a) is from the CCT

and (31b) is from the unit magnitude constraint. Then we

Algorithm 2 The gradient descent ascent algorithm.

1: Initialize ΘB, w, and ΘE according to Subsection III-A4.

Set maximum iterations T , and tolerance ǫ.

2: for l = 1 : L do

3: Update θB by solving problem (27).

4: Update the beamforming vector w according to (15).

5: Update θE by solving problem (30)

6: if |C(l)
s − C

(l−1)
s | ≤ ǫ then

7: break.

8: end if

9: end for

iteratively run Steps 1-3 until the algorithm converges. The

pseudo code of our proposed GDA-based method is presented

in Alg. 2.

C. Game Theoretical Method

We review the games in strategic form where players choose

their strategy once and simultaneously with all other players

without knowing the others’ actions. The game Γ can be

described by the tuple Γ = (N ,S,u) with N = {Bob,Eve}
denoting the set of players, S the joint strategy space, and u

the utility function. Since the players, Bob’s IRS and Eve’s

IRS, have conflicting interests, i.e., Bob’s and Eve’s IRS aim

to maximize and minimize the secrecy rate, respectively, this

game can be modeled as a two-player zero-sum game. We

represent the players’ utilities by a matrix, which is defined

as A = [aij ], ∀i = 1, . . . , LNB

B , j = 1, . . . , LNE

E , where

aij and −aij denote the utilities of Bob’s and Eve’s IRS,

respectively. The min-max value is equal to the max-min value

in any finite two-player zero-sum game which corresponds

to a Nash equilibrium (NE). The NE is a strategy profile

in which all players choose the best response of the other

players’ strategies. In the mixed strategies, the player chooses

her actions randomly and independently of the other players’

choices according to a probability distribution. Note that there

exists a NE equilibrium in the mixed strategy in any game

with finite set of players with a finite set of actions. Therefore,

we have at least one NE in our strategic game. We can then

compute the mixed NE strategy x = [xi], ∀i = 1, . . . , LNB

B , for

Bob’s IRS by solving a linear program [22]. Similarly, Eve’s

IRS could also randomize her actions by the same procedure

and obtain her mixed NE strategy y = [yj ], ∀j = 1, . . . , LNE

E ,

such that none of the players would gain a higher payoff by

deviating unilaterally from their NE strategy.

IV. NUMERICAL RESULTS

We evaluate the convergence and performance of AO and

GDA. We set M = 3, NB = NE = 4, P = 46 dBm, 5 MHz

wireless band, and AWGN power density −174 dBm/Hz. The

path loss exponents for the direct and reflected channels are

set to 4 and 2, respectively. We apply the MIMO channel

correlation model in [23] for the channels between Alice to

each IRS. In the following, we consider the case that these

MIMO channels are full-rank. For Gaussian randomization, we



H̄B2 (ΘB) =
1

σ2
B

[
diag

(
h∗

IE ,B

)
h∗

A,IE
w∗wThT

A,IE
diag (hIE ,B) diag

(
h∗

IE ,B

)
h∗

A,IE
w∗wT

(
hT

A,B + hT
A,IE

ΘBh
T
IE,B

)

(
h∗

A,B + h∗
IE,BΘ

∗
Bh

∗
A,IE

)
w∗wThT

A, IE
diag (hIE,B) 0

]

, (25)

H̄E2 (ΘB) =
1

σ2
E

[
diag

(
h∗

IE ,E

)
h∗

A,IE
w∗wThT

A,IE
diag (hIE,E) diag

(
h∗

IE,E

)
h∗

A,IE
w∗wT

(
hT

A,E + hT
A,IB

ΘBh
T
IB,E

)

(
h∗

A,E + h∗
IB,EΘ

∗
Bh

∗
A,IB

)
w∗wThT

A, IE
diag (hIE,E) 0,

]

, (26)
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Fig. 2. The secrecy/receivers data rate over AO and GDA iterations.

generate 10, 000 random vectors according to the optimized

covariance matrix.

Fig. 2(b) shows the convergence behavior of AO and GDA

for the continuous domain of phase shifting strategies. Within

each AO iteration, we observe that after optimizing w and

ΘB, the secrecy rate is non-decreasing. On the other hand,

the secrecy rate is non-increasing after optimizing ΘE at each

AO iteration, verifying the feasibility of our adopted SDR

techniques. Although AO may achieve better performance than

GDA in some iterations, it does not guarantee convergence in

general. This is due to the fact that for any given w and ΘB,

optimizing ΘE effectively changes the phase of Eve’s equiva-

lent channel hE (ΘB,ΘE), specifically when the norm of Eve’s

IRS channel dominates other channels, i.e., ‖hIE ,EΘEhA,IE
‖ ≫

‖hA,E‖, and ‖hIE ,EΘEhA,IE
‖ ≫ ‖hIB,EΘBhA,IB

‖. When Bob

is close to Eve’s IRS, ΘE can effectively change the phase

of Bob’s equivalent channel hB (ΘB,ΘE), such that it se-

riously degrades secrecy rate, due to the fixed w. Hence,

when ‖hIE ,BΘEhA,IE
‖ ≫ ‖hA,B‖, and ‖hIE ,BΘEhA,IE

‖ ≫
‖hIB,BΘBhA,IB

‖, we observe that Eve’s IRS may act as a

jammer to Bob by changing the phase of hB (ΘB,ΘE) rather

than enhancing hE (ΘB,ΘE). A similar effect can be observed

at Bob’s IRS. The convergence behavior of GDA is smoother

than AO such that after few iterations, it converges to a

stationary point. Fig. 2(b) shows the convergence behavior

of AO and GDA for LB = LE = 5. Discrete domains for

ΘB and ΘE usually improves the convergence of AO. This

effect is because ΘE cannot be effectively chosen under a

discrete domain. Although the same argument holds for ΘB,

the beamforming at Alice with a continuous domain can

effectively compensate the inflexibility of choosing ΘB. From

numerical results, we observed that AO with discrete domains

for ΘB and ΘE has smoother convergence than that of the

continuous one, although it does not always hold. In the game-

theoretic approach, the game has a single mixed NE. At that

mixed NE, it is interesting to note that only five phase shift

combinations share the whole probability mass of the optimal

strategy for Bob and Eve. Following that strategy yields a

mixed secrecy capacity of 6.436 bps/Hz, which is higher than

those of AO and GDA. In the game-theoretic approach, the

priority of updating ΘE after optimizing w is not considered,

so the optimal beamforming can effectively deteriorate Eve’s

rate.

V. CONCLUSION

We consider a wiretap channel where both the legitimate

receiver and the eavesdropper use their own IRSs. We formu-

late a max-min secrecy rate problem, to design the transmit

beamforming and phase shifting strategies of the IRSs by

AO, GDA, and mixed NE. Simulation results show that AO

does not guarantee convergence for continuous phase shifting,

although it may achieve better performance than GDA in

some iterations. GDA usually converges to a stationary point.

Discrete phase shifting improves the convergence behavior of

AO and GDA. The mixed NE strategy (with no priority among

the players) achieves higher secrecy rate compared to AO and

GDA.

APPENDIX A

DERIVATION OF ∇ΘB
f IN (27)

We first re-express H̄E2 from (26) as follows:

H̄E2 (ΘB) :=

[
c0 d

dH 0

]

, (32)

where d = A(a + BΘBc) ∈ CM×1, A =
diag

(
h∗

IE ,E

)
h∗

A,IE
w∗wT and B = hT

A,IB
are defined below (28),



a = hT
A,E and c = hT

IB ,E are both column vectors. Then,

tr
(

H̄E2 (ΘB) Θ̃E

)

can be rearranged as follows:

tr
(

H̄E2 (ΘB) Θ̃E

)

= λ2tr





[
c0 d

dH 0

]




| | |
θE∗
1 θ̄E · · · θE∗

NE
θ̄E θ̄E

| | |







 (33)

= λ2tr

([
c0 d

dH 0

] [
θE∗
1 θE · · · θE∗

NE
θE θE

θE∗
1 θE∗

NE
1

])

(34)

= λ2

((
NE∑

k=1

θE∗
k c0,k

)

θE + dT
θE

∗ + dH
θE

)

(35)

= λ2

(

c̃0 + θE
Hd+ θE

Td∗
)

, (36)

where (33) and (34) are by definition of Θ̃E and θ̄E, respec-

tively. In (35), we define c0,k as the k-th row of c0. In (36),

we define the first term inside the bracket in (35) as c̃0.

Then from (36) we have

∇ΘB
tr
(

H̄E2 (ΘB) Θ̃E

)

= λ2
d

dΘB
∗

(

c̃0 + θE
Hd+ θE

Td∗

)

(37)

= λ2
d

dΘB
∗ θ

H
E d∗ (38)

= λ2
d

dΘB
∗ θ

H
E A∗(a∗ +B∗ΘB

∗c∗) (39)

= λ2
d

dΘB
∗ tr
(

A∗(a∗ +B∗ΘB
∗c∗)θH

E

)

(40)

= λ2
d

dΘB
∗ tr
(

c∗θH
E A∗B∗ΘB

∗
)

(41)

= λ2B
HAH

θ
∗

Ec
H , (42)

where (37) is from [21, (4.48)], (38) is due to the fact that

c̃0, θE and d do not contain ΘB
∗, (39) is due to the fact that

rT · s = tr(rT · s) = tr(s · rT ), where r and s are column

vectors, (40) is due to the property tr(PQ) = tr(QP) and

also a∗ and A∗ are not functions of ΘB
∗, (42) is due to the

property d
dZ∗

tr(PZ∗) = PT [21, Table 4.3]. The gradient of

the second term in f is as follows:

λ2∇ΘB
h̄E2 (ΘB) = λ2∇ΘB

tr
[
h̄E2 (ΘB)

]
(43)

=
λ2

σ2
E

∇ΘB
tr
[

(hA,E + hIB,EΘBhA,IB
)
∗
Q (hA,E + hIB,EΘBhA,IB

)
T
]

(44)

=
λ2

σ2
E

∇ΘB
tr
[

(hA,E + hIB,EΘBhA,IB
)T (hA,E + hIB,EΘBhA,IB

)∗ Q
]

(45)

=
λ2

σ2
E

∇ΘB
tr
[

Q (hA,E + hIB,EΘBhA,IB
)
T
(hA,E + hIB,EΘBhA,IB

)
∗
]

(46)

=
λ2

σ2
E

∇ΘB
tr [c1 + c2Θ

∗
B] (47)

=
λ2

σ2
E

cT2 , (48)

where (43) is due to the fact that h̄E2 (ΘB) is a scalar, (44) is

by definition (23), and (45) and (46) use tr(AB)=tr(BA).
In (47), c1 includes all term not relevant to ΘB

∗ and

c2 := h∗
A,IB

Q (hA,E + hIB,EΘBhA,IB
)
T
h∗

IB,E. After combining

(42) and (48), we have the gradient of f with respect to ΘB

as (28).
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