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Abstract—Next generation deep neural networks for classifica-
tion hosted on embedded platforms will rely on fast, efficient, and
accurate learning algorithms. Initialization of weights in learning
networks has a great impact on the classification accuracy. In this
paper we focus on deriving good initial weights by modeling the
error function of a deep neural network as a high-dimensional
landscape. We observe that due to the inherent complexity in
its algebraic structure, such an error function may conform to
general results of the statistics of large systems. To this end we
apply some results from Random Matrix Theory to analyse these
functions. We model the error function in terms of a Hamiltonian
in N-dimensions and derive some theoretical results about its
general behavior. These results are further used to make better
initial guesses of weights for the learning algorithm.

I. INTRODUCTION

Machine learning is a discipline in which correlations drawn
from samples are used in adaptive algorithms to extract
critical and relevant information that helps in classification.
The interplay between the formulations of learning models in
the primal/dual spaces has a great impact in the theoretical
analysis and in the practical implementation of the system,
more so when emerging embedded platforms play host to
a variety of classification systems and applications. Clearly,
the demand on performance efficiency and accuracy of such
machine learning system is of paramount interest.

Learning can be supervised, unsupervised or even a combi-
nation of the two. In face recognition systems for instance,
machine learning is typically supervised since it is trained
using a sample set of faces. Whereas, in big data analytics,
machine learning is unsupervised since there is no a priori
knowledge of the features/information associated with the
data. In the terminology of machine learning classification is
considered an instance of supervised learning, i.e. learning
where a training set of correctly identified observations is
available (i.e. the training set is labelled). In unsupervised
learning, a model is prepared by deducing structures present
in the input data (which is either not labelled or no a priori
labelling is known) and project them as general rules. This
could mean identifying a mathematical method/process for
data organization that systematically reduces redundancy. The
corresponding unsupervised procedure is known as clustering,
and involves grouping data into categories based on some
measure of inherent similarity or distance. In semi-supervised

learning, input data is a mixture of labelled and unlabelled
samples. There is a desired prediction problem but the model
must learn the structures to organize the data as well as make
predictions.

Neural networks (NNs) are one of the major developments
in the field of machine learning. The popularity of NNs is due
to its substantial learning capacity and adaptability to various
application domains. The building blocks of a NN are called
neurons that act as processing nodes. Such nodes arranged in
layers make the network. The layers are called input, hidden
or output layer based on their function and visibility to the
programmer. These layers are interconnected by synaptic links
that have associated synaptic weights. A pictorial representa-
tion of a neuron and a feed forward neural network is shown
in Fig. 1(a) and Fig. 1(b) respectively. Training a NN refers
to tuning the synaptic weights to implement a given function.
The function computed by each neuron is

y = f

(
wb +

N∑
i=1

wi × xi

)
(1)

where, N is the dimension of the input sample. xi and wi are
ith element of the input sample and weight vector respectively.
wb is weight associated with the bias input as shown in Fig.
1(a). f is a differentiable non-linear function. Some of the
popular non-linear functions used are sigmoid, tanh, ReLU
etc. During training of this neuron, samples xtr from the
training database Xtr, each associated with labels ytr are
used to train the synaptic weights. This tuning of weights is
performed to minimize the error function which is a function
of difference between the predicted output and the actual
output given by

E =
1

Nsamp
×
Nsamp∑
i=1

ytri − f
wb +

N∑
j=1

wj × xtri,j

2

(2)
where xtri,j is the jth element of ith training sample and
Nsamp is the number of training samples. The error function
is a high dimensional landscape, which needs to be explored
for its minima.

A single neuron can be trained using standard procedures
such as gradient descent that updates the weights based on

ar
X

iv
:1

60
7.

06
01

1v
1 

 [
cs

.L
G

] 
 2

0 
Ju

l 2
01

6



In the proceedings of the 16th International Conference on Embedded Computer Systems: Architectures, MOdeling, and
Simulation (SAMOS) 2016

gradient of the error function. When it comes to the training of
a multi-layer feed forward NN, the gradient descent involves
layer-wise computation of gradients and tuning the weights
accordingly. This method is popularly known as the Back
propagation. To train a multi-layer NN using back propagation,
there are two main design parameters to be chosen. First,
the learning rate which can be visualized as a step size
in the search for minima in the error landscape. During
training, dynamic update of learning rate has shown to perform
better learning in practical examples. The second, but more
important, design parameter to be chosen is the initial synaptic
weights to start the back propagation. The initialized weights
have shown to affect the number of iterations required for the
convergence along with the classification performance of the
trained network [1]. Weight initialization methods such Xavier
method [2] and Nguyen-Widrow method [3] are being used
in deep learning frameworks like Caffe [4] and Matlab Neural
Network Toolbox [5] for faster and efficient learning. Majority
of these deep learning frameworks employ stochastic gradient
descent algorithms to arrive at the optimal weight vector for
accurate classification.

Deep Neural Networks (DNNs) [6] have recently emerged
as the area of interest for researchers in the field of machine
learning. The strength of DNN lies in the multiple layers of
neurons that together are capable of representing a large set
of complex functions. Although we see numerous applications
of DNN, training DNNs has always been a challenge due
to the large number of layers. In addition, these very deep
networks have witnessed the problem of vanishing gradients
[7], that has encouraged the researchers to explore better
methods of initializations. A good weight initialization has
shown to play a crucial role in achieving better minima with
faster learning in DNNs. Therefore, there is a need for better
weight initialization methods that will play a major role in
training emerging very deep neural networks.

In this paper we explore statistical methods from Random
Matrix Theory (RMT) [8] for large systems, and apply these
concepts to explore High Dimensional Landscapes of Error
Functions for fast learning. While such methods have been
applied to problems in Physics to study complex energy levels
of heavy nuclei, financial analytics for stock correlations, com-
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(b) A three layer feed forward neural network

Fig. 1. A single neuron and a feed forward neural network

munication theory of wireless systems, array signal processing,
this is for the first time (to the best of our knowledge) that
such a method is being applied to learning systems. The rest
of the paper is organized as follows. In section II we give a
brief introduction to the RMT and its applicability in learning
systems in the context of prior work. We refer to analysis
of RMT and results in the literature which are the basis for
development of our approach for faster learning. In section III,
we describe our approach that applies RMT to the problem of
learning in neural networks. Section IV contains analysis of
different parameters in RMT to improve the learning ability of
the network along with related results to support our theory.
We conclude in section V.

II. SOME HISTORY: RANDOM MATRIX THEORY AND
RELATED WORK

Lately Random Matrix Theory (RMT) has been applied
effectively in various fields of science and engineering [8].
The fact that little knowledge of RMT is sufficient for its
application [8] has encouraged considerable research work
towards exploring applicability of RMT in different application
domains.

We present two fundamental results of RMT that appear
again and again in many of the models characterized by
random matrices.

A. The Semicircle Law

Wigner’s Semicircle Law [9] can be stated as follows
Consider an ensemble of N×N real symmetric matrices with
independent identically distributed random variables from a
fixed probability distribution p(x) with mean 0, variance 1,
and other moments finite. Then as N →∞

µA,N (x) =

{
2
π

√
1− x2 if |x| ≤ 1

0 otherwise
(3)

In other words, the sum of normalized eigenvalues in an
interval [a, b] ⊂ [−1, 1] is found by integrating the semicircle
over that interval.

The semicircle law provides the requisite connection be-
tween the eigenvalues of a random matrix and the moments
of an ensemble of random matrices.

B. The Tracy Widom Law

Problems regarding the motion of a particle in a high-
dimensional landscape occur throughout physics in various
disciplines such as Spin-glass theory, String theory, the theory
of Supercooled liquids, etc. [10]. The dynamics of a system
in an N -dimensional potential can be described by

dyi
dx

= −∇iV (4)

where V = V (x1, x2, ..., xn) is the functional form of the
potential of interest. A high-dimensional landscape is charac-
terized by its stationary points. Stationary points are points on
the landscape where a particle moving on it is at equilibrium.
At stationary points, the gradient of the potential vanishes. The
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nature of the stationary points is determined by the laplacian of
the potential which is given by the eigenvalues of the Hessian
matrix of the system. A matrix element of the Hessian matrix
is defined as

Hij = ∇2
ijV (5)

The probability of finding a local minima is given by P (λ1 <
0, λ2 < 0, ..., λn < 0). This is equivalent to finding the
probability that the maximal eigenvalue λmax < 0. The study
of the maximal eigenvalue of a random matrix is thus of
appreciable interest in disciplines that study high-dimensional
landscapes. Tracy and Widom [11] showed in 1994 that the
distribution of the maximal eigenvalue of an ensemble of
random matrices is given by

P (λmax ≤ w,N) = Fβ(
√

2N−2/3(w −
√

2)) (6)

where Fβ is obtained from the solution to the Painlevé II
equation. β = 1 corresponds to the Gaussian Orthogonal
Ensemble (G.O.E.). The G.O.E. will be our ensemble of
interest in this paper. Setting β = 1 the expression for F1(x)
is given by

F1(x) = exp

(
−1

2

∫ ∞
x

((y − x)q2(y) + q(y))dy

)
(7)

where q is given by

d2y

dx2
= 2q3(y) + yq(y) (8)

Here N is the dimension of the random matrix under con-
sideration. The Tracy Widom Law thus provides us with a
powerful analytical tool in the study of minima of a large
random landscape: the main subject of this paper.

C. High Dimensional Landscapes

Fyodorov et. al. [12] state that finding total number of
stationary points in a spatial domain of random landscape is
difficult and no efficient techniques are available to perform
the task. However, it is possible to perform such calculation
for Gaussian fields H(x) which have isotropic covariance
structure, i.e., covariance only dependent on the Euclidean
distances |x1 − x2|. The estimation of stationary points in a
spatial domain is equivalent to evaluating the mean density of
eigenvalues of the Gaussian Orthogonal Ensemble (G.O.E.)
of real N ×N random matrices which has a well established
closed form expression [13].

We refer to concepts in [12] to build a base for our theory
elaborated in section III. We consider a random Gaussian
landscape

H =
µ

2

N∑
i=1

n2i + V (n1, n2, ..., nN ) (9)

where µ is a tuning parameter and V is a random mean-zero
Gaussian-distributed field with covariance given by

〈V (m), V (n)〉 = Nf

(
1

2N
|m− n|2

)
(10)

where f(x) is a smooth function decaying at infinity. Com-
paring H(x) with the Gaussian Orthogonal Ensemble (G.O.E.)
and applying the tools [12] of RMT, one can count the average
number of minima 〈Nm〉 of H. As discussed in [12], 〈Nm〉
is given by

〈Nm〉 =

(
µc
µ

)N 2(N+3)/2Γ(N+3
2 )

√
π(N + 1)NN/2

IN

(
µ

µc

)
(11)

where IN (µ/µc) is given by

IN

(
µ

µc

)
=

∫ ∞
−∞

e

(
s2

2 −
N
2

(
s
√

2
N−

µ
µc

)2)
d

ds
(PN+1(λmax ≤ s)) ds

(12)

Here µc =
√
f ′′(0). PN (λmax ≤ s) is the probability that

the maximal eigenvalue of a standardized G.O.E. matrix M
is smaller than s. The Tracy-Widom Law [11] gives us the
following formula as N →∞.

PN

(
λmax −

√
2N

N−1/6/
√

2
≤ s

)
∼ F1(s) (13)

where F1 is a special solution of the Painlevé II equation.
Substituting back into equation 12 we get

IN

(
µ

µc

)
=

∫ ∞
−∞

ehN (t)dt (14)

where hN (t) is

hN (t) =
s2t
2
− N

2

(
st

√
2

N
− µ

µc

)2

+ lnF
′

1(t) (15)

where st =
√

2(N + 1) + t (N+1)−1/6

√
2

. Thus as originally
shown in [12] expressions 11, 14 and 15 help to arrive at the
average number of minima for the energy landscape defined
by H.

The explicit formula for PN (λmax ≤ s) is

PN (λmax ≤ s) =
ZN (s)

ZN (∞)
(16)

where ZN is

ZN (s) =

∫ s

−∞
dλ1

∫ s

−∞
dλ2 · · ·

∫ s

−∞
dλN∏

i<j

|λi − λj | exp
(
−λ2i /2

) (17)

as given in [12]. Here λi is the ith eigenvalue ofH. In equation
12 the limits of the integration are over the entire real line.
From equations 16 and 17 we see that this manifests as an
integral over all the possible minima for each xi. Consider
having finite limits to the integral in equation 12. We see
again from equations 16 and 17 that this would mean that
we’re searching for minima in the range defined by our new
limits. We have thus defined an N -dimensional hypercube

3



In the proceedings of the 16th International Conference on Embedded Computer Systems: Architectures, MOdeling, and
Simulation (SAMOS) 2016

inside which we choose to search for minima. Introducing
finite limits in equation 14 we get

IN

(
µ

µc

) ∣∣∣∣b
a

=

∫ b

a

ehN (t)dt (18)

with hN as defined in equation 15. This gives

〈Nm〉ba =
µ

µc

N 2(N+3)/2Γ(N+3
2 )

√
π(N + 1)NN/2

IN

(
µ

µc

) ∣∣∣∣b
a

(19)

Equation 19 provides us a formula by which we can calculate
the mean number of energy minima of the Hamiltonian H
within a hypercube defined by the limits of the integral in the
R.H.S.

D. Related Work

In [1], a Layer-sequential unit-variance (LSUV) initial-
ization method for weight initialization, in connection with
standard stochastic gradient descent (SGD) is proposed that
leads to state-of-the-art thin and very deep neural nets.
Through experimental validation the authors establish that the
proposed initialization leads to learning of very deep nets
that produces networks with test accuracy better or equal to
standard methods and is comparable to complex schemes such
as FitNets [14] and Highway [15].

Authors in [16] propose greedy layer-wise unsupervised
training strategy for deep multi-layer neural networks that
targets initializing weights in a region near a good local
minimum, giving rise to internal distributed representations
that are high-level abstractions of the input, resulting in better
generalization.

Authors in [17] draw a parallel between machine learning
problems, such as deep networks, and mean field spherical
spin glass model in terms of finding the ground state energy
of the mean field system’s Hamiltonian (H), though in reality
the two systems are not mathematically analogous. They hint
at the two systems being special cases of a more general phe-
nomenon which is not yet discovered. Through experiments on
teacher-student networks with the MNIST dataset, the authors
report that both gradient descent and their proposed stochastic
gradient descent methods (based on RMT) are equally efficient
in identical number of steps.

As discussed so far, RMT provides statistics about the
eigenvalue spectrum of an arbitrary random matrix. Quantum
theory treats all physical observables as operators. The energy
of any physical system corresponds to the result of the action
of the Hamiltonian operator H on the system. Quantum theory
provides the formalism by which the Hamiltonian of a system
can be realized as a Hermitian matrix. Thus finding the energy
of a system boils down to solving the eigenvalue problem
of the Hamiltonian matrix. Since the Hamiltonian is a large
complicated infinite dimensional matrix it only makes sense to
talk statistically. RMT provides us the necessary mathematical
tools to do so.

In this paper, we explore the performance of a multi-
layered network by carrying out a Layer sequential supervised
initialization of weights by exploring the high dimension error

landscape using a stochastic method based on RMT, to be
followed by a standard stochastic gradient descent (SGD)
method for learning. We believe that our approach/solution is
indeed based on the more general phenomena of finding the
minima on a high dimension error landscape as conjectured
by LeCun [17]. Authors in [18] suggest that the method of
second-derivatives intrinsically overcomes issues with patho-
logical curvature during optimization. They also show that pre-
trained initialization does not benefit the problem of under-
fitting. However our method provides probabilistic guarantees
on the nature of the minima the optimization converges to.
This would lead us to believe that our process of weight
initialization should improve the efficiency of any optimization
algorithm that is used for training Neural Networks.

III. EXPLORING HIGH DIMENSIONAL LANDSCAPES

In this section we model the error function of NN as a
random landscape defined in equation 9. To find the minima of
this high dimensional landscape, which are the optimal initial
weights for gradient descent, we propose a method based on
RMT. We compute weights using our RMT theory which are
used to initialize the synaptic weights of NN prior to back
propagation. We consider an application of Face Recognition
(FR) for analysis and justification of our approach.

A. Face Recognition

In FR, the neural network is trained to identify input
images as one of the categories/classes in the training database.
A detailed description of FR is given in [19]. Initially we
consider a toy model of a single layer of neurons with N input
nodes and Nclass output nodes, where N is the dimension of
input sample and Nclass is the number of classes/categories
in the training database. For simplicity, initially we do not
consider the non linear activation function, f , at the output
nodes. Each link connecting ith input node to jth output node
is associated with a synaptic weight wi,j . The output of each
output node is given by

yj =

N∑
i=1

wi,jxi, j = 1, 2, ...Nclass (20)

During training of this network, samples from the training
database are applied at the input nodes. The synaptic weights
are tuned according to the difference between the network
output y and the desired output yd.

From equation 20, error at the output node j is given by,

Ej =

(
ydj −

N∑
i=1

wi,jxi

)2

(21)

Suppose we write the desired output yd in the form

ydj =

N∑
i=1

ui,j (22)
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where ui,j is a real number. Substituting this value of ydj from
equation 22 back into 21 we get

Ej =

(
N∑
i=1

ui,j

)2

− 2

(
N∑
i=1

ui,j

)(
N∑
i=1

wi,jxi

)

+

(
N∑
i=1

wi,jxi

)2

(23)

Expanding the first term in the R.H.S, we get

Ej =

N∑
i=1

u2i,j +

N∑
i=1

N∑
k=1
i 6=k

(ui,juk,j) + · · ·

− 2

(
N∑
i=1

ui

)(
N∑
i=1

wi,jxi

)
+

(
N∑
i=1

wi,jxi

)2

(24)

The training of Nclass output nodes is independent of each
other. As our target is to arrive at a favourable initial synaptic
weights for gradient descent, we believe that these weights can
be computed by training each output node with samples from
the corresponding class.

Consider the following interpretation. Let xa represent a
sample that belongs to the training dataset of our toy network.
Let it belong to the ath class of samples and therefore let the
sum

N∑
i=1

wi,jx
a
i =

N∑
i=1

uai,j (25)

which by definition is equal to yaj . Similarly for every sample
xk in the training dataset we can associate with it a vector uk

that maps it to the correct output node.
The first term in the R.H.S of equation 24 is quadratic in u.

The other terms in the R.H.S are all complicated terms in x and
u. Observe that we can always define a transformation between
xi and ui,j in N -dimensions. This is true because both
coordinates represent different ways of looking at the same
landscape. xis are defined over a ‘position-field’, whereas us
are defined over the ‘transform-field’. Thus the error function
is the sum of a quadratic term in u and a complicated N -
dimensional function of variables u.

Since we are already in N -dimensions and are dealing with
an error function that has complicated terms, consider applying
the following trick. We replace the complicated part of the er-
ror function,Ej by a random function V (u1,j , u2,j , · · · , uN,j)
in N -dimensions where ui,j are mean-zero Gaussian random
variables. This assumption allows us to apply the tools of
Random Matrix Theory to analyze the error function as we
will discuss in section III-B

The above assumption begs the following question: How
do we know that are coordinates(images) are indeed mean-
zero Gaussian variables? We look to statistics for an answer
to this query. Each uj represents a pixel of a face image in the
dataset. Given a large database, by the Central Limit Theorem
(C.L.T.) each pixel takes Gaussian values. This answers the
Gaussian part, now let’s consider the mean-zero part. Each

pixel is associated with Gaussian values and a mean. Consider
the mean of all the pixels of an image. High resolution images
have lots of pixels. Therefore the mean of each pixel must
also conform to a Gaussian by the C.L.T. If we redefine the
origin of coordinates to this number, then provided that the
means have low variance, we have succeeded in producing N
independent mean-zero Gaussian random variables. Observe
that we have introduced a constraint by way of requiring that
the means have a low variance. We can ensure this constraint
by considering only similar images, i.e., images belonging to
same class, because similar images by definition don’t ‘vary’
much from each other. We would like to impress that such
a constraint doesn’t effect the generality of our results. This
is because we choose to train each output node of the neural
network independently.

B. Finding Minima on a High Dimensional error Landscape

To find the minima of the error function in equation 24, we
look for analogy between the error function and N dimensional
G.O.E. in equation 9. By representing terms other than the first
term in RHS of equation 9 as a random function V (x), we
write it as an N -dimensional Hamiltonian of the form

H =
µ

2

N∑
i=1

u2i + V (u1, u2, ..., uN ) (26)

where µ is a tuning parameter and V is a N -dimensional
random landscape with covariance given by equation 10. We
see that V (u1, u2, ..., uN ) is indeed a very complex function
which can be approximated to be a mean-zero Gaussian-
distributed field. We assume that the u follows the same
distribution as that of x that helps us in finding the minima of
the error landscape. As the training samples are face images
which are rotation and translation invariant, we can assume the
covariance matrix also to be isotropic. Having confirmed the
basic requirements, we can apply the RMT method described
in section II.

In our approach, we compute weight vectors connecting
each output node independently by using samples of cor-
responding class. Thus, we compute Nclass N-dimensional
landscape minima to train our toy network. From equation
15, 18 and 19 we conclude that the mean number of energy
minima of H is a function of hN .

To train an output node, the required solution is the value of
u that will have maximum mean number of minima indicating
the presence of optimum point. Looking at equation 15 we find
that hN is a function of µ

µc
, where µc is equal to

√
f ′′(0), and

f(x) is the covariance function. The last term in equation 15 is
logarithm of derivative of solution of Painlevé II equation that
is observed to be negligible when compared to the difference
of first two terms for large N . Therefore, in equation 15, µc
behaves as a critical point in every dimension representing
the point where we can find majority of minima. Gradient
is computed on the covariance matrix two times and square
root of the diagonal elements are assigned to µs in respective
dimensions. In equations 15, 18 and 19, it is observed that

5



In the proceedings of the 16th International Conference on Embedded Computer Systems: Architectures, MOdeling, and
Simulation (SAMOS) 2016

to find average number of minima in a spatial domain, hN
is integrated over the range in each dimension. A randomly
selected vector from the hypercube that shows a high density
of minima will give us the solution vector u. This implies
that to find our initialization weights, it would suffice to find
in each dimension u for which hN becomes maximum. Fig.
2 shows a three dimensional case where a cube is constructed
based on the max of hN in each dimension. Finally the
computed u is scaled down by the range of input pixels to
get the synaptic weights.

In the section IV, we analyse our method from an imple-
mentation perspective and select the parameters to achieve
accurate and robust classification. In addition, we extend
this work to multi-layer weight initialization with promising
results.

IV. ANALYSIS AND RESULTS

For functional verification of our RMT based weight ini-
tialization method, we use two face image databases: AR and
Extended Yale database B. AR database consists of 100 classes
each containing 26 face images. Extended Yale database B
consists of 37 classes, each with 20 face images. The images
are preprocessed, as described in section IV-A, before using
them for weight computation. We use Matlab NN tool [5] to
verify the effectiveness of our weights. By default, Matlab
NN tool uses Nguyen-Widrow weight initialization method
[3] and Conjugate Gradient Descent [20] for training the
weights. We apply the weights computed using our RMT
based method to the network before training and analyse and
compare the performance in terms of number of epochs for
convergence and final recognition accuracy of NN. We see
different recognition accuracies and number of epochs when
the NN tool is run multiple times with the same initialization
weights. Therefore, we run the same experiment multiple times
and report the arithmetic mean, and maximum values in this
paper.

A. Pre-processing the training data

We pre-process the samples by reducing the dimension
and also mean centring them. We define a G.O.E. of input

p 

hN 

hN 

hN 

q 

r 

Fig. 2. Construction of a cube based on maximum point of hN in a three
dimensional case.

obtained by performing Principle Component Analysis (PCA)
[21] on the test samples of faces. The eigenspace defined
for the faces not only serves to reduce the dimension of the
inputs, but also helps defining an error landscape over a G.O.E.
of principal components/axes. It is also possible to carry
out Feature Extraction (PCA) following the Random Matrix
Theory approach as reported in [22] for dimension reduction.
Resultant feature vectors are mean centred and divided by their
standard deviation to make it mean-zero and unit variance.

B. Selection of µ

From section III-B it is clear that µc is the critical parameter
which is responsible for variations in hN for a fixed N . A
three dimensional plot in Fig. 3 shows variation of hN with
different values of u and µ

µc
. We get components of u in

different dimensions where hN becomes maximum based on
the µ

µc
ratio. Fig. 4 shows a plot of indices of u for maximum

hN with varying µ
µc

. We find that the plot saturates beyond a
point after which we will have the same computed values of u.
Our aim is to get the values of u in the linear region of the plot
so that they cover the whole query region of the landscape for
effective weight computation. Therefore we select the tuning
parameter µ such that the ratio µ

µc
falls in the required range.

C. Multi-layer network weight computation

Until now we have established our theory for our toy
model of network which is a single layer of neurons. When
it comes to training a network for a large face database with
complex features, single layer of neurons are not sufficient to
achieve the required classification performance. To make our
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theory applicable to these conditions, we extend our theory to
multi-layer networks which requires computation of more than
one set of weights. In multi-layer neural networks, synaptic
weights associated with neurons in hidden layers try to identify
patterns in the input samples. These patterns will be used
collectively for classification in subsequent layers. During
back propagation, the weights tune themselves for identifying
a pattern in the input samples. This behaviour of hidden nodes
help us in extending our theory to multi-layer networks. Here,
similar to our toy model, we do not use bias inputs in all the
layers.

In multi-layer networks, application of our method is not
straight forward. Our method relies on class-wise computation
of weights, that needs equal number of nodes in each hidden
layer and the output layer as shown in Fig. 5(a). Let N and
Nhi are the number of nodes in the input and ith hidden node
respectively. Initially we apply our method on first layer of
neurons and compute a weight matrix of dimension N×Nh1.
This is analogous to training each first layer hidden node
with samples from respective class. This may look like an
unorthodox way of training, but we believe that this will help
to achieve better weight initialization. Once the weight matrix
for the first layer is computed, we compute output of the
first hidden layer by multiplying with the input sample set
Nsamp × N and a sigmoid operation. Although our theory
does not include a sigmoid unit at the neuron outputs, we have
experimentally observed that the computed weights performed
well with sigmoid units included in the network. The computed
outputs of dimension Nsamp×Nh1 from first hidden layer act
as inputs for the second layer with associated labels. Similarly
we compute synaptic weights for rest of the hidden layers and
the output layer. Previously in our toy model of NN, synaptic
weights of a neuron were computed considering only samples
of respective class. However, our method when extended to
a multi-layer NN, brings this indirect dependency which will
improve the classification performance. e.g., first node in the
second layer gets inputs from all the nodes in the previous
layer and thus, is dependent on the samples used under those
nodes in computing the weights. Plots in Fig. 7 compare
recognition accuracy and number of epochs for convergence
for our weight initialization with NW initialization method
used by Matlab NN tool. We use the maximum and average
values over a number of runs for this comparison. In Fig. 7(a)
and Fig. 7(b) we observe that for large number of classes, on
an average, our method of weight initialization has resulted
in better recognition accuracy. In addition, we see that the
difference between recognition accuracy of our method and
that of other standard methods increases with number of
classes. Finding better minima in the error landscape may
result in additional steps of weight updates which is observed
in Fig. 7(c) and Fig. 7(d).

The multi-layer network described above has a limitation
that the hidden and the output layer must have Nclass number
of nodes. In practical networks this is not a valid scenario, as
the number of nodes in each layer differs based on the training
database and available resources. In addition, for inputs with

N 

N 

Nclass 

Nclass 

Nh1 

Nh1 NhL-1 

NhL-1 

(a) 

(b) 

Fig. 5. Multi-layer networks with (a) equal and (b)unequal number of neurons
in L number of layers

very large dimensions and small number of classes, the net-
work cannot represent the classification function efficiently.
We address this issue by using our RMT method with a
clustering algorithm introduced at each layer. We use k-means
clustering which is an unsupervised clustering algorithm for
our experiments. The samples are clustered by the algorithm
based on their similarity and the target number of clusters. To
apply our method on this set-up, we consider each cluster as
a single class. We believe that it is a valid assumption as the
samples in a cluster are similar to each other due to adjacency
in the feature space. In addition, the hidden similar patterns in
samples from different classes are explicitly brought together
under a neuron. Fig. 5(b) shows a NN with varying number of
nodes in each layer. Performance of multi-cluster network on
100 classes of AR database with different methods of weight
initializations is shown using plots in Fig. 8(a) and Fig. 8(b).
Here too we observe that our RMT based initialization method
outperforms other methods in terms of recognition accuracy.

D. Significance of RMT based weight initialization in real-life
learning problems

The present work focuses on finding initial weights for
multi-layered shallow networks. The same theory applies to
deeper networks and convolution networks which we will
target in our future work. In shallow networks, we have
analyzed performance of our algorithm with respect to num-
ber of epochs and recognition accuracy for face recognition
application. Although we have shown the performance on this
single application with few standard face databases, we believe
that the algorithm behaves similarly for other recognition
applications where the database obeys the conditions necessary
for applicability of RMT mentioned in section III. All natural
image recognition problems fall under this category.

We have observed that an NN with our RMT based weight
initialization method results in better recognition accuracy as
compared to that of NN with standard weight initializations.
Although relatively standard initializations are lower in com-
plexity, the investment in additional computations brings in

7
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returns by way of higher recognition accuracy. The computa-
tions involved in finding initial weights per layer using RMT
are (not considering PCA which is a pre-processing step) co-
variance computation(O(N2Nsamp)) and search for maximum
value (O(NlogN)). When the number of nodes in each layer
are not equal to the number of classes, the additional com-
putations involve k-means clustering(O(NkN+1

samp logNsamp),
k=number of clusters). We intend to replace the k-means
clustering with a relatively simpler clustering method in our
future work.

In the case of large databases, typically training is performed
off-line. Such learning systems are hosted on multi-core
platforms due to latent parallelism in the training algorithm.
The additional computations required for RMT based weight
initialization also can be sufficiently parallelized on these
platforms and hence they do not significantly impact the
overall training time. In Internet of Things (IoT) devices, for
on-line training, size of the database is much smaller. For such
cases, better recognition accuracy is achieved by our method
as a trade-off for cost of additional computations.

E. Future direction in rigorous mathematical validation

In our quest to get the best possible initialization, we
choose µs so as to get empirically optimal values for µ/µc.
This presents an uneasy situation that suffers from the lack
of theoretical validation. However, the following schematic
provides (see Fig. 6) some insight as to why our choices for
the µs works.

Existing literature [12] talks about a phase transition in the
energy landscape of the Hamiltonian (as defined in equation
9). The phase when µ < µc has exponential number of minima
and the phase when µ > µc has just one minima. The phase
transition region (at a distance δ about µc) is characterised
by a sub-exponential number of minima. We conjecture that
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  be	
  a	
  saddle	
  
point	
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  N	
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  minimum	
  
point	
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  N	
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  ½μ	
  x2	
  	
  	
  

H	
  =	
  ½μ	
  x2	
  +	
  V(x)	
  	
  	
  	
  	
  

Fig. 6. Nature and density of minima at different values for µ. In the case
that µ < µc, the landscape is characterized by exponential number of minima.
This is because the parabola defined by a small value for µ tends to be broad.
The randomness in the potential V(x) therefore tends to produce a lot of bad
minima. In the case that µ ∼ µc, the parabola is sharper and the number of
minima is sub-exponential.

this phase transition region is defined by our choice of µ.
Therefore our search for minima on this landscape is likely to
find true minima. This is opposed to the case where there are
exponential number of minima and gradient decent leads us to
converge into bad minima. We believe that this paper presents
a new way of developing robust neural networks. The authors
plan to validate this conjecture in the immediate future.

V. CONCLUSION

Accurate classification is the goal of any multi-layer large
neural network. Initialization of weights has a significant
impact on the convergence of learning algorithms. We have
provided a statistical method based on Random Matrix Theory
for the weight initialization with probabilistic guarantees on
the nature of minima reached in the high dimension land-
scape defined by the error function. Experimentally we have
substantiated the novelty of our method in obtaining higher
classification accuracy over well known initialization methods
adopted by deep learning frameworks.
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Fig. 7. Performance of RMT based weight initialization method for two-layer
network with equal number of nodes in layers

(a) Recognition accuracy for 100 classes of AR face database

(b) Number of epochs for convergence for 100 classes of AR
face database

Fig. 8. Performance of RMT based weight initialization method for two-layer
network with unequal number of nodes in layers (150 nodes in the hidden
layer)
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