Dataflow Computing with Polymor phic Registers

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:

International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIlI), 2013

Citation for the published paper:
Ciobanu, C. ; Gaydadjiev, G. ; Pilato, C. (2013) "Dataflow Computing with Polymorphic

Registers'. International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XI111), 2013 pp. 314 - 321.

http://dx.doi.org/10.1109/SAM 0S.2013.6621140

Downloaded from: http://publications.lib.chalmers.se/publication/188209

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/SAMOS.2013.6621140
http://publications.lib.chalmers.se/publication/188209

Dataflow Computing with Polymorphic Registers

Citélin Ciobanu, Georgi Gaydadjiev
Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden
{catalin, georgig}@chalmers.se

Abstract—Heterogeneous systems are becoming increasingly
popular for data processing. They improve performance of simple
kernels applied to large amounts of data. However, sequential
data loads may have negative impact. Data parallel solutions
such as Polymorphic Register Files (PRFs) can potentially accel-
erate applications by facilitating high speed, parallel access to
performance-critical data. Furthermore, by PRF customization,
specific data path features are exposed to the programmer in
a very convenient way. PRFs allow additional control over the
registers dimensions, and the number of elements which can
be simultaneously accessed by computational units. This paper
shows how PRFs can be integrated in dataflow computational
platforms. In particular, starting from an annotated source code,
we present a compiler-based methodology that automatically
generates the customized PRFs and the enhanced computational
kernels that efficiently exploit them.

I. INTRODUCTION

Heterogeneous High-Performance Computing (HPC) sys-
tems are becoming increasingly popular for data processing.
A typical example of a heterogeneous Chip Multi-Processor
is the Cell Broadband Engine [1], which combines one Power
Processor Element (PPE) and eight Synergistic Processor El-
ements (SPEs). The PPE runs the operating system and the
application’s control sections, while the SPEs, designed to
excel in data intensive computations, execute the bulk of the
applications. Another approach is to combine General Purpose
Processors (GPPs) with reconfigurable devices, e.g., Field
Programmable Gate Arrays (FPGAs). The GPPs are mainly
used for I/O and control dominated functions, while FPGAs ac-
celerate the application’s computationally intensive parts. One
representative example of such systems is the MaxWorksta-
tion [2], combining Intel x86 processors with multiple Xilinx
Virtex-6 FPGA accelerators. The MaxWorkstation adopts the
dataflow computation model and organizes the data into highly
regular streams flowing through the functions implemented in
reconfigurable hardware. This platform allows the designer
to focus on high-level application development, while the
corresponding HDL (i.e., the traditional high-level synthesis)
is generated using a dedicated Java-to-HDL compiler.

Very efficient implementations [3], [4] have been ob-
tained while accelerating streaming applications using Maxeler
dataflow engines. In almost all cases, these data processing
applications consist of relatively simple kernels applied to large
amounts of data. For example, image processing algorithms
usually apply digital filters at some stages which process the
stream in blocks through “masks” (i.e., regular patterns for ac-
cessing the data). Sequential loads of these rectangular blocks
from a local memory may negatively impact performance.
Therefore, parallel memory access schemes are of interest.

Christian Pilato, Donatella Sciuto

Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Italy
{pilato, sciuto}@elet.polimi.it

The Polymorphic Register File (PRF) [5] is a novel archi-
tectural solution targeting high performance execution. Using
the Single Instruction, Multiple Data (SIMD) paradigm, the
PRF provides simultaneous paths to multiple data elements.
The PRF implements conflict-free access to the most widely
used memory access patterns in the scientific and multimedia
domains. Efficient design of PRF-based systems demands
careful identification of the most suited data structures and
the corresponding access patterns in addition to adjusting the
algorithms in order to take advantage of the PRF memory.
However, performing the above steps manually is tedious and
error-prone. We strongly believe that semi-automated method-
ologies crafted to support the designer are preferable.

This paper aims at integrating PRFs into a state-of-the-art
heterogeneous HPC system for accelerating dataflow applica-
tions. Our methodology augments the existing tools for defin-
ing streaming architectures. Starting from the initial C code,
the designer annotates the variables that will be placed in PRF
and the desired memory access patterns. To integrate the PRFs,
our methodology supports the Java code creation required to
describe the selected kernels. We rely on the vendor-specific
tools for bitstream generation and FPGA device management.
While our methodology currently targets the MaxWorkstation,
it can be adapted for other FPGA-based systems as well,
provided the necessary PRF interface is implemented. More
specifically, the contributions of this paper are the following:

e PREF instantiation on the MaxWorkstation, providing
parallel access to specific variables and accelerating
access to preselected data blocks;

e Compiler-based methodology supporting automatic
creation of the corresponding system organization;

e Methodology for enhancing the application with the
parallel memory access management (e.g., substituting
the sequential loads with parallel memory accesses).

The paper continues as follows: background information
is provided in Section II, and the related work is presented
in Section III. Section IV describes our target system in-
cluding the PRF, while Section V details our compiler-based
methodology. Section VI presents a case study of the Separable
2D Convolution algorithm. Finally, Section VII concludes the
paper and outlines future work directions.

II. BACKGROUND

When designing computing systems, architects anticipate
the requirements of the target applications. However, as new
workloads continuously emerge, it is close to impossible to

forecast the requirements of arbitrary workloads and design a
single best configuration. The growing diversity of computa-
tional tasks drives the need for increasingly flexible computer
systems. While software is able to abstract certain low-level
(micro)architectural details, hardware support is preferable in
domains such as HPC or embedded systems to avoid excessive
performance and energy overheads. System adaptability can be
introduced at different levels. Reconfigurable hardware allows
circuit specialization according to the current workload. On the
other hand, architectural level adaptability lets programmers
focus on the algorithms instead of worrying about complex
data transfers or other low-level details. In this work, we com-
bine both approaches targeting an FPGA-based HPC system.

We target the Maxeler MaxWorkstation [2], which com-
bines an Intel CPU with one or two Data Flow Engines
(DFE). The DFEs, based on state-of-the-art Xilinx Virtex-6
SX475T FPGAs, are connected to the GPP via PCI Express.
Furthermore, up to 48GB of DDR3 DRAM is available on each
DFE board. The implementation of a Maxeler DFE consists of
Kernels and a Manager, both written in Java. Kernels describe
the data paths which implement the target algorithm. The
Manager describes the data flow between Kernels and off-
chip stream 1/O (e.g., GPP, DRAM). The application running
on the GPP is written either in C or in FORTRAN and
uses a set of API calls to communicate with the Kernels
and the Manager. The Maxeler Run-Time (MaxCompilerRT)
and MaxelerOS software libraries enable the communication
between the GPU and the DFE, and abstract the low-level
details of DMA transfers over PCI Express. MaxCompiler
provides the necessary compilers and libraries needed to create
a DFE design and to allow the GPP to communicate with it.
For the bitstream generation, MaxCompiler uses the silicon
vendor tools (e.g., Xilinx ISE). Moreover, MaxCompiler allows
instantiation of hand crafted HDL code, which connects to
other Kernels via streams. We take advantage of this to
instantiate our PRF hardware, described in detail in [6] and [7].

The PRF was developed as part of the Scalable computer
ARChitecture (SARC) project as its Scientific Vector Accel-
erator [8]. A PRF is a parameterizable register file, logically
reorganized under software control to support multiple regis-
ter dimensions and sizes simultaneously [9]. The total store
capacity is fixed, containing N x M data elements. Figure 1
provides an example of a two-dimensional (2D) PRF with a
physical register file size of 128 x 128 64-bit elements. In
this simple example, the available storage has been divided in
six logical registers with different locations and dimensions,
defined using the Register File Organization (RFORG) Special
Purpose Registers (SPRs), shown on the right side of Figure 1.
For each logical register we need to specify its position (the
base), the shape (rectangle, main or secondary diagonal), its
dimensions (horizontal and vertical length) and the data type
(integer / floating point, 8/16/32/64 bits). The 2D PRF benefits:

o Potential performance gains - by reducing the num-
ber of committed instructions;

e Improved storage efficiency - the registers are de-
fined to contain exactly as many elements as required,
completely eliminating the potential storage waste
inherent to organizations with fixed register sizes and
maximizing the available space for subsequent use;

0, 63 64 127

@b [BAse[sHAPE] HL | VL [DTYPE]
[Ro| [1] o | RE |64 64 |Fpea
RO R1 —
R1| [1] 64 | RE |64 | 64 | FP6a
R2| [1]s064| RE |64 | 1 [INTea
R3| [1]8128] RE |64 | 1 [INTE4
N=128| & R2 . R3 Ra| [1]8192] RE [128] 1 [INTea
65 RS ‘ Rs| [1[8320] RE |96 | 1 |INTG4
R6| |0 -
Available space for more registers —
R7| (0] - |- -
RFORG - RF Organization SPR
127 ENJfof - [- [-T-]

M=128

Fig. 1. The Polymorphic Register File

e Customizable number of registers - the number
of registers is no longer an architectural limitation,
contributing to the PRF runtime adaptability. Unlike
fixed number of registers of predefined size in tradi-
tional systems, the unallocated space can be further
partitioned into an arbitrary number of registers of
arbitrary (1D or 2D) shapes and dimensions;

e Reduced static code footprint - the target algorithm
may be expressed with fewer, higher level instructions.

One of the main objectives of the PRF is scalability
in terms of performance and storage capacity. The key to
high-performance PRFs lies on their capability to deliver
aligned data elements to the computational units at high rates.
Moreover, a properly designed PRF allows multiple vector
lanes to operate in parallel with efficient utilization of the
available bandwidth, which implies parallel access to multiple
data elements. The most performance-efficient solution is to
support the specific access patterns in hardware, using parallel
memory access schemes.

Previous works show that PRFs can reduce the number of
committed instructions by up to three orders of magnitude [9].
Compared to the Cell processor, PRFs decrease the number of
instructions for a customized, high performance dense matrix
multiplication by up to 35 times [8] and improve performance
for Floyd and sparse matrix vector multiplication [9]. A CG
case study [10] evaluated the scalability of up to 256 PRF
based accelerators in a heterogenous multi-core architecture,
with two orders of magnitude performance improvements.
Furthermore, potential power and area savings were shown
by employing fewer PRF cores compared to a Cell processors
system. A preliminary evaluation of the PRF 2D separable
convolution performance [11] showed that PRFs outperform
state-of-the art GPUs in throughput for mask sizes of 9 x 9
elements of larger when bandwidth is constrained.

For the PRF hardware implementation, previous works
considered a 2D array of p X ¢ (we use ”x” to refer to a 2D
matrix, and ”-” to denote multiplication) linearly addressable
memory banks and use parallel access schemes to distribute the
data elements in the corresponding memory bank. The memory
schemes proposed in [5] are denoted as ReRo, ReCo, RoCo
and ReTr, each of them supporting at least two conflict-free
access patterns: 1) Rectangle Row (ReRo): p x ¢ rectangle,
p-q row, p-q main diagonals if p and ¢+ 1 and co-prime, p- ¢
secondary diagonals if p and ¢ — 1 are co-prime; 2) Rectangle

Column (ReCo): p x q rectangle, p - ¢ column, p - ¢ main
diagonals if p+1 and g are co-prime, p-q secondary diagonals
if p—1 and q are co-prime; 3) Row Column (RoCo): p-q row,
p-q column, aligned (:%p = 0 or j%q = 0) p x q rectangle; 4)
Rectangle Transposed Rectangle (ReTr):p X ¢, g X p rectangles
(transposition) if p%q = 0 or ¢%p = 0. Conflict-free access
is therefore supported for all of the most common vector
operations for scientific and multimedia applications [5].

Synthesis results for FPGA and ASIC technologies have
been presented in [7], [6] and [5]. Results targeting the Virtex-
7 XC7VX1140T-2 FPGA show feasible clock frequencies
between 111 MHz and 326 MHz and reasonable logic re-
sources usage (less than 10% of the available LUTs). Using
90nm ASIC technology, the PRF clock frequency is between
500MHz and 970MHz for storage sizes of up to 512KB and
up to 64 vector lanes. Power is also within reasonable limits,
not exceeding 8.7W for dynamic and 276mW for leakage [6].

III. RELATED WORK

Efficient processing of multidimensional matrices has been
targeted by other architectures, as well. One approach is using
a memory-to-memory architecture, such as the Burroughs Sci-
entific Processor (BSP) [12]. The BSP machine was optimized
for the Fortran programming language, having the ISA com-
posed of 64 very high level vector instructions, called vector
forms. A single vector form is capable of expressing operations
performed on scalar, 1D or 2D arrays of arbitrary lengths. In
order to store intermediate results, each BSP arithmetic unit
includes a set of 10 registers which are not directly accessible
by the programmer. The PRF also creates the premises for a
high level instruction set. However, while BSP has a limited
number of automatically managed registers which can be used
for storing intermediate results, our approach is able to reuse
data directly within the PRF. This offers additional control and
flexibility to the programmer, the compiler and the runtime
system and potentially improves performance.

The Complex Streamed Instructions (CSI) approach does
not use data registers at all [13]. CSI is a memory-to-memory
architecture which allows the processing of two-dimensional
data streams of arbitrary lengths. One of the main motivations
behind CSI is to avoid having the Section Size as an architec-
tural constraint. Through a mechanism called auto-sectioning,
PRFs allow designers to arbitrarily chose the best section size
for each workload by resizing the vector registers, greatly
reducing the disadvantages of a fixed section size as in CSI. To
exploit data locality, CSI has to rely on data caches. As also
noted for the BSP, our approach can make use of the register
file instead, avoiding high speed data caches.

The concept of Vector Register Windows (VRW) [14]
consists of grouping consecutive vector registers to form reg-
ister windows, which are effectively 2D vector registers. The
programmer can arbitrarily choose the number of consecutive
registers which form a window, defining one dimension of the
2D register. However, contrary to our proposal, the second
dimension is fixed to a pre-defined section size. Furthermore,
all the register windows must contain the same number of
vector registers, and the total number of windows cannot
exceed the number of vector registers. The latter severely limits
the granularity to which the register file can be partitioned.

Such restrictions are not present in our PRF Architecture,
providing a much higher degree of freedom for partitioning
the register file. Therefore, our vector instructions can operate
on matrices of arbitrary dimensions, reducing the overhead for
resizing the register windows.

Two-dimensional register files have been used in several
other architectures, such as the Matrix Oriented Multimedia
(MOM). MOM is a matrix oriented ISA targeted at multimedia
applications [15]. It also uses a 2D register file in order to
exploit the available data-level parallelism. The architecture
supports 16 vector registers, each containing sixteen 64-bit
wide, elements. By using sub-word level parallelism, each
MOM register can store a matrix containing at most 16 x 8
elements. The PRF also allows sub-word level parallelism, but
doesn’t restrict the number or the size of the two-dimensional
registers, bearing additional flexibility.

Another architecture which also uses a two-dimensional
vector register file is the Modified MMX (MMMX) [16]. It
supports eight 96-bit wide, multimedia registers and special
load and store instructions which provide single-column access
to the subwords of the registers. Our PRF does not limit the
matrix operations to only loads and stores and allows the
definition of multi-column matrices of arbitrary sizes.

Based on Altivec, the Indirect VMX (iVMX) architec-
ture [17] employs a large register file consisting of 1024
registers of 128 bits. Four indirection tables, each with 32
entries, are used to access the iVMX register file. The register
number in the iVMX instructions, with a range from 0 to 31,
is used as an index in the corresponding indirection table. The
PRF also uses indirection to access a large register file, but
does not divide the available RF storage in a fixed number of
equally sized registers, therefore allowing a higher degree of
control when dynamically partitioning the register file.

The Register Pointer Architecture (RPA) [18] focuses on
providing additional storage to a scalar processor thus reducing
the overhead associated with the updating of the index registers
while minimizing the changes to the base instruction set.
The architecture extends the baseline design with two extra
register files: the Dereferencible Register File (DRF) and
the Register Pointers (RP). In essence, the DRF increases
the number of available registers to the processor, and The
RPs provide indirect access to the DRF. RPA is similar to
our proposal as it also facilitates the indirect accessing to a
dedicated register file by using dedicated indirection registers.
However, the parameters stored in the indirection registers
are completely different. Using RPA, each indirection register
maps to a scalar element. In PRFs, one indirection register
maps to a sub-matrix in the 2D register file, being more
suitable for multidimensional (matrix) vector processing by
better expressing the available data-level parallelism.

Several alternatives to the Maxeler FPGA-based HPC
systems have been introduced in recent years. The Cray
XD1 [19] incorporates 12 AMD Opteron processors and six
Xilix Virtex-II PRO XC2VP30-6 or XC2VP50-7 FPGAs with
dedicated QDR RAM and 3.2 GB/s interconnect. The Cray
XR1 blade [20] is a dual Socket 940 design, incorporating
one AMD Opteron processor while the second socket holds a
Xilinx Virtex-4 LX200 FPGA, communicating with the rest of
the system using the high-speed HyperTransport interface.

The SGI Altix 4700 [21] platforms featured a modular
blade design, and incorporated the Non-Uniform Memory Ar-
chitecture (NUMA) shared-memory NUMAflex architecture.
Dedicated compute, memory, I/O and special purpose blades
were available for the Altix machine. The compute blade
contained Intel Itanium processors. The Reconfigurable Ap-
plication Specific Computing (RASC) [22] blades facilitated
two Virtex-4 LX200 FPGAs and dedicated memory DIMMs.

The Convey HC-1 [23] consists of two stacked 1 Unit (U)
chassis: one contains the GPP, while the other one contains
the FPGAs. The CPU chasis consists of a dual-socket Intel
motherboard, out of which one is populated with an Intel
Xeon CPU. The other socket is used to route the Front Side
Bus (FSB) to the FPGAs. The HC1 contains four Virtex-5
LX 330 Application Engines (AEs), connected to 8§ memory
controllers through a full crossbar. The memory controllers
are connected to proprietary scatter-gather DIMMs. HC-1’s
memory system is designed to maximize the likelihood of
conflict-free accesses. The GPP and the coprocessor memories
are cache coherent, sharing a common virtual address space.
The HC-1 also contains two additional Virtex-5 LX110 FPGAs
which form the Application Engine HUB (AEH), one which
interfaces with the FSB and manages the memory coherence
protocol. The second AEH FPGA contains a scalar soft-core
processor implementing a custom Convey ISA. The softcore
acts as a coprocessor to the Intel CPU, and the AE FPGAs are
coprocessors to the soft-core.

Note that, assuming that the high-bandwidth PRF interface
is implemented, similar benefits as the ones obtained with
Maxeler machines can also be obtained with these alternative
FPGA-based HPC systems.

Given the time-consuming and error-prone process of de-
signing the HDL code for FPGA-based heterogeneous systems,
several C-to-HDL compilers exist. Most notably, the Riverside
Optimizing Compiler for Reconfigurable Circuits (ROCCC)
2.0 [24] supports a subset of C and produces VHDL hardware
accelerators. The resulting circuits are generic, interfacing to
streams or memories. The integration of the ROCCC 2.0
generated code into the target platforms has to be done
manually by the designers, requiring VHDL and C glue code
in order to handle buffering and timing issues. ROCCC 2.0 is
built using the SUIF and LLVM infrastructures and, for the C
code, no annotations are required. Our approach is also built
using LLVM, but requires additional pragmas in the C code.
However, the programmer is not expected to add any additional
C or HDL glue code in order to obtain a functional system.
Our methodology is built on top of the MaxCompiler toolchain,
translating C code into Java hence the manual intervention of
the designer is minimized.

Finally, for NVIDIA Graphics Processing Unit (GPU)-
based [25] heterogeneous computing, the CUDA [26] program-
ming model has been widely used. CUDA extends the C pro-
gramming language with additional keywords allowing, among
others, explicit allocations of variables in the on-chip and off-
chip GPU memory, data transfers between the GPP and the
GPU. However, unlike with our approach, programmers still
need to parallelize the algorithms in terms of threads and thread
blocks, partition memory and schedule synchronizations.

D

FPGA - Manager
» FIFO

Classical

Y

— memory
2 hf‘/ interfaces
@ i
(I)n|:t>eLIJ 2| Data “w i BRAM
5 streams Kernel

<
<

N

Fig. 2. Original system organization for streaming computation without PRFs

IV. TARGET SYSTEM ORGANIZATION

This Section describes how a classic dataflow computing
system can be enhanced to integrate Polymorphic Register
Files. To better clarify the proposed system organization, let us
assume that we want to enhance a computational kernel that
operates on a data stream with a mask of coefficients. The
mask can be eventually updated during the computation. The
original implementation of this system is shown in Figure 2.
In this system, a FIFO, holds multiple values at the same time,
based on the kernel requirements. When a new sample arrives,
the values are shifted accordingly. Additional local memories
store static data (such as coefficients), usually represented as
arrays of values.

In both cases, a memory-based approach is usually pro-
vided to access these memories. The kernel specifies which
element is being accessed. In the case of streaming data,
elements are identified by offsets with respect to the current
value. In the case of static data, elements are identified by their
position in memory. PRFs can store these values types:

e streaming data flowing through the different mod-
ules, i.e., the processed image;

e static data: for example, the set of coefficients used
within the computational kernel.

In the former case, PRFs substitute the memory elements
usually inserted to store the stream values. The PRFs need
to be customized in order to create local registers of proper
sizes, i.e., the maximum number of values to be simultane-
ously stored. Thereafter, by analyzing the kernel behavior,
it is possible to determine the memory access pattern. By
collecting information about the input stream accesses and
the corresponding values, it is possible to determine suitable
parallel memory accessing schemes and customize the PRFs
accordingly. It is then possible to implement the logic FIFO.
Given a new data item, it is necessary to determine where it
has to be stored depending on the current PRF configuration.

For storing static data, PRFs can also be used, but without
any shifting operations. The PRF registers are initialized with
these values. As also discussed for the streaming data, it is
possible to identify the kernel memory access patterns.

Figure 3 illustrates the resulting system after PRF integra-
tion for streaming data. Compared to the reference implemen-

%

FPGA - Manager

2 PRF
Intel af L m
P L roam
CPU 3 streams Kernel [%

] High-bandwidth
memory
interface

&
<

N

Fig. 3. System organization for streaming computation enhanced with PRFs

tation depicted in Figure 2, wider buses are available in the
memory interface, providing multiple values in parallel.

V. COMPILER-BASED METHODOLOGY

Figure 4 summarizes the overall methodology for the
automatic creation of PRF-augmented systems, previously de-
scribed in Section IV. In Figure 4, the gray boxes highlight the
steps presented in this work. The methodology starts from an-
notated C code containing custom pragmas for variables stored
in Polymorphic Registers Files. The proposed methodology is
composed of the following phases: variable extraction, PRF
customization and code generation.

As described above, we currently only support the Maxeler
MaxWorkstation [2]. However, our methodology can be easily
adapted to generate kernels for different architectures by im-
plementing the corresponding code generation. For this reason,
the methodology currently outputs the updated Java description
of the computational kernel which needs to be compiled using
the Maxeler toolchain. Next, the customized PRF is generated,
ready to be processed by the synthesis toolchain (MaxCompiler
and Xilinx synthesis tools) that generates the FPGA bitstream.
Note that the Java-based Manager describing how the modules
are interconnected also needs to be created. This step is
currently done by hand, but can be automated.

In the variable extraction, the initial source code is
analyzed with a C-to-C compiler step that extracts the variables
previously annotated with custom pragmas. An XML file is
produced, containing the list of variables and a description of
the required memory access patterns required for accessing
required by the initial source code. More details about this
phase can be found in Section V-A.

The PRF customization starts from the XML file gen-
erated in the previous phase. The identified variables are
allocated to PRFs introduced in the system. The PRFs are
then configured for providing values with the required access
patterns. The corresponding HDL code is then generated,
along with the custom wrapper needed to provide data to the
computational kernel. Additional details about this stage are
provided in Section V-B.

The code generation starts from the initial kernel source
code and the information concerning the variables and access

Variable
Extraction

Modified C
code
Y
PRF o F;tRF Code
Customization atterns Generation
PRF Kernel
HDL Code Description

MaxCompiler /
Xilinx Tools

Y

FPGA
bitstream

Fig. 4. Overall methodology for supporting automatic PRF integration

patterns previously identified. An additional compiler step au-
tomatically translates the behavioral specification into a Java-
like kernel description. MaxCompiler is then used to generate
the corresponding HDL. Besides the behavioral specification
generation (i.e., arithmetic and logical operations), multiple
sequential memory accesses are substituted by parallel PRF
accesses followed by value unpacking operations. More details
about this phase can be found in Section V-C.

A. Variable Extraction

This section describes the C-to-C automatic PRF variable
extraction. We implement this analysis of custom pragmas
step using the Mercurium compiler [27]. From the example
presented above, we identify two annotation types:

e d#pragma prf variable: specifies the PRF vari-
able name (i.e., identifier of the block of data) and the
required PRF space allocation;

e dpragma prf access: specifies a PRF block
memory access, along with information about the
specific accessed element.

The variable pragma is defined as follows:
#pragma prf variable <name> <size> <type>

The first parameter is the variable name. We assume that this
variable can represent either stream or static data (<type>=0
or <type>=1, respectively). The second parameter is the
space that has to be reserved in the PRF for this variable. In
case of input parameters, this value represents the number of
consecutive elements of the input data stream that have to be
simultaneously stored. If the variable represents static data, this
value can be the size of the array itself, thus entirely stored
into the PRE. In this case, if the array has been initialized
with a set of predefined values (e.g., filter coefficients), these
values are reported in the output XML file in order to properly
initialize the PRF registers.

The access pragma is instead defined as follows:

array

array[i-1] arrayli]

array0 array1

Fig. 5. Extraction of values from the parallel one provided by the PRF.

fpragma prf access <var> <index> <name>

The first parameter represents the PRF variable name, with
the index specified by the second parameter. For streaming
variables, the index represents the offset with respect to the
current value and thus it can be either positive or negative.
Otherwise, for static data, it simply represents the position
within the block itself. The last parameter specifies the name
used to identify this access. For example, the following code:

#fpragma prf access array -1 arrayO
#pragma prf access array 0 arrayl

int var = array[i-1l] + arrayl[i];

is translated as follows:

int array0O = arrayl[i-11;
int arrayl = arrayl[il];
int var = array0 + arrayl;

This transformation aims at simplifying the computational
kernel code generation as described in the following section.
Finally, all the information presented above is generated as an
XML file for use in the subsequent phases.

B. PRF Customization

In this phase, the variables and the correponding access
patterns are used to customize the PRF. Furthermore, the
corresponding RTL description is generated and integrated
into the Maxeler Manager representing the system. Each block
stored in the PRF is represented as a logical register, whose
base address is used to access it from the kernel. It is also re-
quired to determine the shape and the correponding dimensions
(horizontal and vertical length) based on the number of stored
values and their data types. Moreover, the registers may have to
be initialized. Currently this procedure is not fully automated,
but it is manually performed by the designer.

C. Code Generation

At this stage, the PRF has been generated. Considering the
simple example described above, the variable array has been
moved to the PRF and only two elements have been stored,
with offsets 0 and -1 with respect to the current position of
the stream, as shown in Figure 5. As a consequence, the PRF
provides a 64-bit value to the kernel that is unpacked to get
the actual values for the computation. For this reason, after the
PRF load, the code can be restructured as follows:

//array = read_prf(...);
int array0 = trunk_32 (array >> 32);

int arrayl = trunk_32 (array);
int var = array0 + arrayl;

where read_prf is a support function that reads 64 bits
in parallel from the PRF, while the function trunk_32
generates a 32-bit value starting from the parameter value.

This transformation has been implemented as a dynamic
step in the LLVM compiler [28] (version 3.2). The Java code
of the kernel is generated as it is required by the Maxeler
MaxCompiler [2]. Even such a simple example clarifies the
potential advantages of Polymorphic Register Files. Two se-
quential memory accesses are substituted by a customized
parallel PRF access. The time required for performing the
unpacking operations and extract the values from the high-
bandwidth memory interface is assumed to be negligible.

VI. CASE STUDY AND ANALYTICAL VALIDATION

In this paper, we use the Separable 2D Convolution as our
Case Study. Convolution is used in digital signal processing
(e.g., image and video) for filtering signal values. For example,
the Sobel operator is popular in edge detection algorithms. In
addition, the Sobel operator is a separable function, allowing
the use of two consecutive 1D convolutions to produce the
same result as single, more computationally expensive, 2D
convolution. The first 1D convolution filters the data in the
horizontal direction, followed by a vertical 1D convolution.
We will exploit this important property later in this Section.

In digital signal processing, each output of the convolution
is computed as a weighted sum of its neighbouring data
items. The coefficients of the products are defined by a mask
(also known as the convolution kernel), which is used for all
elements of the input array. Intuitively, convolution can be
viewed as a blending operation between the input signal and
the mask (also referred to as aperture from some applications
prospective). Because there are no data dependencies, all
output elements can be computed in parallel, making this
algorithm very suitable for efficient parallel implementations.

The dimensions of a convolution mask are usually odd,
making it possible to position the output element in the middle
of the mask. For example, consider a 10 element 1D input
I = [2022 242628303234 3638)] and a 3 element mask M =
[2511]. The 1D convolution output corresponding to the 3rd
input (the one with the value 24) is 2-22+5 - 24+11-26 = 450.
Similarly, the output corresponding to the 4th input (26) is
obtained by shifting the mask by one position to the right:
2-2445-26 4 11-28 = 486.

When the convolution algorithm is used for the elements
close to the edges of the input, the mask should be applied
to elements outside the input array (to the left of the first
element, and to the right of the last element of the input vector).
Obviously, some assumptions have to be made for these "miss-
ing elements”. In this paper, we will refer to those as “halo”
elements. In practice, a convention is made for a default value
of the halo elements. The halo elements can be either zeros,
or replications of the boundary elements values or any other
values, determined by the particular application algorithm. If
we consider all halo elements to be 0, the output corresponding
to the 10th input (38) is 2-36+5-38 + 11 - 0 = 262.

In the case of 2D convolution, both the input data as well
as the mask are 2D matrices. For example, let us consider the
case of the 9 X 9 input matrix:

5 9 1113 1517 19

13 15 17 19 21 23 25 27 29

23 25 27 29 31 33 35 37 39

33 35 37 39 41 43 45 47 49

I = | 43 45 47 49 51 53 55 57 59

53 55 57 59 61 63 65 67 69
63 65 67 69 71 73 75 77 79
73 75 77 79 81 83 85 87 89
83 85 87 89 91 93 95 97 99

4 6

8
and the 3 x 3 mask M = 194 %% %3 . Furthermore, the

8
halo elements are assumed to be 0 in this example. In order
to compute the 2D convolution output on position (4,7)
we first compute the point-wise multiplication of the 3 x 3

. . 3335377 . .
sub-matrix of the input [gg 45 g;} with the mask, obtaining

132 210 296 . . .
387 495 611 |. By summing up all the elements of this matrix,
742 880 1026

the value 4779 is obtained. Since we assume the halo elements
to be 0, they do not contribute to the result and can therefore
be omitted from the computation. Therefore, the result on
position (1,9) is computed by the point-wise multiplication of
the corresponding sub-matrices from the input [37 13] and the
mask [, 1], obtaining [133 229] which accumulates to 1204.

The complete 2D convolution result becomes:

576 901 1063 1225 1387 1549 1711 1873 1204
1214 1809 2007 2205 2403 2601 2799 2997 1886
1934 2799 2997 3195 3393 3591 3789 3987 2486
2654 3789 3987 4185 4383 4581 4779 4977 3086
3374 4779 4977 5175 5373 5571 5769 5967 3686
4094 5769 5967 6165 6363 6561 6759 6957 4286
4814 6759 6957 7155 7353 7551 7749 7947 4886
5534 7749 7947 8145 8343 8541 8739 8937 5486
3056 4171 4273 4375 4477 4579 4681 4783 2844

Assuming the 2D mask has MASK_V rows and MASK_H
columns, the number of multiplications required to compute a
single element is MASK_V - MASK_H.

Separable 2D convolutions (e.g., the Sobel operator) can

be computed as two 1D convolutions on the same data. For
~101
example, in [29], the 2D convolution [—% 8 %] is equivalent to

first applying [ﬂ and then [-101].

Separable 2D convolutions are widely used because fewer
arithmetic operations are required compared to the regular
2D convolution. In our example, only MASK_V + MASK_H
multiplications are needed for each output element. Moreover,
separable 2D convolutions are more suitable for blocked SIMD
execution because the individual 1D convolutions have fewer
data dependencies between blocks. In this paper, we focus on
accelerating separable 2D convolutions.

Separable 2D convolutions consist of two data dependent
steps: a row-wise 1D convolution on the input matrix followed
by a column-wise 1D convolution. The column-wise access
involves strided memory accesses, which may degrade perfor-
mance due to bank conflicts. In order to avoid these strided
memory accesses, we propose to transpose the 1D convolutions
output while processing the data. This can be performed
conflict-free by using our RoCo memory scheme [7].

A vectorized separable 2D convolution algorithm which
avoids strided memory accesses when accessing column-wise
input data is introduced in [11]. The input matrix contains
MAX_V x MAX_H elements. The two masks used for
row-wise and column-wise convolutions have MASK_H and

TABLE 1. CONVOLUTION ESTIMATED EXECUTION TIME (CYCLES)

Stage \ Lanes| 1 2 4 8 | 16|32 | 64 |128|256
Load 1124 | 612 | 356 | 228 [164|132|116]108|104
Convolution | 9228 |4620|2316|1164 (588300156 84 | 48

Move 128 1 64 | 32 | 16 | 8 | 4 | 2| 1 |1
Store 1024 | 512|256 | 128 | 64 |32 (16| 8 | 4
Total 11504 |5808(2960|1536|824|468(290|201|157

TABLE II. CONVOLUTION ESTIMATED SPEEDUP

Speedup \ Lanes|1| 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256
Absolute 111.98(3.89|7.49|13.96|24.58|39.67(57.23|73.27
Relative 111.98(1.96(1.93| 1.86 | 1.76 | 1.61 | 1.44 | 1.28

—

MASK_V elements respectively. We will refer to both as
MASK_H, since both convolution steps are handled identically
by the PRF. The PRF algorithm processes the input in blocks of
VSIZE x HSIZE elements, vectorizing the computation along
both the horizontal and the vertical axes. For clarity, we only
present the steps required to perform one convolution step. The
same code should be executed twice, once for the row-wise
convolution and the second time for the column-wise version.
The data will be processed VSIZE rows at a time. Without
loss of generality, we assume that MAX_V%VSIZE = 0 and
MASK H=2-R+1.

Because special care needs to be taken at the borders of
the input, the vectorized algorithm has three distinct parts:
the first (left-most) block, the main (middle) sections, and
the last (right-most) one. The first iteration of the convolution
takes into consideration the R halo elements to the left of the
first input elements. Similarly, the last iteration handles the R
halo elements on the right. The only modification required
by the first and last iterations is resizing the PRF logical
registers. However, the operations performed remain the same.
We assume the dimensions of the input data are much larger
than the processed block, allowing us to focus on the main
convolution iterations. Moreover, in this scenario, the time re-
quired to define the PRF logical registers becomes insignificant
compared to the memory and arithmetic operations. Therefore,
in the rest of this section we only consider the memory and
arithmetic operations of the main convolution iterations.

The row-wise convolution requires the following steps:

1) Row-wise Load VSIZE xHSIZE input elements;

2) Row-wise convolution using VSIZExHSIZE
xMASK_H multiply-accumulate operations;

3) Column-wise Store the VSIZE x HSIZE results;

4) Left Move the VSIZE x R input elements used as
halo elements during the next iteration;

5) In case unprocessed data remains, go to step 1).

The PRF read and write ports can provide multiple data
elements simultaneously to L computational lanes. Assuming
sufficient memory bandwidth and functional units, each con-
volution step can execute up to L times faster.

Since this work is still in progress, we rely on estimations
for determining the speed-up potentially introduced by the
PRFs in the Maxeler architecture. For example, assuming the
following row-wise convolution scenario: 32 x 32 x 64-bit
elements block size (HSIZE = VSIZE = 32), 9 elements
(R = 4) mask size, average external memory latency of 100
clock cycles for the loads, and 12 clock cycles multiply and

accumulate latency. Table I shows the estimated convolution
execution time expressed in clock cycles, and Table II illus-
trates the associated speedups. In the baseline case, the PRF
can only provide one data element per port at each clock cycle.
This corresponds to employing a simple serial memory for
storing the input and output convolution data. The first four
rows of Table I contain the estimated duration of the Load,
Convolution, Move, and Store phases. For the baseline scenario
(1 Lane), 1024 data elements need to be loaded, which takes
1124 clock cycles. The convolution requires 32-32-9 = 9216
multiply-accumulate operations which consume 9228 cycles.
In a similar way, we estimate the duration of the halo moving
stage as 128 cycles, as 4 - 32 elements need to be moved. In
this case, Storing 1024 data elements is forecasted at 1024
cycles. The combined duration of the four convolution steps is
11504 cycles. For the other columns of Table I, we estimate
the number of cycles by assuming the load and multiply-
accumulate latency and dividing the remaining cycles by the
number of PRF lanes.

In Table IT we show the potential PRF speedup using the
values in Table I. The Absolute speedup is estimated using the
single-lane PRF as the baseline. For 256 lanes, we forecast
a speedup of the convolution algorithm of 73 times. The
relative speedup is useful for estimating the efficiency of a
multi-lane PRF implementation, and measures the performance
improvement when doubling the number of PRF lanes. We
estimate that a 32-lane PRF is 1.76 times faster than a 16-
lane configuration. Furthermore, the efficiency of adding more
lanes decreases below 50% with more than 64 lanes, as 128
lanes are only 44% faster than the 64-lane PRF-based system.

VII. CONCLUSIONS AND FUTURE WORK

This paper described the integration of Polymorphic Reg-
ister Files in a state of the art dataflow computing system.
In particular, a compiler-based methodology is presented to
extract the information provided by the designer, integrate and
customize the corresponding registers and properly modify
the computational kernels and exploit the parallel memory
accesses. Our analytical estimations show that PRFs can po-
tentially speed up the convolution algorithm on dataflow com-
puting platforms by one order of magnitude. Future research
is towards refinements of this semi-automated process, also
including automatic identification of the variables to be stored
in Polymorphic Register Files.

ACKNOWLEDGMENTS

This work was partially funded by the European Commis-
sion in the context of the FP7 FASTER project (#287804).

REFERENCES

[1] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and
T. Yamazaki, “Synergistic Processing in Cell’s Multicore Architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10-24, 2006.

[2] “Maxeler MaxWorkstation.” [Online]. Available: www.maxeler.com/
products/desktop/

[3] C. Tomas, L. Cazzola, D. Oriato, O. Pell, D. Theis, G. Satta, and
E. Bonomi, “Acceleration of the Anisotropic PSPI Imaging Algorithm
with Dataflow Engines,” in Society of Exploration Geophysicists (SEG)
Technical Program Expanded Abstracts, 2012, pp. 1-5.

(4]

(6]

(71

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

(27]

[28]
[29]

H. Fu, W. Osborne, R. Clapp, O. Mencer, and W. Luk, “Accelerating
Seismic Computations Using Customized Number Representations on
FPGAs,” EURASIP Journal on Embedded Systems, vol. 2009, no. 1,
pp- 1-13, 2009.

C. Ciobanu, “Customizable Register Files for Multidimensional SIMD
Architectures,” Ph.D. dissertation, Delft University of Technology,
Delft, Netherlands, March 2013.

C. Ciobanu, G. K. Kuzmanov, and G. N. Gaydadjiev, “Scalability Study
of Polymorphic Register Files,” in Proc. of DSD, 2012, pp. 803-808.

——, “On Implementability of Polymorphic Register Files,” in Pro-
ceedings of ReCoSoC, 2012, pp. 1-6.

A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, F. Sanchez,
A. Azevedo, C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev,
“The SARC Architecture,” IEEE Micro, vol. 30, no. 5, pp. 16-29, 2010.

C. Ciobanu, G. K. Kuzmanov, A. Ramirez, and G. N. Gaydadjiev, “A
Polymorphic Register File for Matrix Operations,” in Proceedings of
SAMOS, July 2010, pp. 241-249.

C. Ciobanu, X. Martorell, G. K. Kuzmanov, A. Ramirez, and G. N.
Gaydadjiev, “Scalability Evaluation of a Polymorphic Register File: a
CG Case Study,” in Proceedings of ARCS, 2011, pp. 13-25.

C. Ciobanu and G. Gaydadjiev, “Separable 2D Convolution with Poly-
morphic Register Files,” in Proceedings of ARCS, 2013, pp. 317-328.

D. Kuck and R. Stokes, “The Burroughs Scientific Processor (BSP),”
IEEE Trans. on Computers, vol. C-31, no. 5, pp. 363-376, May 1982.

B. Juurlink, D. Cheresiz, S. Vassiliadis, and H. A. G. Wijshoff,
“Implementation and Evaluation of the Complex Streamed Instruction
Set,” in Proceedings of PACT, 2001, pp. 73 — 82.

D. Panda and K. Hwang, “Reconfigurable Vector Register Windows
for Fast Matrix Computation on the Orthogonal Multiprocessor,” in
Proceedings of ASAP, 5-7 1990, pp. 202 -213.

J. Corbal, R. Espasa, and M. Valero, “MOM: a Matrix SIMD Instruction
Set Architecture for Multimedia Applications,” in Proceedings of the
ACM/IEEE SC99 Conference, 1999, pp. 1-12.

A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Matrix Register
File and Extended Subwords: Two Techniques for Embedded Media
Processors,” in Computing Frontiers *05, May 2005, pp. 171-180.

J. H. Derby, R. K. Montoye, and J. Moreira, “VICTORIA: VMX
Indirect Compute Technology Oriented Towards In-Line Acceleration,”
in Proceedings of CF, 2006, pp. 303-312.

J. Park, S.-B. Park, J. D. Balfour, D. Black-Schaffer, C. Kozyrakis,
and W. J. Dally, “Register Pointer Architecture for Efficient Embedded
Processors,” in Proceedings of DATE, 2007, pp. 600-605.

J. Osburn, W. Anderson, R. Rosenberg, and M. Lanzagorta, “Early Ex-
periences on the NRL Cray XD1,” in HPCMP Users Group Conference,
2006, pp. 347-353.

“Cray XRI1 Reconfigurable Processing Blade.” [Online]. Available:
www.cray.com/Assets/PDF/products/xt/CrayXR 1Blade.pdf

“SGI Altix 4700.” [Online]. Available: www.sgi.com/pdfs/3867.pdf

S. Stojanovic, D. Bojic, M. Bojovic, M. Valero, and V. Milutinovic,
“An overview of selected hybrid and reconfigurable architectures,” in
Proceedings of ICIT, 2012, pp. 444-449.

T. Brewer, “Instruction Set Innovations for the Convey HC-1 Computer,”
IEEE Micro, vol. 30, no. 2, pp. 70-79, 2010.

J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular
Hardware Accelerators in C with ROCCC 2.0,” in Proceedings of
FCCM, 2010, pp. 127-134.

J. Nickolls and W. Dally, “The GPU Computing Era,” Micro, IEEE,
vol. 30, no. 2, pp. 56-69, 2010.

M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel Computing
Experiences with CUDA,” IEEE Micro, vol. 28, no. 4, pp. 13-27, 2008.
J. Balart, A. Duran, M. Gonzalez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos Mercurium: a Research Compiler for OpenMP,”
in European Workshop on OpenMP (EWOMP’04), 2004, pp. 103-109.
“The LLVM Compiler Infrastructure.” [Online]. Available: llvm.org

V. Podlozhnyuk, “Image Convolution with CUDA.” [Online]. Avail-
able: developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_
website/projects/convolutionSeparable/doc/convolutionSeparable.pdf

