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Abstract—This paper presents an interval algebra created
specifically to evaluate timing properties of multiprocessor sys-
tems. It models the application load as intervals, and considers
allocation and scheduling as algebraic operations over those
intervals, aiming to analyse the impact of resource allocation
decisions on application response times or schedulability. The
theoretical background is introduced informally, followed by the
description of a reference implementation of the interval algebra
in C++, aiming to appeal to the design practitioner rather than
the formalist. Examples of the usage of the proposed algebra
are also provided, showing its applicability to the performance
evaluation of industrial systems implemented over bus-based and
Network-on-Chip multiprocessor platforms. A particular design
flow is highlighted, where the interval algebra is used as a fitness
function in a genetic algorithm tailored to optimise resource
allocation in hard real-time multiprocessors.

I. INTRODUCTION

A multiprocessor system is a composite of computation,
communication and storage resources, and each of them
contributes to the overall timing behaviour of the system
as it processes application load. The way the application
load is allocated to those resources has crucial impact to its
performance and timeliness. Thus, resource allocation is an
increasingly important part of the design flow of such systems,
specially as the number of processors keeps increasing in both
embedded and high-performance domains.

Resource allocation is a well known problem and most of its
formulations belong to the NP-hard class [3]. For current mul-
tiprocessor systems with hundreds of communicating tasks,
dozens to hundreds of processors and sophisticated intercon-
nects, it is not practical to optimally solve resource allocation
problems. Heuristic solutions are currently the state-of-the art,
trying to achieve acceptable allocations by sampling only a
small subset of the very large solution space of such problems
[11]. To find an acceptable solution, models of the application
load and the multiprocessor platforms can be used to forecast
performance metrics under different allocation alternatives.
Such models must be expressive enough to describe diverse
system architectures, load patterns, resource constraints and
timing requirements.

In this paper, we propose an interval algebra (IA) that mod-
els all those aspects and uses them to evaluate the timeliness
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of multiprocessor systems under different resource allocations.
It models the application load using the mathematical notion
of intervals, which are used to denote the amount of time an
application component (e.g. computational task, communica-
tion message) uses a specific multiprocessor platform resource
(e.g. CPU, communication bus). It then models the allocation
and scheduling of those application components as algebraic
operations over those intervals. By applying those algebraic
operations, it is possible to obtain performance figures such
as the response times of the application components, which
can be in turn aggregated to obtain e.g. average and worst-
case performance.

To establish the need for the proposed algebra, we review a
number of performance analysis formalisms, aiming to show
that while very useful in their specific domains they cannot
be easily integrated into a common framework to analyse
different kinds of application load (e.g. periodic or aperiodic,
with or without dependencies between tasks) or multiproces-
sor platform (e.g. homogeneous or heterogeneous processors,
shared or distributed memory). We then informally present the
foundations of the proposed algebra through examples, using
a simple yet consistent ASCII-based notation, as our aim is to
be appealling to design practitioners rather than to formalists.
This is followed by the description of our first reference
implementation of the algebra, which follows object-oriented
principles and provides an API of classes and methods to solve
interval-algebraic representations of multiprocessor systems
under load. By solving valid expressions of the proposed
algebra, designers can investigate the timeliness of applica-
tions running over multiprocessors under different resource
allocation policies, enabling them to design systems that can
meet the application’s timing constraints. Furthermore, the
compact and simple implementation of the algebra can also be
used during runtime to guide resource allocation in dynamic
systems, where the application load is not known at design
time and must be allocated on demand. The paper is then
closed with a number of examples of the applicability of the
proposed algebra and a discussion of its current and potential
use.

II. RELATED WORK

The inherent complexity of contemporary multiprocessor
systems limits the possibility of a complete analysis using
simulations, thus analytical models are of increasing impor-
tance as part of modern system design [12]. In this section, a



number of widely used analytical models are briefly reviewed.
Queueing theory can be applied to systems in which cus-

tomers come to be processed by a service facility. When a
customer arrives but there is no idle server, it waits in a
queue. The interarrival time and service time are specified
probabilistically. Using a queueing model, a number of vital
performance measures can be estimated, such as a number of
customers waiting in the system for service, a mean queue
length, waiting time in a single queue or the whole system,
duration of a busy period, etc. Queueing theory is often
used in communication networks [1], including Networks
on Chip [11], where customers represent packets transmitted
between nodes. An example of queueing-theory-based model
for evaluating energy dissipation in a network node can be
found in [13]. The main feature preventing direct queueing
theory application in the real-time domain is related with
its strictly probabilistic nature. It allows computing average
quantities in an equilibrium state and is not intended to infer
about the worst-case behaviour.

Network Calculus is a theory of deterministic queuing
systems that has been proposed by Cruz in [7]. It is an
alternative approach to queueing theory, using upper bounds
to characterize arrivals and lower bounds to describe services.
Using this approach it is easy to compute the bounds of
network performance metrics, such as a delay or backlog
[4]. Network Calculus describes data flows by the cumulative
function, R(t), being a number of the bits transmitted in a
particular data flow during time interval [0, t]. Both continu-
ous and discrete time models can be applied. Since bounds
obtained with Network Calculus hold with probability 1, they
can be treated as the worst-case values, essential to evaluate
schedulability in hard real-time systems. To compute a delay or
backlog for an average case, a stochastic extension of network
calculus has been introduced [10]. It can be applied to provide
particular stochastic (soft) guarantees [6].

Network Calculus has been extended to Real-Time Calculus
in [5]. It uses upper and lower arrival curves as functions
bounding the amount of the events arriving in a time interval.
These events may be treated as task arrivals. Using this
notation, it is possible to represent periodic or sporadic tasks.
A number of schedulability tests based on Real-Time Calculus
have been proposed in [14]. Furthermore, Real-Time Calcu-
lus has been extended to globally-scheduled multiprocessor
systems in [14]. In [9] the modelling capability of Real-
Time Calculus has been extended with the execution of a
task triggered by events on multiple input event streams using
OR-activation, AND-activation, or their combination. Despite
relatively large research on Real-Time Calculus and its vast
applicability, there is still lack of efficient methods for deter-
mining response-time bounds in case they are unspecified. The
multiprocessor case is not fully compatible with uniprocessor
Real-Time Calculus. The pessimism introduced by applying
real-time calculus methods has not been assessed in [14].

Schedulability analysis is a formalism to evaluate the timing
properties in real-time systems introduced in [15]. In this
technique, a workflow is usually given as a set of independent

periodic or sporadic tasks, where each task is defined as a
tuple with its worst-case execution time, relative deadline, and
priority. With this tuple, it can be verified if all tasks mapped to
a particular processor, do not exceed the processors capacity.
An example formula of direct schedulability tests, which
checks task response time, is proposed in [2]. The majority of
schedulability analysis research assumes task independence. A
solution considering control and data dependencies, presented
in [17], requires relatively complicated system modelling by
means of conditional process graphs. Earlier proposals of deal-
ing with dependencies included using even more sophisticated
techniques like appropriate release jitters, or time offsets of
phases [16]. Lacking of any simple extension to application
models with dependent or single appearance tasks can be
viewed as a strong disadvantage.

An exhaustive survey of hard real-time scheduling analysis
for multiprocessor systems has been presented in [8]. The
number of already proposed schedulability tests can be consid-
ered as rather high. Nearly each of these tests has a different
capability or applicability. Since schedulability analysis is
dedicated to hard real-time systems, it is not easily applicable
when soft timing constraints are assumed. In the case of
periodic and sporadic intervals, schedulability analysis can be
easily integrated to the proposed algebra as one restricted type
of algebraic transformation.

From this survey it follows that there is not a single
analytical model that is expressive enough to describe various
application dependency patterns, with different task temporal
behaviour, capable of representing resource affinities and ap-
plicable to both soft and hard-real time systems. We foresee,
however, the increasing need for such a formalism, as high-
performance and cloud computing become more time-critical
and start to be seen as soft real-time systems, and hard real-
time systems become more dynamic and can only provide
schedulability guarantees during runtime for a finite time
horizon.

III. INTERVAL ALGEBRA PRINCIPLES

An algebra is a definition of symbols and the rules for
manipulating those symbols. An interval algebra (IA) therefore
establishes rules for the manipulation of intervals. The pro-
posed IA defines different types of intervals, which represent
the amount of time a particular application component requires
from a notional platform component. It also defines rules for
the manipulation of such intervals: what happens when an
interval is allocated to a specific type of resource, what if two
intervals are allocated to the same resource, etc. Two basic
algebraic operations are needed: time displacement and parti-
tion. Time displacement changes the endpoints of an interval
by an arbitrary value X, and denotes that the application com-
ponent had to wait for its allocated resource (i.e. its starting
and ending times were moved X time units to the future).
Partition simply breaks one interval in two, and denotes that
an application component was preempted from a resource
(and the second interval produced by the partition likely to
be time-displaced). All other interval-algebraic operations of



the proposed IA, which can represent an arbitrarily large set
of allocation and scheduling mechanisms, can be expressed
as compositions of those two. By applying those operations,
it is possible to investigate the impact of different resource
allocation and scheduling mechanisms on the endpoints of the
intervals, which in turn denote the completion times of each
application component.

Throughout this paper an application is viewed as a set of
tasks (a taskset). The tasks appearing exactly once during the
application execution are often referred to as singletons and
are composed of a single job. A periodic or sporadic task
can be treated as an infinite series of jobs that are released
periodically or less often than the provided inter-release time,
respectively.

Let us consider a simple example. A given application is
composed of three singleton tasks: A, B and C, and a given
homogeneous platform is composed of two processors with
the first-in-first-out (FIFO) scheduling. Each of the tasks can
be represented by an interval that denotes the time it needs
to run using one of the platform processors: A = [0, 30),
B = [0, 45), C = [0, 20) (assuming in this example that A,
B, C are all independent and ready to run at time = 0). By
using simple interval algebra operations, a resource allocation
heuristic can estimate the response time R of the three tasks
under different allocation schemes (e.g. RA = 30, RB = 45
and RC = 50 if A and C are allocated, in that order, to
one of the processors and B is allocated to another), and
thus can dynamically decide whether it is likely to meet
the application’s constraints when using a given allocation.
While trivial, such example can be made arbitrarily complex
by allowing different resource scheduling disciplines, a larger
number of tasks and processors. For the proposed algebra,
however, the analysis of the response times under a specific
allocation would still involve the application of the same
interval manipulation rules.

The advantages of such an approach are numerous, includ-
ing the following.

• It enables dynamic allocation heuristics to have an ap-
propriate level of confidence on whether the chosen
allocation meets the applications constraints.

• The approach can be used as a fitness function of search-
based allocation heuristics, if the algebraic operations are
sufficiently lightweight as they have to be applied over a
potentially large search space (some examples of applying
IA to genetic algorithms are provided in Section V).

• The solution of algebraic operations can be found in
multiple ways, with different levels of performance.
Therefore, resource allocation heuristics can be improved
simply by optimising the solution of the employed alge-
braic operations.

• If absolute predictability is not required (i.e. in soft real-
time and best-effort applications), algebraic operations
can be solved faster by applying approximations that
sacrifice the accuracy of the final result. This enables
applying of heuristics that can be applied to systems with
different levels of strictness of their timing requirements.

In the following subsections, we briefly introduce the main
features of the application modelling approach based on the
proposed interval algebra from different aspects, such as:
modelling application architecture with respect to various
dependency patterns, modelling diverse temporal behaviour,
including periodicity, modelling task affinities to certain re-
sources, and also describing assorted loads.

A. Modelling Application Architecture

Using IA, application jobs are represented as intervals. For
example, a singleton task can be represented by the time
interval it requires from a notional resource. It can be denoted
with the notation2 exemplified below:

#A#0#40 (1)

where the first element of the tuple is a unique job identifier,
the second is a non-negative real number representing the
release time of the job and the third is a positive real number
representing the job’s load, i.e. the actual length of the time
interval. In the example above, the job A is released at time
0 and requires 40 time units of a resource. The same concept
can also be represented using the mathematical notation for a
left-closed right-open bounded interval [0, 40).

Such interval-based representation of a job is sufficient to
express a singleton, and by using a set of intervals, indepen-
dent jobs can be also represented. To denote a dependency
between two tasks A and B, the notation can be extended to
include a job identifier instead of the release time of a job:

#B#A#50 (2)

This notation is capable of denoting single dependency
jobs, and conveys that interval B’s first endpoint depends
on interval A. Multiple dependencies can also be specified
as a dependency set, and thus multi-dependency jobs can be
covered:

#C#{A,B}#260 (3)

This notation assumes that whenever an interval has de-
pendencies, its first endpoint lies exactly at the highest second
endpoint among all the intervals it depends on. In this example,
assuming that tasks A and B are defined as in formulas (1) and
(2), this leads to: A = [0, 40), B = [40, 90), C = [90, 350).

B. Modelling Application Temporal Behaviour

The intervals described in the previous subsection are
single-appearance and have a fixed release time, therefore
express singleton tasks. A strictly periodic series of jobs can
be characterised by its release time, the period after which a
new job is released, and the time interval each job requires
from a notional resource. We denote such job series with the
notation exemplified below, which is exactly the same as the
notation of a singleton task followed by the period:

#P#0#40#100 (4)

2The formal description of interval algebra grammar, specified
with Extended Backus-Naur Form (EBNF), can be found at
https://www.cs.york.ac.uk/rts/rtslab/wiki.



Mathematically, it represents an infinite series of intervals,
such as: P = [0, 40), [100, 140), [200, 240), . . .. This extension
is expressive enough to represent strictly periodic tasks.

The release time of sporadic tasks is not deterministic but
has well defined bounds. In case of aperiodic tasks, those
bounds do not exist. To model those cases, we can represent re-
lease times with so-called aleatory variables. Those variables
are associated with probability distributions that can constrain
assumed values. The interval algebra notion does not impose
any limitation on the choice of probability distributions. Their
parameters should be provided following the usual notation.
For example, a normal distribution N (µ, σ2) with parameters
mean µ = 2 and variance σ2 = 1, N (2, 1) can be used to
denote the release time of task R, and similarly N (40, 1) can
denote its execution time:

#R#normal(2, 1)#normal(40, 1) (5)

The time when R finishes its execution is described by the
convolution of two Gaussians: N (2, 1) ∗ N (40, 1).

C. Modelling Application Resourcing Constraints

A resource can be represented by an algebraic operation
over all the jobs mapped onto it, each represented by its
respective interval. The algebraic operation determines how
the resource is shared between the jobs mapped to it, and how
the sharing affects their timings. We denote a resource with
the notation exemplified below:

+Π1(#A#0#40) (6)

where the algebraic operation Π1 is applied to the set of
intervals surrounded by brackets (only A in the example
above). The example below shows the same resource, but this
time with two distinct jobs mapped to it:

+Π1(#A#0#40,#B#0#50) =

+Π1(#A&40,#B&90) =

+Π1([0, 90)) (7)

In this example, we introduce two different ways to evaluate
the operator Π1 (which we can intuitively understand as a
resource serving jobs under a FIFO schedule). The first eval-
uation of the operator preserves the identities of the mapped
jobs, and it indicates the completion times of each one of
them after the symbol ”&”. We will refer to this type of
evaluation as information-preserving (or simply preserving).
The second way to evaluate the operator is equivalent to
the first, but it does not preserve any information about the
individual operands. It simply determines the busy period(s)
of the resource with one or more intervals. We refer to this type
of evaluation as information-collapsing (or simply collapsing).

A slightly different example is shown below, using the same
jobs but this time mapped onto resource Π2 that uses a time-
division multiplexing (TDM) scheduler with a quantum of 8

time units:

+Π2(#A#0#40,#B#0#50) =

+Π2(#A&72,#B&90) =

+Π2([0, 90)) (8)

It is worth noticing that only the intermediate expression
(i.e. after the preserving evaluation) differs, and the final result
after the collapsing evaluation is the same. This is always the
case if the operand denote a work-preserving scheduler, when
no processor is idle as long as there are tasks ready to be
executed.

The two following examples show jobs mapped onto a
resource that is shared under a priority-preemptive scheduler,
assigning priorities in the same order the jobs are passed to
the operator (higher to lower):

+Π3(#C#15#40,#D#10#50,#E#0#50) =

+Π3(#C&55,#D&100,#E&140) =

+Π3([0, 140)) (9)

+Π4(#F#10#4,#G#0#18,#H#26#5,

#I#24#8) =

+Π4(#F&14,#G&22,#H&31,#I&37) =

+Π4([0, 22), [24, 37)) (10)

In both cases, the algebraic operations abstracts away the
specific interleaving patterns of the execution of each job.
Each of the evaluation types focusses solely on, respectively,
the finish times of each job or the idleness of the resource.
For example, (10) represents the following: task G starts to be
executed at time zero, but after 10 time units it is preempted
by task F which runs t completion for 10 time units; then
G resumes and runs for its remaining execution time until
time equals 22 units; resource Π4 becomes idle until task I
is released at 24 time units, which in turn executes until time
equals 37 units.

Just like single appearance jobs, periodic jobs can be
mapped to resources:

+Π1(#A#0#40#100,#B#0#50) =

+Π1(#A&40,#B&90,#A#100#40#100) =

+Π1([0, 90),#A#100#40#100) (11)

It is important to notice that a periodic job series always
remains as a distinct interval in the result of both preserving
and collapsing evaluations of an operator. This reflects the
infinite nature of the series.

One of crucial properties of each task is a list of resources
that can execute this task. The task that can be executed on any
resource available in a system is referred to as untyped task.
If a task can be executed on a single type of resources only,
it is a single-typed task. A multi-typed task can be executed
on a few (enumerated) resource types, possibly with different
execution time. In all the earlier examples, untyped tasks have



been presented. To describe a single-typed or multi-typed task,
the notation should support the definition of different types of
resources and different types of resource affinity. This can be
expressed as follows, where each scalar in pointy brackets
denotes a different type and the absence of type constraints
implies untyped jobs or resources (as earlier):

+X < 2 > (#J < 2 > #0#15,#K < 2, 3, 8 > #0#20,

#L#0#14) (12)

By allowing the definition of resources types and resource
requirements, it is also possible to present communicating jobs
by modelling the job as two fully dependent intervals with
distinct resource requirements, one for computation and one
for communication (i.e. the job can only communicate over
resource 2 once it has finished being computed over resource
1):

#L < 1 > #0#14

#M < 2 > #L#340 (13)

D. Modelling Application Load Characterisation

The representation of load as the interval length, denoted
by a positive real number (as defined in subsection III-A), is
already capable of representing a fixed load.

To represent a typed fixed load, we allow the specification
of different interval lengths for different resource types using a
similar notation as the one introduced at the end of subsection
III-C:

#M < 2, 4, 6 > #0# < 10, 20, 20 > (14)

To represent a probabilistic load or typed probabilistic load,
we have to rely again on aleatory variables to represent the
load. This can be done for both typed and untyped jobs.

IV. APPLICATION MODELLING USING INTERVAL
ALGEBRA REFERENCE IMPLEMENTATION

In this section, a brief description of the reference im-
plementation of the proposed interval algebra is provided.
Its software architecture follows the principles of object-
orientation and object-oriented frameworks, allowing for fur-
ther extensions through inheritance. It has been implemented
in C++ language.

The most important classes of the interval algebra reference
implementation are presented in Figure 1. Among these classes
four clusters can be identified:

• related with various notion of time (Time1,
TimeDeterministic, TimeStochastic),

• related with jobs to be allocated (Job, JobTree,
JobTreeNode, TreeNode),

• related with various policies of schedul-
ing (Scheduler, SchedulerTDM,
SchedulerFIFO, SchedulerPriorityTDM,
SchedulerPriorityNonPreemptive,
SchedulerPriorityPreemptive),

1Classes written in italic are abstract.

Scheduler

SchedulerPriorityNonPreemptive

SchedulerPriorityPreemptive

SchedulerPriorityTDM

SchedulerTDM

SchedulerFIFO

Time

TimeDeterministic TimeStochastic
JobTree

TreeNode

JobTreeNodeResource Job

1*

1*

1*

ResourceType

Fig. 1. Main classes of the reference implementation of the interval algebra
and their dependencies

• related with hardware platforms (Resource,
ResourceType).

In this section, we demonstrate simple examples (written in
C++) of the interval algebra reference implementation usage.

An application is modelled by defining parameters of
its jobs. After this stage, each job shall be added to
a job list held by a scheduler. In the examples be-
low we assume that a scheduler object has been al-
ready created, for example a scheduler with the FIFO
policy (SchedulerPriorityFIFO class), but any other
schedulers derived from abstract class Scheduler can
be used instead. The scheduler can be instantiated in the
same manner as any other C++ object: SchedulerFIFO
*MySchedulerFIFO=new SchedulerFIFO;.

Applications are modelled with instances of class Job.
The constructor of this class requires the job name as a
parameter (string). Then the required parameters of the job are
set by means of executing the member functions of the Job
class. These parameters include: release time, period, deadline,
parent jobs, resources the job can be executed on, execution
time for each possible resource and the job priority.

Applications that are composed of a single job can be
modelled by creating an instance of class Job. In the example
below, the task described with IA by formula (1), i.e. a
singleton task named A is defined, released at 0ms (the default
time unit), of the execution time equal to 40ms on the default
resource.

Job *A = new Job("A");
Time *TimeReleaseA = new TimeDeterministic(0);
A->SetReleaseTime(TimeReleaseA);
Time *TimeA=new TimeDeterministic(40);
A->SetExecutionTimeForExecutingResource(TimeA);
MySchedulerFIFO->AddJob(A);

There is a possibility of modelling applications that are



composed of an arbitrary number of single-dependency jobs,
i.e. the jobs that can depend on one and only one other
job. The preceding job, whose execution is required before
the execution of the given job, is set with member func-
tion Job::AddDependency(Job*). For example, the task
given by formula (2) can be described with the following code
(assuming job A has been already created).

Job *B = new Job("B");
Time *TimeB=new TimeDeterministic(50);
B->SetExecutionTimeForExecutingResource(TimeB);
B->AddDependency(A);
MySchedulerFIFO->AddJob(B);

A strictly periodic task is comprised of a series of jobs with
release times separated by a constant time interval. Internally,
a periodic task is split into a series of single appearance jobs.
The number of instances is set so that the release time of
no instance is higher than the provided time. The pointer
to this time is given as the second parameter of member
function Scheduler::AddPeriodicJobs, whereas the
first parameter is, similarly to the single appearance job,
the pointer to the Job object itself. In the example below,
representing the task described with formula (4), this time
is named MaxTime. We assume the task has an implicit
deadline, i.e. the relative deadline of each job is equal to its
period. However, any other positive value can be used instead.

Time *MaxTime = new TimeDeterministic(300);
Job *P =new Job("P");
Time *TimeReleaseP = new TimeDeterministic(0);
P->SetReleaseTime(TimeReleaseP);
Time *TimeP=new TimeDeterministic(40);
P->SetExecutionTimeForExecutingResource(TimeP);
Time *PeriodP = new TimeDeterministic(100);
P->SetPeriod(PeriodP);
Time *DeadlineP = new TimeDeterministic(40);
P->SetDeadline(DeadlineP);
MySchedulerFIFO->AddPeriodicJobs(P,MaxTime);

The affinity of applications defines which kind of re-
sources a given job requires for its execution. In or-
der to be used with the interval algebra, each resource
has to be defined and instantiated. For example, to cre-
ate a resource named Processor1, the following line of
code should be written: Resource *Processor1=new
Resource("Processor1");. Then, to allow a job
to be executed on this resource, one should use the
Job::AddExecutingResource(Resource*) with a
pointer to the resource as the parameter, for example:
A->AddExecutingResource(Processor1);.

To set the job execution time for a particular
resource, one should use member function
Job::SetExecutionTimeForResource(Time*,
Resource*).

V. EXAMPLES AND EXPERIMENTS

In this section, some capabilities of the proposed algebra are
presented using Bosch’s DemoCar benchmark, a lightweight
engine control system composed of 43 tasks (basic execution
units) and 71 labels (memory locations of given lengths) for
inter-task communication.

The actual computation time of tasks is not known a priori,
only its lower and upper bounds are provided together with
a probability distribution function representing the likelihood
of the values inbetween them. Since DemoCar contains hard
real-time constraints, we use the worst-case execution time
(WCET) to determine the length of the intervals representing
tasks. To illustrate this issue, let us present an IA formula of
one arbitrary task of this benchmark, for example CylNumOb-
server. This periodic task is released every 10000µs and its
execution time is described with a Weibull distribution with
parameters λ = 7534.51 and k = 1.51. However, the WCET is
also specified to be equal to 440µs and this value is employed
in formula CylNumObserver#0#440#10000 that is used
for response time evaluation. For soft real-time systems, an
aleatory variable could be created for execution time and it
would be used to determine probability distribution function
of the system response time.

A. Number of Processors and Scheduler Selection

In the first experiment we present how interval algebra
can be used to choose an appropriate number of processors
and a scheduling discipline for a particular system so that
no deadline is violated. Firstly, we model a simple bus-based
architecture with the number of processors ranging from 1 to
5, where data transfer overheads from and to a shared memory
has been assumed to be negligible (i.e. a contention on the bus
is not modelled).

Let us compare the influence of various schedulers in
the DemoCar example. For this relatively simple case, the
obtained makespan (aka response time) of the whole taskset
does not depend on the chosen scheduler type, and is depicted
in Figure 2 for processor number ranging from 1 to 5.
However, the number of missed deadlines varies significantly
for different scheduler types, as presented in Figure 3. For
TDM in the single processor system and quantum 100µs, 42
out of 43 deadlines are missed, whereas with the remaining
scheduler types only about 20 tasks have been executed on
time assuming WCET. For priority schedulers (where priorities
of tasks have been assigned statically depending on the task
deadline - the lower deadline, the higher priority), three
processors are sufficient to meet all the deadlines, whereas
for the FIFO scheduler one deadline remains violated even in
the 5-processor system. This simple experiment shows both
the significant influence of the chosen scheduler as well as
capabilities of the interval-algebra-based evaluation.

The proposed technique can be also applied to more so-
phisticated platform architectures, such as a mesh Networks
on Chip (NoC). In contrast with the previous case, data
transfer overhead has been taken into consideration, assuming
constant time for transferring a single flit (flow control digit,
a small piece of a packet to be transferred) between two
neighbouring nodes if no contention is present. Each link
is used as a single resource, so for example to transfer one
data from Processor0,1 to appropriate sink Processor2,0 we
need such resources allocated simultaneously: Processor0,1−
Router0,1, Router0,1 − Router1,1, Router1,1 − Router2,1,
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Router2,1−Router2,0, Router2,0−Processor2,0, as shown
in Figure 4. Communicating tasks can be allocated in dif-
ferent processors, resulting in potentially large transmission
overheads.

Both processor functionalities and labels have been assigned
with the round-robin order, presumably far from being optimal
(finding an optimal mapping belongs to the NP-hard problems
and thus is intractable [3]). The makespans for a few different
NoC sizes executing the DemoCar example with the FIFO
scheduler are presented in Figure 5. In line with our expecta-
tions, the makespan decreases with the NoC size growth due to
the lower contention and processor utilization up to a certain
mesh size (here: 3x3), after which the potentially increased
distance between message senders and receivers changes this

Router0,1 Router1,1 Router2,1

Router0,0 Router1,0 Router2,0

Router0,1-Router1,1 Router1,1-Router2,1

Router2,1-Router2,0
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Fig. 4. Example of a path in a mesh Network on Chip
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Fig. 5. Makespan values for mesh NoC with FIFO scheduler (bars) and
percentage of met deadlines (crosses) - DemoCar use case

trend. The obtained worse results than those presented in Fig-
ure 3 show the price of using NoC communication without any
task allocation optimization and motivate developing methods
aiming at makespan shortening and improving meeting timing
constraints.

B. Task and Memory Allocation

Interval algebra can be also used to evaluate the quality of
the allocation of tasks and labels into processors to decrease
the makespan and meet all timing constraints. In this exper-
iment, we use it as a fitness function in a genetic algorithm
that aims to explore the allocation space towards solutions
with optimised timing behaviour statically, during the system
design stage [18]. To demonstrate this possibility, a NoC mesh
platform with XY routing algorithm has been chosen. For the
DemoCar application, the size of the mesh has been initially
configured as 4x4. The application model has been extended
with communication messages between tasks and labels. The
genetic algorithm is then executed to perform both task and
label allocations to processors during 100 generations of 20
individuals each. The first fully schedulable allocation has
been found in the 17-th generation, but the fully schedulable
allocation found in the 95-th generation has had 20% lower
makespan value. This workload is also fully schedulable in
a 3x3 mesh, as a allocation with no violations has been
found in the 12-th generation (Figure 6 top). For a 3x2 NoC,
the fully schedulable allocation has been found in the 18-
th generation, whereas the minimum makespan in the 32-nd
(Figure 6 bottom). A fully schedulable allocation has not been
found for 2x2 mesh NoC, despite analysing much wider search
space than previously - spanning over four islands with 100
individuals each. The best found allocation leads to violation
14 out of 186 deadlines.

C. Performance and scalability

The average execution time of performing the interval
algebra preserve operation during the experiment with the
bus-based system has been lower than 0.002s regardless the
scheduler applied. To determine the approach scalability, a
real-life engine control system, composed of 1297 tasks and
46929 labels, has been chosen as a taskset. It has been
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Fig. 6. Missed deadlines (grey) and makespan (black) value optimization for
DemoCar implemented on 3x3 (above) and 3x2 (below) mesh-based NoC

evaluated by the IA reference implementation in 0.25s. All
these computations have been performed by a single core in
a typical desktop computer. These results confirm that the
proposed approach is applicable to industrial-size cases. For
comparison with another analytical method, we have rewritten
the DemoCar use case in MAST-1 model and performed its
schedulability analysis with MAST 1.5.0.1 tool from Univer-
sity of Cantabria3. To make the comparison fair, the soft-
ware has been configured for multiprocessor and distributed
systems and to reflect task dependencies with offsets. With
the fastest technique available for these settings, Offset Based
Approximate Analysis, the analysis of a single mapping takes
31s, which is too long to be used as a GA fitness function.
Comparisons with other formalisms and with real system
performance are planned as future work.

VI. CONCLUSIONS

An interval algebra has been proposed for evaluating perfor-
mance parameters of multiprocessor systems. This algebra is
expressive enough to model a wide class of platforms, includ-
ing homogeneous or heterogeneous processors connected with
buses or NoCs. The application model covers broad range of
tasksets, with deterministic or stochastic execution time and
deadlines, with any dependency patterns or processor affini-
ties. The modelled tasks can be singletons, strictly periodic,
sporadic or aperiodic. The efficiency and scalability of the
reference implementation facilitates using the interval-algebra-
based evaluation as a fitness function in various search-space
heuristics even with industrial-size cases.

The conducted experiments demonstrated a selection of an
appropriate number of processors to satisfy all the applica-

3http://mast.unican.es

tion’s timing constraints and a choice of a suitable scheduling
policy. The resource contention was assessed and resolved by
using different platform architectures and resource allocations.
The taskset schedulability and makespan were optimized by
using genetic algorithms in mesh-based NoCs with various
processor numbers.

The library source is planned to be publicly released under
the GNU licence in the second half of 2015.
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