
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GERALDO FRANCISCO DE OLIVEIRA JUNIOR

A Generic Processing in Memory Cycle
Accurate Simulator under Hybrid Memory

Cube Architecture

Dissertation presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Luigi Carro

Porto Alegre
September 2017

CIP — CATALOGING-IN-PUBLICATION

de Oliveira Junior, Geraldo Francisco

A Generic Processing in Memory Cycle Accurate Simulator
under Hybrid Memory Cube Architecture / Geraldo Francisco de
Oliveira Junior. – Porto Alegre: PPGC da UFRGS, 2017.

70 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2017. Advisor: Luigi Carro.

1. In-Memory Processing. 2. Simulators. 3. Hybrid Memory
Cube. 4. 3D-Stacked. I. Carro, Luigi. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The fairest thing we can experience

is the mysterious.”

— ALBERT EINSTEIN

AGRADECIMENTOS

Agradeço aos meus pais pelo suporte. Agradeço ao Paulo pelo apoio durante a

elaboração deste trabalho (e por todas as discussões). Agradeço ao Professor Luigi por

me ensinar a pensar fora da caixinha. Agradeço aos amigos do Laboratório de Sistemas

Embarcados. Em especial ao Marcelo e o Anderson pelas caronas. O Jeckson pela parce-

ria. O Arthur pelas histórias. Agradeço ao Tiago pelas longas discussões sobre Game of

Thrones. E ao Leonardo por ser uma enciclopédia. Agradeço ao Professor Caco pelos

concelhos. E agradeço a Michele por aguentar minhas bagunças.

ABSTRACT

PIM - a technique which computational elements are added close, or ideally, inside mem-

ory devices - was one of the attempts created during the 1990s to try to mitigate the

memory wall problem. Nowadays, with the maturation of 3D integration technologies,

a new landscape for novel PIM architectures can be investigated. To exploit this new

scenario, researchers rely on software simulators to navigate throughout the design eval-

uation space. Today, most of the works targeting PIM implement in-house simulators to

perform their experiments. However, this methodology might hurt overall productivity,

while it might also preclude replicability. In this work, we showed the development of a

precise, modular and parametrized PIM simulation environment. Our simulator, named

CLAPPS, targets the HMC architecture, a popular 3D-stacked memory widely employed

in state-of-the-art PIM accelerators. We have designed our mechanism using the SystemC

programming language, which allows native parallel simulation. The primary contribu-

tion of our work lies in developing a user-friendly interface to allow easy PIM archi-

tectures exploitation. To evaluate our system, we have implemented a PIM module that

can perform vector operations with different operand sizes using the proposed set of tools.

Keywords: In-Memory Processing. Simulators. Hybrid Memory Cube. 3D-Stacked.

Um Simulador Genérico Ciclo-Acurado para Processamento em Memória baseado

na arquitetura da Hybrid Memory Cube

RESUMO

PIM - uma técnica onde elementos computacionais são adicionados perto, ou idealmente,

dentro de dispositivos de memória - foi uma das tentativas criadas durante os anos 1990

visando mitigar o notório memory wall problem. Hoje em dia, com o amadurecimento

do processo de integração 3D, um novo horizonte para novas arquiteturas PIM pode ser

explorado. Para investigar este novo cenário, pesquisadores dependem de simuladores em

software para navegar pelo espaço de exploração de projeto. Hoje, a maioria dos trabalhos

que focam em PIM, implementam simuladores locais para realizar seus experimentos. Po-

rém, esta metodologia pode reduzir a produtividade e reprodutibilidade. Neste trabalho,

nós mostramos o desenvolvimento de um simulador de PIM preciso, modular e parame-

trizável. Nosso simulador, chamado CLAPPS, visa a arquitetura de memória HMC, uma

memória 3D popular, que é amplamente utilizada em aceleradores PIM do estado da arte.

Nós desenvolvemos nosso mecanismo utilizando a linguagem de programação SystemC,

o que permite uma simulação paralela nativamente. A principal contribuição do nosso

trabalho se baseia em desenvolver a interface amigável que permite a fácil exploração de

arquiteturas PIM. Para avaliar o nosso sistema, nós implementamos um modulo de PIM

que pode executar operações vetoriais com diferente tamanhos de operandos utilizando o

proposto conjunto de ferramentas.

Palavras-chave: Processamento em Memória, Simuladores, Hybrid Memory Cube.

LIST OF ABBREVIATIONS AND ACRONYMS

ACM Active Memory Cube

AF Atomic Flag

ALU Arithmetic Logic Unit

CGRA Coarse-Grain Reconfigurable Array

CLAPPS Cycle Accurate Parallel PIM Simulator

ConvNet Convolutional Neural Network

CRC Cycle Redundancy Check

DDR Double Data Rate

DIMM Dual in-line Memory Module

DINV Data Invalid

DRAM Dynamic Random Access Memory

ERRSTAT Error Status

FRP Forward Retry Pointer

FSM Finite State Machine

FU Functional Unit

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language

HIVE HMC Instruction Vector Extensions

HMC Hybrid Memory Cube

HPC High Performance Computing

ISA Instruction Set Architecture

LM Link Master

LS Link Slave

NDP Near-Data Processing

NN Neural Network

NoC Network-on-Chip

Pb Poison bit

PIM Processor-in-Memory

RRP Return Retry Pointer

RTC Return Token Count

RTL Register Transfer Level

RVU Reconfigurable Vector Unit

SEQ Sequence Number

SLID Source Link ID

SMC Smart Memory Cube

SoC System-on-Chip

SSD Solid-State Drive

SST Structural Simulation Toolkit

TSV Through-Silicon Via

LIST OF FIGURES

Figure 1.1 Current memory and CPU scaling trends. The processor line depicts
the number of cores per socket, while the memory line predicts the memory
capacity per socket. ...12

Figure 2.1 Overview of a DRAM device. ...18
Figure 2.2 DRAM’s internal chip organization...19
Figure 2.3 DRAM’s Bank and Cell organization..20
Figure 2.4 Overview of the DRAM’s operation protocol. ..20
Figure 2.5 Overview of the Hybrid Memory Cube (HMC) organization. In this fig-

ure, a Partition is equivalent to a Dynamic Random Access Memory (DRAM)’s
rank. ..22

Figure 2.6 Fields for request and response HMC packets. ...23
Figure 2.7 Overview of the Transceiver module organization.25
Figure 2.8 Representation of the low-interleave algorithm used as memory map-

ping scheme. ...26

Figure 4.1 Simplified packet diagram of the proposed simulator.35
Figure 4.2 Simplified packet diagram of the Transceiver Layer.36
Figure 4.3 Block diagram of the packet generator module. ..37
Figure 4.4 Block diagram of the link slave module. ...38
Figure 4.5 Block diagram of the physical layer. ...39
Figure 4.6 Block diagram of the link slave module ..41
Figure 4.7 Simplified packet diagram of the Vault Layer. ..42
Figure 4.8 Block diagram of the Vault Request module. ..43
Figure 4.9 Block diagram of the Memory and TSV controller modules.47
Figure 4.10 Block diagram of native PIM module..47
Figure 4.11 Block diagram of the Vault Response module...48
Figure 4.12 Block diagram of the proposed PIM Interface. ...51
Figure 4.13 Block diagram of the Traffic Monitor class...53

Figure 5.1 Simulation steps our mechanism travels through execution..........................56

Figure 6.1 Link and Vault total bandwidth for sequential read and write requests.58
Figure 6.2 Vault total bandwidth for sequential read requests.58
Figure 6.3 Link total bandwidth for sequential read requests.59
Figure 6.4 Vault total bandwidth for sequential and random atomic requests.60
Figure 6.5 Link total bandwidth for sequential and random atomic requests.60
Figure 6.6 Overview of the Reconfigurable Vector Unit (RVU) organization.61
Figure 6.7 RVU’s Finite State Machine (FSM) ...62

LIST OF TABLES

Table 1.1 Processor-in-Memory (PIM) works and their simulators................................15

Table 2.1 Programming languages categorized targeting distinct levels of abstraction..28

Table 3.1 Comparison between available PIM simulators. "?" indicates the infor-
mation could not be obtained..34

Table 4.1 Description of th request_decoder module, its input/output ports, meth-
ods, and functions. ..44

Table 4.2 Description of th response_control module, its input/output ports, meth-
ods, and functions. ..50

Table 6.1 HMC configuration. ..57

Table 7.1 Comparison between available PIM simulators and CLAPPS. "?" indi-
cates the information could not be obtained. ..64

CONTENTS

1 INTRODUCTION...12
2 BACKGROUND..18
2.1 DRAM Basics ..18
2.1.1 DRAM Organization..18
2.1.2 DRAM Operations and Commands ...19
2.1.3 DDR Command Interface ..21
2.2 Hybrid Memory Cube ..22
2.2.1 Transceiver Layer...23
2.2.2 Vault Layer...25
2.3 The SystemC Programming Model ...27
3 RELATED WORK ...29
3.1 Processing-in-Memory Architectures..29
3.2 Processing-in-Memory Simulators ..32
4 SIMULATOR IMPLEMENTATION..35
4.1 Transceiver ..36
4.1.1 Requester..36
4.1.2 Responser...40
4.2 Vault ...41
4.2.1 Request...43
4.2.2 Memory and TSV Controllers ...46
4.2.3 Native PIM...47
4.2.4 Response ..48
4.2.5 PIM Interface ...50
4.2.6 Bank ...52
4.3 Traffic Monitor..54
5 SIMULATION MECHANISM..55
6 EXPERIMENTAL SETUP AND RESULTS..57
6.1 Memory Validation ...57
6.2 Atomic Requests..60
6.3 Case of Study: PIM Interface ...61
7 CONCLUSIONS AND FUTURE WORK..64
REFERENCES...66

12

1 INTRODUCTION

For decades, the slow advancements of main memory technology and manufactur-

ing processes have been overshadowed by Moore’s law (SCHALLER, 1997). As smaller

transistors paved the way for ever-faster processing units, the same could not be done

for memory devices, which have different trade-offs and design points. This led to both

a performance and a scaling gap between processing units and memory devices (WULF;

MCKEE, 1995). Figure 1.1, extracted from (LIM et al., 2009), illustrates the current trend

related to memory and CPU scaling. One can notice that the number of CPU cores per

socket has been doubling every two years, while the memory capacity doubles every three

years. If future systems continue to scale in this fashion, we expect memory capacity to

start dropping by 30 % every two years (LIM et al., 2009).

The bottleneck that the memory hierarchy represents to modern computational

systems is due to two fundamental reasons:

1. Technological. Dynamic Random Access Memorys (DRAMs) are commonly em-

ployed as the main memory device because of its reasonable cost per bit since it

requires only one transistor to store a single bit (JACOB; NG; WANG, 2010). As

detailed in Section 2.1, DRAM devices are charge-based modules, meaning that

data is stored using capacitor cells. This technological design choice adds com-

Figure 1.1: Current memory and CPU scaling trends. The processor line depicts the
number of cores per socket, while the memory line predicts the memory capacity per
socket.

2

1

10

100

1000

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

#Core

DRAM

R
e
la

ti
ve

c
a

p
a
c
ity

(a) Trends leading toward the memory capacity wall

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

0.1MB

1MB

10MB

100MB

1GB

10GB

100GB

(b) Memory variations for TPC-H queries (log scale)

(c) Memory variations in server memory utilization

Figure 1: Motivating the need for memory extension and
sharing. (a) On average, memory capacity per processor core
is extrapolated to decrease 30% every two years. (b) The
amount of granted memory for TPC-H queries can vary by
orders of magnitude. (c) “Ensemble” memory usage trends
over one month across 10 servers from a cluster used for
animation rendering (one of the 3 datacenter traces used in
this study).

typical usage, with the ability to dynamically add memory
capacity across the ensemble, can reduce costs and power.

Whereas some prior approaches (discussed in Section 2) can
alleviate some of these challenges individually, there is a need for
new architectural solutions that can provide transparent memory
capacity expansion to match computational scaling and
transparent memory sharing across collections of systems. In
addition, given recent trends towards commodity-based solutions
(e.g., [8][9][11]), it is important for these approaches to require at
most minor changes to ensure that the low-cost benefits of
commodity solutions not be undermined. The increased adoption
of blade servers with fast shared interconnection networks and
virtualization software creates the opportunity for new memory
system designs.

In this paper, we propose a new architectural building block to
provide transparent memory expansion and sharing for
commodity-based designs. Specifically, we revisit traditional
memory designs in which memory modules are co-located with
processors on a system board, restricting the configuration and
scalability of both compute and memory resources. Instead, we
argue for a disaggregated memory design that encapsulates an
array of commodity memory modules in a separate shared
memory blade that can be accessed, as needed, by multiple
compute blades via a shared blade interconnect.

We discuss the design of a memory blade and use it to propose
two new system architectures to achieve transparent expansion
and sharing. Our first solution requires no changes to existing
system hardware, using support at the virtualization layer to
provide page-level access to a memory blade across the standard
PCI Express® (PCIe®) interface. Our second solution proposes
minimal hardware support on every compute blade, but provides
finer-grained access to a memory blade across a coherent network
fabric for commodity software stacks.

We demonstrate the validity of our approach through simulations
of a mix of enterprise benchmarks supplemented with traces from
three live datacenter installations. Our results show that memory
disaggregation can provide significant performance benefits (on
average 10X) in memory-constrained environments. Additionally,
the sharing enabled by our solutions can enable large
improvements in performance-per-dollar (up to 87%) and greater
levels of consolidation (3X) when optimizing memory
provisioning across multiple servers.

The rest of the paper is organized as follows. Section 2 discusses
prior work. Section 3 presents our memory blade design and the
implementation of our proposed system architectures, which we
evaluate in Section 4. Section 5 discusses other tradeoffs and
designs, and Section 6 concludes.

2. RELATED WORK
A large body of prior work (e.g., [12][13][14][15][16][17][18])
has examined using remote servers’ memory for swap space
[12][16], file system caching [13][15], or RamDisks [14],
typically over conventional network interfaces (i.e., Ethernet).
These approaches do not fundamentally address the compute-to-
memory capacity imbalance: the total memory capacity relative to
compute is unchanged when all the servers need maximum
capacity at the same time. Additionally, although these
approaches can be used to provide sharing, they suffer from
significant limitations when targeting commodity-based systems.
In particular, these proposals may require substantial system
modifications, such as application-specific programming
interfaces [18] and protocols [14][17]; changes to the host
operating system and device drivers [12][13][14][16]; reduced
reliability in the face of remote server crashes [13][16]; and/or
impractical access latencies [14][17]. Our solutions target the
commodity-based volume server market and thus avoid invasive
changes to applications, operating systems, or server architecture.

Symmetric multiprocessors (SMPs) and distributed shared
memory systems (DSMs) [19][20][21][22][23][24][25][26][27]
allow all the nodes in a system to share a global address space.
However, like the network-based sharing approaches, these
designs do not target the compute-to-memory-capacity ratio.

Source: (LIM et al., 2009).

13

plexity and extra latency to access memory because (i) capacitors leak charge over

time, forcing data to be refreshed during fixed time intervals, and (ii) all read oper-

ations are destructive; therefore all read commands need to be followed by a write

command.

2. Architectural. The memory system has always been treated as a slave mechanism

that only responds to read/write commands. However, as previous works have

shown (LEE et al., 2010; STUECHELI et al., 2010), performance can be improved

when the memory system and computational units cooperate sharing run-time in-

formation. For instance, it is possible to improve memory throughput by (i) taking

advantage of memory parallelism and (ii) building memory controllers that explore

data locality.

The gap between memory and CPU technology becomes even more visible in systems

that process large volumes of data (MURPHY, 2007; RADULOVIC et al., 2015; LIM et

al., 2009), in the so-called Big Data and High Performance Computing (HPC) workloads.

For example, in a data-center scenario, a single query may request massive amounts of

data to be moved between the whole memory system. Passing through non-volatile to the

main memory modules, then by several layers of cache memories, until the requested data

finally reaches the processor, where typically just a small amount of computation will be

performed (SANTOS et al., 2017). Even though this issue is becoming more problematic

in modern workstations, (WULF; MCKEE, 1995) has first foreseen the memory impact

for future systems in 1995, calling it the Memory Wall Problem. The authors observed

that processor speed rises at a range of 75 % per year, while memory speed increases by

a factor of 7 % from each generation. This enormous gap between memory and CPU per-

formance implies that the memory system would be the primary source of performance

slowdowns. These days, to access main memory, the processor has to wait for around

100 clock cycles to receive the requested data back from memory. This scenario is even

more problematic when one considers multi-core and heterogeneous systems, where mul-

tiple memory requests are being made simultaneously, thus adding extra latency due to

conflicted accesses (MOSCIBRODA; MUTLU, 2007; EBRAHIMI et al., 2010; SUBRA-

MANIAN et al., 2013). Besides that, current DRAM memories are not able to supply

enough bandwidth for HPC and Big Data applications (RADULOVIC et al., 2015). To

conclude, what we have today are systems that require significant bandwidth from the

memory system, but a memory system that cannot provide such amount of data per sec-

onds.

14

Endeavoring to reduce the memory wall impact over large workloads, several

memory manufacturers have taken advantage of 3D-stacked integration technology to

implement 3D-stacked memories that fit better to HPC workloads. In a 3D-stack environ-

ment, several layers of memory modules are vertically connected by Through-Silicon Via

(TSV), improving data density and also increasing memory bandwidth. Also, 3D integra-

tion makes it possible to implement heterogeneous stacks, with layers of memories and

logic all together in one single chip. These features help to reduce the latency to access

memory by moving memory controllers from CPU units into the memory device itself.

Some commercial 3D stacked memories are available in the market nowadays, as Hy-

brid Memory Cube (HMC) (Hybrid Memory Cube Consortium, 2013), High Bandwidth

Memory (HBM) (HONG, 2014), and DiRAM4 (Tezzaron, 2015).

Most important, the possibility to combine memory devices and computation el-

ements into one single chip renews the prospect to explore Processor-in-Memory (PIM)

architectures (PUGSLEY et al., 2014). PIM, previously named Near-Data Processing

(NDP), was first designed to reduce the execution time of memory bounded applications

by placing logic elements inside DRAM modules, aiming to explore their much larger

internal bandwidth (PATTERSON et al., 1997). However, besides improving how the

system would exploit memory bandwidth, PIM approaches can potentially help reduce

overall memory access latency. Moreover, by adding logic modules closer to the memory,

the amount of data that needs to navigate throughout the whole memory system can be

reduced, therefore diminishing the total number of energy consumed by the entire system

- a key design constraint for large-scale data-processing centers and embedded systems.

To understand the impact that memory components impose to a system, either

regarding performance or energy consumption, researchers in academia heavily rely on

software simulators to navigate throughout the design evaluation space. A lot of effort has

been made during the past years by the academia to build memory simulators that could

push state-of-the-art designs to the next level of complexity. To list some, the DRAM-

Sim2 simulator (ROSENFELD; COOPER-BALIS; JACOB, 2011), a cycle-accurate Dou-

ble Data Rate (DDR) memory simulator, is widely employed to estimate DDR2/3 speed

and power consumption; the Cacti (SHIVAKUMAR; JOUPPI, 2001) model is a popular

tool to estimate cache performance, area, and power consumption; and VSSIM (YOO et

al., 2013) is a new Solid-State Drive (SSD) simulator that can mimic today’s SSD archi-

tectures.

Since PIM has emerged again recently, simulating the industry’s new memory de-

15

Table 1.1: PIM works and their simulators.

PIM Architecture Platform Category

Tesseract (AHN et al., 2015a) In-house cycle-accurate

IMPICA (HSIEH et al., 2016) gem5 cycle-accurate

NDA (FARMAHINI-FARAHANI et al., 2015) gem5 cycle-accurate

SMC (AZARKHISH et al., 2016a) gem5 cycle-accurate

AMC (SURA et al., 2015) Mambo Simulator cycle-accurate

HIVE (ALVES et al., 2016) SiNuca functional

GPU+CPU (XU; ZHANG; JAYASENA, 2015) In-house analytical

Neurostream (AZARKHISH et al., 2017) In-house cycle-accurate

NIM (OLIVEIRA et al., 2017) SiNuca functional

RVU(SANTOS et al., 2017) SiNuca functional

Source: Provided by the author.

vices or even testing novel PIM mechanisms is a common issue that researchers face. As

illustrated in Section 3, most of the works that target PIM implement in-house simulators

to support their experiments (ALVES et al., 2016; XU; ZHANG; JAYASENA, 2015; AHN

et al., 2015b; OLIVEIRA et al., 2017; SANTOS et al., 2017). Table 1.1 classifies some

previous PIM works and the simulator used in each case. Today’s PIM simulators can be

categorized into three broad groups: functional, cycle-accurate, and analytical models. To

illustrate, one could find works as (SANTOS et al., 2017), (OLIVEIRA et al., 2017), and

(ALVES et al., 2016) that make use of simulators in the functional category. These simu-

lators can determine the device performance isolated from other system components while

modeling none or a limited number of elements from the device’s micro-architecture. On

the other hand, simulators as the ones employed by (FARMAHINI-FARAHANI et al.,

2015) and (AZARKHISH et al., 2016a) perform a cycle-by-cycle evaluation of all sys-

tem components, from interconnection modules to the operational system. Finally, the

simulator used by (XU; ZHANG; JAYASENA, 2015) fits in the third class of simulators.

Their simulator is designed using machine learning techniques to estimate the final device

performance.

Two problems can be foreseen out of this scenario of multiple PIM simulators.

First, a significant part of researching effort is spent building the required simulation en-

vironment. Second, it becomes difficult to reproduce another researchers’ work. Another

well-known problem related to PIM simulators is how to measure three important aspects

of embedded system design: area, power, and energy consumption. Evaluating the total

16

design area is important to put boundaries to PIM architectures. Also, dissipated power

and energy consumption are two key design parameters in both embedded and HPC en-

vironments. Some approaches can be employed to obtain those metrics. First, one could

build their design model using Hardware Description Language (HDL) and directly ex-

tract the produced circuitry using synthesis tools (AZARKHISH, 2016). Even though the

Register Transfer Level (RTL) model may produce the most accurate result, its design

flow is extremely time-consuming. Another approach would be adopting tools as McPat

(LI et al., 2013) to estimate the model outputs. However, it is possible that the estimation

tool may produce imprecise results due the number of variables related to the matter (XI

et al., 2015).

Goal. In this work, we aim to build a generic PIM simulator that can aid researcher

to build and investigate novel PIM mechanisms. However, there are two major challenges

we have to deal with to cope with this task.

Challenge 1. Which type of 3D-memory organization should our simulator target?

Since the maturation of the 3D manufacturing technology, several stacking memories

devices have been proposed both by the academia and by different vendors (HONG, 2014;

Hybrid Memory Cube Consortium, 2013; Tezzaron, 2015). However, in most cases, there

is not a detailed documentation public available that describes these devices.

Challenge 2. How to provide a simple mechanism to allow designs to implement

new PIM architectures easily? An ideal PIM simulator would have to provide to the

final user two critical capabilities. First, it needs to be accurate as a memory simulator.

Second, the simulator needs to be flexible and easy to use. It needs to be flexible to

be employed in different PIM designs, which would probably use different types and

numbers of Functional Units (FUs), internal storage elements, distinct and specialized

Instruction Set Architectures (ISAs), and target various classes of applications. Also, the

simulator needs to be easy to use to reduce the amount of effort that is spent understanding

and extending the simulator.

To solve the first challenge, we have decided to employ the HMC device as our

3D-stacking memory mechanism. We took this decision based on two major facts. First,

even though there is no documentation publicly available describing in details the inter-

nals of an HMC module, the HMC Consortium has published an extensive documentation

that provides a high-level view of the memory organization and employed communica-

tion’s protocols. Second, there are a large number of works that have investigated the

capabilities and trade-offs related to HMC devices (ROSENFELD, 2014; AZARKHISH

17

et al., 2016a; MATHEW et al., 2017).

To solve the second challenge, we have implemented into our simulator a PIM

interface that deals with conventional operations, as reads and writes, to the user. In this

way, the user can focus only on designing the internals of their mechanism. Also, we

have extended the HMC communication’s protocol to understand a new set of operations

without imposing significant modifications to the already proposed mechanism.

Contributions. The major contributions of this work are:

• We built a generic Cycle Accurate Parallel PIM Simulator (CLAPPS) that can be

used to create custom PIM architectures. Our framework, described in details in

Section 4, has been developed using the SystemC programming language (PANDA,

2001). We have chosen to develop our system using SystemC because it can be

easily integrated with already available simulation platforms, for example, with the

widely employed gem5 (BINKERT et al., 2011) simulator 1. Also, a SystemC mod-

ule can quickly produce a synthesizable RTL model. Moreover, by implementing

our simulation using SystemC, we were able to simulate parallel behavior natively.

In the current version, we developed an HMC simulator targeting its latest techni-

cal specifications (Hybrid Memory Cube Consortium, 2013), including all HMC

instructions.

• We validated the memory side of our simulator using previous works that target

HMC devices. In special, we have used the work of (ROSENFELD, 2014) as

a guide for the results expected of internal and external memory bandwidth. To

demonstrate the PIM capabilities of our simulator, we have implemented a simple

vectorial processor, similar to the one proposed by (SANTOS et al., 2017), using

the proposed PIM interface (Section 6).

• With our simulator, we could observe common challenges that new PIM architec-

tures would possibly have to deal in the future, as the role of a 3D-stacking memory

in the system, programmability, and data coherence (Section 7).

1Gem5 is a robust and extensible system that can simulate most elements of a computer system, includ-
ing a number of instruction sets, micro architecture organizations, memory devices, interconnections, and
communication protocols.

18

2 BACKGROUND

In this section, we introduce some basic concepts that will be used throughout the

rest of this work. First, we give a brief explanation about the Dynamic Random Access

Memory (DRAM) architecture, organization, and functionalities. For a more detailed

overview of DRAM devices, we refer the reader to (JACOB; NG; WANG, 2010; HAS-

SAN et al., 2017; PATEL; KIM; MUTLU, 2017; SESHADRI et al., 2013; LIU et al.,

2013; LIU et al., 2012; LEE et al., 2015). Second, we describe in details the internal

structure and the communication’s protocol of an Hybrid Memory Cube (HMC) module.

All information related to HMC devices was obtained from the latest HMC specification

(Hybrid Memory Cube Consortium, 2013). Finally, we present a brief description of the

SystemC programming model.

2.1 DRAM Basics

2.1.1 DRAM Organization

Figure 2.1 illustrates a high-level view of a DRAM module. A single DRAM de-

vice is organized hierarchically into Channels, Dual in-line Memory Modules (DIMMs),

Ranks, Chips, Banks, and Cells. A Channel receives commands, address, and data via

buses connected to the memory controller placed into the CPU socket. Each Channel

has one or more DIMMs. Each DIMM is composed of a set of one or more Ranks, and

operates independently of each other. In today’s architectures, a single memory controller

can operate over a single Channel or over multiple Channels using a wider I/O interface.

A Rank consists of a set of DRAM’s Chips that share the command signals and works in

a lockstep. Typically there are from four to eight DRAM’s Chips in a Rank. Each Chip

Figure 2.1: Overview of a DRAM device.

CHANNEL 0

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIPCHIP CHIP CHIP CHIP

DIMM

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP
CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP

DIMM

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIPCHIP CHIP CHIP CHIP

DIMM

CHIP CHIP CHIP CHIP

RANK 1

CHIP CHIP CHIP CHIP
CHIP CHIP CHIP CHIP

RANK 0

CHIP CHIP CHIP CHIP

DIMM

CHIP CHIP CHIP CHIP

RANK 1

CHIP CHIP CHIP CHIP

Source: Provided by the author.

19

Figure 2.2: DRAM’s internal chip organization.

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Column-

address

decoder

128

(x64)

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

row-address

latch and

decoder

I/O gating

DM mask logic

Bank 7

Sense Amplifiers

Bank 6

Sense Amplifiers

Bank 5

Sense Amplifiers

Bank 4

Sense Amplifiers

Bank 3

Sense Amplifiers

Bank 2

Sense Amplifiers

Bank 1

Sense Amplifiers

Bank 0

16,384 Rows

128 Columns

64b per Column

Sense Amplifiers

8,192

16,384

64 bits

Read FIFO

and data

MUX

8 bits

Row

address

Column

address

Source: (SANTOS et al., 2016).

contributes to a portion of the data that flows from/to the request device. For example, in

a system with a Channel I/O interface of 64 bits, and 8 Chips, each Chip would output

8 bits of data in parallel.

Figure 2.2 depicts the internals of a single DRAM Chip. The primary block in a

Chip is the Bank. Inside a single Chip are usually four to eight Banks that can be accessed

independently and operate in parallel. Besides the Banks, there are a set of latches and

decoders used to access the Banks’ rows and columns, and some logic elements used

to output data to the bus interface. Figure 2.3a illustrates the internal organization of a

DRAM Bank. Each Bank is composed of a 2D grid of Cells, as shown in Figure 2.3b.

Each row of Cells is connected via a wordline, and each column of Cells is connected via

a bitline. Also, each bitline is connected to a sense amplifier. The set of sense amplifiers in

a bank are called Row Buffer. A DRAM Cell is the basic element of a DRAM device since

it is the actual storage element. Each Cell is built using an access transistor, controlled

by the wordline, connected to a capacitor. When the worline is set high, the bitline is

connected to the capacitor via the access transistor, allowing charge to flow into the sense

amplifier.

2.1.2 DRAM Operations and Commands

Figure 2.4, extracted from (LEE et al., 2015), illustrates important phases that

a DRAM’s cell goes through during a request command. Initially, the cell is in the

20

Figure 2.3: DRAM’s Bank and Cell organization.

Cell

Row

Wordline

Bitline

Row Buffer

Sense

Amplifier

(a) DRAM Bank

Wordline

Bitline

Capacitor

Access

Transistor

Sense Amplifier

(b) DRAM Cell

Source: Provided by the author.

precharged state 1 , where the wordline is held in low, the bitline and the sense am-

plifier are maintained in an equilibrium of 1⁄2 the VDD (maximum) voltage.

Activation. To access data from a particular row, the memory controller will send

through the I/O Bus the row address related to that row and the ACTIVATE command.

The row address is going to be decoded by the row decoder, and then the wordline related

to the row is going to be set high 2 . After that, all cells in the row are connected to their

particular bitline, and each cell will lose/gain charge depending on its initial value. The

charge will flow from the cell to the bitline if the cell is at a higher voltage state that the

bitline, or from the bitline to the cell otherwise. This state is called chage-sharing. The

sense amplifier will observe a positive or negative voltage difference on the bitline, and

then fully restore the cell’s charge based on that 3 .

Read/Write. When the sense-amplification process is completed, the sense ampli-

fier will have stored the data related to the charge on the cell (either 0V or VDD), and also

data will be restored into the cell 4 . The time the memory controller has to wait between

Figure 2.4: Overview of the DRAM’s operation protocol.

Source: (LEE et al., 2015).

21

an ACTIVATE and a READ/WRITE command and data to be stable on the sense amplifier

is called tRCD (row-to-column delay). After this time, the memory controller can send

the column address related to the fraction of data it wants to access from the row buffer (a

standard DRAM device has a row buffer of 4 Kbits or 8 Kbits). In traditional Double Data

Rate (DDR) DRAM modules, new data will be available on the external data bus in both

rising and falling edges of the clock. In general, the memory controller would try to max-

imize the number of consecutive access to the same row buffer (row buffer hit) since data

can be obtained in a much smaller latency direct from the row buffer. This mechanism

is called open-row policy. On the other hand, in a closed-row policy, a PRECHARGE

command would be sent after all READ/WRITE commands, therefore cleaning the row

buffer.

Precharge. When the memory controller issues a new request to a row different

to the one already activated (row buffer miss), or in the case of a closed-page policy, the

memory controller needs to emit a PRECHARGE command 5 . During precharging,

the wordline will be put in low, disconnecting the cell and the bitline. Also, the bitline

needs to be set again to 1⁄2 the VDD. Therefore, the cell is ready to respond to a new request.

The time between an ACTIVATE and a PRECHARGE command is called tRAS (row

active time). This time parameter needs to be respected so data can be fully restored

back to the cell. Also, after emitting a PRECHARGE command, the memory controller

has to wait for tRP (row precharge time) between issuing a new command so that the

precharging operation can be completed.

Refresh. Since the DRAM cell is a capacitor-based mechanism, it leaks charge

over time. Therefore, all rows need to be accessed periodically (typically 64 ms) to restore

data back to the cell. This process is called REFRESH. During refreshing, a row is

activated (opened), so that the sense amplifier can restore the cell’s charge. The time

parameter related to refresh is called tREFI (refresh interval).

2.1.3 DDR Command Interface

The memory controller issues request to the DDR device via the memory bus.

When trafficking through the bus, DDR commands are encrypted into a set of five distinct

signals: CKE, CS, RAS, CAS, and WE. The CKE (clock enable) signas tells if the memory

is activated (ready to be accessed) or in a low-power mode. The CS (chip select) signal

enables a given rank of chips in the DIMM. The RAS (row address strobe) signal activates

22

a row of cells, while the CAS (column address strobe) signals is used to select a specific

column within the row. These signals are combined with the WE (write enable) signal to

generate read/write requests.

2.2 Hybrid Memory Cube

Figure 2.5 depicts the internal organization of an HMC device. HMC is a 3D mem-

ory device that targets bandwidth-intensive applications. In the latest HMC specification

(Hybrid Memory Cube Consortium, 2013), the device is composed of four high-speed

serial links, a logic layer of 32 memory controllers (called Vault controllers), and four

layers of DRAM memories connected via Through-Silicon Via (TSV) through the Vault

controller. Each Vault controller can operate independently upon 16 memory banks, and

also can execute some atomic arithmetic operations. A single HMC device can provide

a total bandwidth up to 320 GB/s. With the logic and memory integration provided by

HMC, the memory controller can be moved from today’s internal CPU package to closer

to the memory device, reducing overall system latency and improving performance for

Figure 2.5: Overview of the HMC organization. In this figure, a Partition is equivalent to
a DRAM’s rank.

Figure 2.1: A closeup of an HMC stack.

Figure 2.2: The architecture of an HMC cube. High speed serial links bring data
into the cube which is routed to one of the vault controllers. Finally, the vault
controller issues DRAM commands to the DRAM vaults. Read data flows from the
vault controller through the interconnect and back out of the high speed links.

17

Source: Extracted from (ROSENFELD, 2014).

23

Figure 2.6: Fields for request and response HMC packets.

Packet Integrity
The integrity of the packet contents is maintained with the CRC field in the tail of every
packet. Because the entire packet (including header and tail) is transmitted from the
source link all of the way to the destination vault, CRC is used to detect failures that oc-
cur not only on transmission across the link, but along the entire path. CRC may be re-
generated along the path if flow control fields within the header or tail change. CRC re-
generation is done in an overlapped fashion with respect to a CRC check to ensure that
no single point of failure will go undetected.

There may be cases when the first FLITs of a packet are forwarded before the tail is re-
ceived and the CRC is checked. This occurs in the HMC’s link slave after a request pack-
et crosses a link and is done to avoid adding latency in the packet path. If the packet is
found to have a CRC error as it passes through the link slave, the packet is “poisoned,"
meaning that a destination, in this case a vault controller, will recognize it as nonfunc-
tional and will not use it. The link slave poisons the packet by inverting a recalculated
value of the CRC and inserting that into the tail in place of the errored CRC. A successful
link retry will result in the original packet being resent, thus replacing the poisoned
packet. Another example of a forwarded poisoned packet is the case in which DRAM er-
rors occur and are internally retried. If a parity error occurs on the command or address
from the vault controller to the DRAM, a response packet may be generated and trans-
mission back to the requester could be started before the parity error is detected. In this
case, the CRC in the tail of the response packet will be poisoned, meaning the vault con-
troller will invert the CRC and insert it into the tail of the packet. Consequently, the re-
quester will receive the poisoned packet and must drop it. The vault controller will retry
the DRAM request, and upon a successful DRAM access, another response packet will
be generated to replace the poisoned one.

If a packet travels across a link after it is poisoned, a link master will still be able to em-
bed flow control fields in the packet by recalculating the CRC with the embedded val-
ues, then inverting the recalculated CRC so that the poisoned state will be maintained.
Because the flow control fields are valid in a poisoned packet, it is stored in the retry
buffer. In this case, the link slave on the other end of the link will recognize the pois-
oned CRC and will still extract the flow control fields. Whenever a packet is poisoned,
the CMD, ADRS, TAG, and ERRSTAT fields are not valid, but the flow control fields (FRP,
RRP, RTC) are valid.

Request Packets
Request packets carry request commands from the requester (host or HMC link config-
ured as pass-thru link) to the responder (HMC link configured as host link). All request
packets are subject to normal packet flow control.

Figure 15: Request Packet Header Layout

60 58 57 24 23 22 12 11 07 6

ADRS[33:0]RES[2:0]

63 61

CUB[2:0] TAG[10:0]R
ES LNG[4:0] CMD[6:0]

Request packet headers for request commands and flow commands contain the fields
shown in the table below. Specific commands may require some of the fields to be 0.
These are provided in Valid Field Command Summary (page 79).

Hybrid Memory Cube – HMC-30G-VSR PHY
Packet Integrity

Pub. 10/15 EN 41 The Hybrid Memory Cube Consortium reserves the right to change specifications without
notice.

(a) Request header format.

Table 12: Request Packet Header Fields

Name Field Label
Bit

Count Bit Range Function

Cube ID CUB 3 [63:61] CUB field used to match request with target cube. The inter-
nal Cube ID Register defaults to the value read on external
CUB pins of each HMC device.

Reserved RES 3 [60:58] Reserved: These bits are reserved for future address or Cube
ID expansion. The responder will ignore bits in this field
from the requester except for including them in the CRC
calculation. The HMC can use portions of this field range in-
ternally.

Address ADRS 34 [57:24] Request address. For some commands, control fields are in-
cluded within this range.

Reserved RES 1 [23]

Tag TAG 11 [22:12] Tag number uniquely identifying this request.

Packet length LNG 5 [11:7] Length of packet in FLITs (1 FLIT is 128 bits). Includes header,
any data payload, and tail.

Command CMD 7 [6:0] Packet command. (See Table 23 (page 51) for the list of re-
quest commands.)

Figure 16: Request Packet Tail Layout

63 32 31 28 26 2529 1718202122 089

CRC[31:0] RTC[2:0] SLID[2:0] RES[3:0]
SEQ
[2:0] FRP[8:0]Pb RRP[8:0]

Table 13: Request Packet Tail Fields

Name Field Label
Bit

Count Bit Range Function

Cyclic redundancy
check

CRC 32 [63:32] The error-detecting code field that covers the entire packet.

Return token count RTC 3 [31:29] Return token count for transaction-layer flow control. In
the request packet tail, the RTC contains the encoded value
for tokens that represent available space in the requester's
input buffer.

Source Link ID SLID 3 [28:26] Used to identify the source link for response routing. The
incoming value of this field is ignored by HMC. Internally,
HMC overwrites this field and uses the value for response
routing; refer to the description of the SLID field in the re-
sponse header.

Reserved RES 4 [25:22] Reserved: The responder will ignore bits in this field from
the requester except for including them in the CRC calcula-
tion. The HMC can use portions of this field range internally.

Hybrid Memory Cube – HMC-30G-VSR PHY
Request Packets

Pub. 10/15 EN 42 The Hybrid Memory Cube Consortium reserves the right to change specifications without
notice.

(b) Request tail format.

Table 13: Request Packet Tail Fields (Continued)

Name Field Label
Bit

Count Bit Range Function

Poison bit Pb 1 21 Poison bit: The DRAM addresses to be written in this re-
quest will be poisoned by writing a special poison code to
alternating 16-byte blocks being written, starting with the
first requested 16-byte block. The other 16-byte blocks with-
in this request are written normally using the corresponding
write data included in the data payload.

Sequence number SEQ 3 [20:18] Incrementing value for each packet transmitted, except for
PRET and IRTRY packets (see Packet Sequence Number Gen-
eration (page 85)).

Forward retry point-
er

FRP 9 [17:9] Retry pointer representing this packet's position in the retry
buffer (see Retry Pointer Description (page 83)).

Return retry pointer RRP 9 [8:0] Retry pointer being returned for other side of link (see Re-
try Pointer Description (page 83)).

Response Packets
Response packets carry response commands from the responder (HMC link configured
as host link) to the requester (host or HMC link configured as pass-thru link). All re-
sponse packets are subject to normal packet flow control.

Figure 17: Response Packet Header Layout

63 333438394142 32 12 11 061 60 23 22 67

RES[4:0] AFCUB[2:0] RES[18:0] SLID[2:0] RES[9:0] TAG[10:0] LNG[4:0] CMD[6:0]

Response packet headers for response commands contain the fields shown in the table
below. Specific commands may require some of the fields to be 0. These are provided in
Valid Field Command Summary (page 79).

Table 14: Response Packet Header Fields

Name Field Label
Bit

Count Bit Range Function

CUB ID CUB 3 [63:61] The target cube inserts its Cube ID number into this field.
The requester can use this field for verification and for iden-
tifying unique tags per the target cube.

Reserved RES 19 [60:42] Reserved: The host will ignore bits in this field from the
HMC except for including them in the CRC calculation.

Source Link ID SLID 3 [41:39] Used to identify the source link for response routing. This
value is copied from the corresponding Request header and
used for response routing purposes.
The host can ignore these bits (except for including them in
the CRC calculation).

Hybrid Memory Cube – HMC-30G-VSR PHY
Response Packets

Pub. 10/15 EN 43 The Hybrid Memory Cube Consortium reserves the right to change specifications without
notice.

(c) Response header format.

Table 14: Response Packet Header Fields (Continued)

Name Field Label
Bit

Count Bit Range Function

Reserved RES 5 [38:34] Reserved: The host will ignore bits in this field from the
HMC except for including them in the CRC calculation.

Atomic flag AF 1 [33] Atomic flag

Reserved RES 10 [32:23] Reserved: The host will ignore bits in this field from the
HMC except for including them in the CRC calculation.

Tag TAG 11 [22:12] Tag number uniquely associating this response to a request.

Packet length LNG 5 [11:7] Length of packet in 128-bit FLITs. Includes header, any data
payload, and tail.

Command CMD 7 [6:0] Packet command (see Table 100 (page 76) for the list of
response commands.)

Figure 18: Response Packet Tail Layout

63 32 31 1718202122 02829 89

CRC[31:0] RTC[2:0] SEQ[2:0]
DINV

[0]ERRSTAT[6:0] FRP[8:0] RRP[8:0]

Table 15: Response Packet Tail Fields

Name Field Label
Bit

Count Bit Range Function

Cyclic redundancy
check

CRC 32 [63:32] Error-detecting code field that covers the entire packet.

Return token counts RTC 3 [31:29] Return token count for transaction-layer flow control. In
the response packet tail, the RTC contains an encoded value
equaling the returned tokens. The tokens represent incre-
mental available space in the HMC input buffer. See the ta-
ble below for the RTC encoding key.

Error status ERRSTAT 7 [28:22] Error status bits (see the ERRSTAT[6:0] bit definitions tables)

Data invalid DINV 1 [21] Indicates validity of packet payload. Data in packet is valid
if DINV = 0 and invalid if DINV = 1.

Sequence number SEQ 3 [20:18] Incrementing value for each packet transmitted (See Packet
Sequence Number Generation (page 85)).

Forward retry point-
er

FRP 9 [17:9] Retry pointer representing this packet's position in the retry
buffer (See Retry Pointer Description (page 83)).

Return retry pointer RRP 9 [8:0] Retry pointer being returned for the other side of link (See
Retry Pointer Description (page 83)).

Hybrid Memory Cube – HMC-30G-VSR PHY
Response Packets

Pub. 10/15 EN 44 The Hybrid Memory Cube Consortium reserves the right to change specifications without
notice.

(d) Response tail format.

Source: HMC Specification 2.1. (Hybrid Memory Cube Consortium, 2013).

multi-core chips. Also, it is now possible to add computation resources alongside the

logic layer of the HMC module. The HMC organization can be split into two major

blocks. First, the Transceiver layer is responsible for managing request and response

packets going between the HMC and the host device. Second, the Vault layer operates

over these requests, accessing the DRAM layers to read/write data.

2.2.1 Transceiver Layer

HMC operates using a packet-based protocol. A packet, called FLIT, is 128 bits

width and has at least a header and tail fields, each one being 64 bits width. Figure 2.6a

illustrates the fields presented in the request header packet. It holds information regard-

ing the requested HMC command (CMD), the number of FLITs in the request (LNG), a

unique tag that identifies the request (TAG), the memory address (ADRS), and a module

identifier (CUB). The CMD field is seven bits long and stores one opcode from the 54 pos-

sible HMC operations. Operations are categorized as READ, POSTED READ, WRITE,

POSTED WRITE, and ATOMIC. READ and WRITE operations vary from 16 bytes to

256 bytes, in a 16 bytes step. All these operations return an acknowledge packet to the

host. POSTED instructions have the same behavior than standard READ and WRITE

operations but do not produce an acknowledge response to the host. The LNG field stores

how many FLITs compose that specific request. The minimum number of FLITs per re-

quest is one, and the maximum is seventeen (for a 256 bytes request). The TAG field is

24

responsible for identifying each packet. This value is used to ensure ordering between

requests and responses throughout the system, and to identify a failing packet that may

need to be re-sent. Finally, the CUB field stores an identifier for the particular memory

cube, since several HMCs modules can be connected in a network to provide more mem-

ory capacity. Figure 2.6b shows the fields presented in the request tail packet. Most of

the information stored in the request tail is used to ensure correctness through the sys-

tem. Since data traffic back and forth host and memory via high-speed serial lanes (up to

30 Gb/s), errors might happen. Therefore, the HMC protocol provides a mechanism to

ensure packet integrity. The Return Retry Pointer (RRP), Forward Retry Pointer (FRP),

and Sequence Number (SEQ) fields are used to manage retransmission of invalid packets.

The Poison bit (Pb) is set to one when the host wants to mark locations in the DRAM as

having poisoned data. Source Link ID (SLID) indicates which one of the fours links the

request came from. All response packets must be returned to the same source link. Return

Token Count (RTC) indicates the number of free positions available in the request’s input

buffer. Finally, the Cycle Redundancy Check (CRC) field is used to verify the correctness

of the packet.

Once the memory has finished processing the request packet, the Transceiver layer

will generate a packet response to the host. Similar to the request packet, the response

packet has a header and tail fields, plus any data payload related to the request. Fig-

ure 2.6c illustrates the response header. The CMD field specifies the request command

that relates to the response. The LNG field tells how many FLITs compose the packet.

The TAG field is the same identifier that came with the request packet. The Atomic Flag

(AF) is set when overflow happens while executing arithmetic instructions. The SLID

field indicates the link where the response should return. Finally, the CUB tells which

HMC device the packet belongs. Figure 2.6d shows all fields in a response tail. The RRP,

FRP, SEQ, RTC, and CRC fields serve the same purpose than the ones in the request tail.

The Data Invalid (DINV) bit tells the validity of the packet payload. The Error Status

(ERRSTAT) field is used to codify the type of error that might have happened during the

Transceiver process, as warnings, DRAM errors, link errors, protocol errors, Vault errors,

or fatal errors.

Figure 2.7 depicts the overall organization of the Transceiver module. The Re-

quester and Responder sub-modules compose the Transceiver module. The former one

is related to the host or any other HMC module that sends packets in the downstream

flow, while the latter relates to the HMC module the sends packets in the upstream flow.

25

Figure 2.7: Overview of the Transceiver module organization.

Link Data Transmission
Commands and data are transmitted in both directions across the link using a packet-
based protocol where the packets consist of 128-bit flow units called “FLITs.” These
FLITs are serialized, transmitted across the physical lanes of the link, then re-assembled
at the receiving end of the link. Three conceptual layers handle packet transfers:
• The physical layer handles serialization, transmission, and deserialization.
• The link layer provides the low-level handling of the packets at each end of the link.
• The transaction layer provides the definition of the packets, the fields within the

packets, and the packet verification and retry functions of the link.

Two logical blocks exist within the link layer and transaction layer:
• The link master (LM), is the logical source of the link where the packets are generated

and the transmission of the FLITs is initiated.
• The link slave (LS), is the logical destination of the link where the FLITS of the packets

are received, parsed, evaluated, and then forwarded internally.

The nomenclature below is used throughout the specification to distinguish the direc-
tion of transmission between devices on opposite ends of a link. These terms are appli-
cable to both host-to-cube and cube-to-cube configurations.

Requester: Represents either a host processor or an HMC link configured as a pass-thru
link. A requester transmits packets downstream to the responder.

Responder: Represents an HMC link configured as a host link. A responder transmits
packets upstream to the requester.

Figure 3: Link Data Transmission Implementation Example

Input
buffer

Electrical
sub-block

Packet
decode,

CRC, LNG,
and

SEQ check

Logical
sub-block

LSPhysical RX

Physical Layer

Output
buffer

Electrical
sub-block

Retry
buffer

Logical
sub-block

LM

Physical TX

Responder Transaction
and Link Layer

Output
buffer

Logical
sub-block

Retry
buffer

Electrical
sub-block

Upstream
link

Downstream
link

LM Physical TX

Physical Layer

Input
buffer

Logical
sub-block

Packet
decode,

CRC, LNG,
and

SEQ check

Electrical
sub-block

LS

Physical RX

RequesterTransaction
and Link Layer

Hybrid Memory Cube – HMC-30G-VSR PHY
Link Data Transmission

Pub. 10/15 EN 14 The Hybrid Memory Cube Consortium reserves the right to change specifications without
notice.

Source: HMC Specification 2.1. (Hybrid Memory Cube Consortium, 2013).

Also, both Requester and Responder sub-modules have a Transceiver and Link Layer and

a Physical Layer. The Transceiver and Link Layer are responsible for handling the inter-

nal HMC communication protocol, encapsulating the requests and response packets and

managing packet integrity. The Link Master (LM) is the module responsible for generat-

ing the packet, while the Link Slave (LS) receives and forwards the packet. Meanwhile,

the Physical Layer serializes and de-serializes the packets produced by the Transceiver

and Link Layer, and also manages transmissions across the high-speed serial links.

2.2.2 Vault Layer

The major modules within the Vault Layer are the Vault controller, the memory

banks, some request/response buffers, and control logic. An HMC device is composed

of 32 independent Vaults that can operate in parallel. Each Vault provides an aggre-

gated bandwidth of up to 10 GB/s, which sums up to an internal aggregated bandwidth of

320 GB/s.

The Vault controller represents the same as the memory controller of traditional

DRAM devices. It has five primary functionalities. First, to de-codify the packet coming

from the Transceiver layer into DRAM’s READ and WRITE commands. Second, to

26

Figure 2.8: Representation of the low-interleave algorithm used as memory mapping
scheme.

03478121316173233

RR COLUMNVAULTBANKROW

16 bytes...16 bytes

select

Row BufferR
o
w

D
e
c.

R
o
w

D
e
c.

Crossbar

32 vaults

4 links

Bank

1
6

 B
A

N
K

S

Bank

1
6

 B
A

N
K

S

Source: Provided by the author.

schedule the memory requests in some order based on the row buffer policy. Third, to

control the flow of data that navigates through the TSV to/from the DRAM banks. Fourth,

to generate response packets to the host when appropriate. Finally, the Vault controller

is responsible for preserving the order of all response packets, since even though it is

possible to execute the memory requests out-of-order, they must be committed in-order

to maintain data coherency. The TSV connects the memory banks to the Vault controller

via a vertical bi-directional bus of 32 bytes. The bus is used to send the sequence of DDR

commands generated by the Vault controller, the address related to the request, and data

from READ and WRITE requests. Finally, the Vault controller has some logic units used

to execute arithmetic operations generated by HMC atomic instructions.

The memory banks have the same internal organization as presented in Section 2.1.

A single Vault controls 16 memory banks. For an 8 GBytes HMC module, a single bank

stores a total of 16 MBytes of data. The row buffer size of the memory banks in an HMC

device is much smaller than the one from standard DDR memories. While the latter

ranges from 4 Kbits from 8 Kbits, the former can be reconfigurated during initialization

to be 32 bytes, 64 bytes, 128 bytes, or 256 bytes width. This difference in size is due to the

fact HMC was originally designed for High Performance Computing (HPC) applications,

where data locality is small at the row buffer level. In consequence, the row buffer policy

employed natively by HMC is closed-row.

The row buffer size influences directly the interleave mechanism, i.e., how physi-

27

cal addresses are mapped to the memory modules. The interleave used by HMC is called

low-interleave and is illustrated in Figure 2.8. In this interleave algorithm, the four least

significant bits of the memory address (34 bits in total) are ignored. The next up to four

bits (the forth through up the seventh bits) address the number of 16 bytes segments

within the row buffer. Then five bits are used by the crossbar switch between the Vault

and Transceiver layers to address the target Vault. The next four bits address the banks,

and finally, the remaining bits are used by the row address decoder within the bank. This

algorithm favors subsequent requests since adjacent addresses are stored in sequential

Vaults, and then in sequential banks within a Vault. Therefore, bank conflicts are avoided

in requests for sequential addresses.

2.3 The SystemC Programming Model

Hardware Description Languages (HDLs), like Verilog and VHDL, have signif-

icantly increased the productivity level for hardware designers by creating a modeling

environment that imposes a higher abstraction level than the previously schematic-only

view. However, with the growth in complexity in modern hardware systems, the modeling

platform employed would also need to be elevated its abstraction level. From modeling

individual bits in HDL systems to simulating complex systems consisting of complex IP

blocks, a vast number of processor cores, embedded software and other elements that

might be included in today’s System-on-Chips (SoCs).

Table 2.1 gives an overview of different programming models and whether or not

they are appropriated for developing systems at distinct levels of abstractions. One can

notice that high-level programming languages are a good modeling choice when only the

primary system’s behavior needs to be evaluated. It can be used to abstract the complex-

ity involving the model’s architecture, and provide an overview of how the mechanism

will work conceptually. However, it does not provide detailed information regarding tai-

lored timing parameters and the internal organization of the system. On the other hand,

behavioral and Register Transfer Level (RTL) simulations can be obtained by employing

HDLs, where each component of the system can be modeled taking into account their

architecture, organization, and significant timing constraints. However, it can be a chal-

lenge to implement whole systems using these levels of abstraction, due to the scale and

complexity of modern hardware systems.

SystemC (GHENASSIA et al., 2005) was created in 1999 by the Open SystemC

28

Table 2.1: Programming languages categorized targeting distinct levels of abstraction.

Level of Abstraction Verilog VHDL C/C++

System Level No Suitable Poor Very Good
High Level (Behavioral) Good Very Good Good
Medium Level (RTL) Very Good Very Good Poor
Low Level (Gates) Good Poor No Suitable

Source: Adapted from (JAYADEVAPPA; SHANKAR; MAHGOUB, 2004).

Initiative (OSCI, now Accelera) as a modeling platform that aims to elevate the abstrac-

tion level targeting to create a more flexible and productive hardware/software co-design

environment. SystemC was built atop the C++ programming language. Therefore, it

takes advantages of the already presented object-oriented programming paradigm, the

native data types, the inheritance and polymorphism capabilities, and all the software in-

frastructure already available for C++. It also includes functionalities that are specific of

hardware designs as concurrency, clocks, and bit-based data types.

Listing 2.1 shows a generic SystemC code with the major components of its pro-

gramming model. It is composed of the module declaration, a set of input/output signals,

a method, a list of sensitivity related to the processes, and potentially one or more sub-

modules. A module is a container class that can be employed hierarchically to build each

entity of the systems. A module typically has a set of input/output ports, processes, sig-

nals, and local variables. All modules must implement its constructor method, where

submodules can be connected, and procedures are tight up with their respective sensitive

list. A method defines one or more behaviors produced by the module. Each method is

correlated to a sensitivity list of input ports. All methods within a module are executed

concurrently and are scheduled to run when any port described in their sensitivity list

changes.

Listing 2.1: A generic SystemC code snippet.

SC_MODULE(module) {

s c _ i n <T> ;

s c _ o u t <T> ;

SC_CTOR(module) {

SC_METHOD(prc_module) ;

s e n s i t i v e << c l k . pos () ; }

vo id prc_module () ;

sub_module mod_submodule ; } ;

29

3 RELATED WORK

In this section, we present an overview of past works that aim to employ Processor-

in-Memory (PIM) architectures in diverse classes of application. Also, we depict a list of

Hybrid Memory Cube (HMC) simulators available as open-source tools.

3.1 Processing-in-Memory Architectures

Several works have proposed to explore internal memory bandwidth and reduce

data movement through the memory system by exploring new PIM architectures. During

the 1990s, some authors provided mechanisms that integrated logic units inside DRAM

chips (PATTERSON et al., 1997; ELLIOTT et al., 1999). However, due to manufacturing

restrictions that DRAM devices face, this line of thought was abandoned until 3D-stacked

technologies have became a reality. In this section, we list some past works that employ

PIM designs targeting to accelerate distinct classes of applications.

First, the Tesseract mechanism (AHN et al., 2015a) aims to accelerate large-scale

graph processing workloads by exploring the internal bandwidth of HMC. The device is

composed of a set of 16 memory cubes. A simple ARM processor was inserted into each

memory vault of all memory cubes (the whole mechanism has 512 ARM processors).

Tesseract acts as a side accelerator to the host CPU, which is responsible for offloading

the graph operations to the device. The authors also provided a programming interface

that helps the accelerator’s memory prefetches to explore the available memory bandwidth

fully.

Second, in (HSIEH et al., 2016), the authors presented IMPICA, a PIM architec-

ture to accelerate pointer-chasing in memory. The authors observed that structures like

linked lists and B-trees have sparse memory access patterns, which harm systems’ perfor-

mance by increasing the number of cache misses. The mechanism integrates two different

engines into the vault units inside the memory cube. One mechanism is responsible for

translating virtual addresses to physical addresses efficiently, and the second one accesses

the memory using the converted address taking advantage of memory parallelism.

Farmahini-Farahani et. al. (FARMAHINI-FARAHANI et al., 2014) proposed an

architecture that consists of a Coarse-Grain Reconfigurable Array (CGRA) placed atop

a stack of DRAM modules. The mechanism aims to accelerate scientific and embedded

applications. The CGRA unit has 32 Functional Units (FUs) and receives 128 bits of data

30

from the DRAM layers bellow. To execute an application, the user needs to create a data

flow graph to be placed into the array. Then, data is read and write from memory via

memory mapped I/Os.

In (AZARKHISH et al., 2016a), the authors proposed to include an ARM proces-

sor between the vault controllers and internal interconnection of an HMC device, target-

ing to reduce data movement and improve the performance of memory bounded applica-

tions. The authors also developed an interconnection network that connects the memory

layers to the ARM processor. To execute an application, the processor offloads the re-

quired kernel to the processor placed inside the memory cube via a DMA engine. Virtual

memory capabilities are provided to the application by a TLB unit inside the ARM core.

(AZARKHISH et al., 2016a) was integrated with the gem5 simulator (BINKERT et al.,

2011).

The Active Memory Cube (ACM) mechanism (NAIR et al., 2015) is a PIM ar-

chitecture that can execute up to 1 Exaflops in 20 MW. Their device is composed of 32

processing lanes that are connected to HMC vault interconnection. (NAIR et al., 2015)

has a set of vector register file that can efficiently explore the available memory paral-

lelism. The authors provided a full suite of APIs and simulation tools to explore their

design, including support for power and reliability calculation.

HMC Instruction Vector Extensions (HIVE) (ALVES et al., 2016) provides vector

instruction capabilities to HMC modules. Each vector instruction operates over 8KB

of data retrieved from the memory vaults. This architecture target applications whose

behavior is similar to stream ones. HIVE is composed of 2048 functional units, capable

of executing integer and floating point operations, and a register bank with eight registers

of 8192 bits each.

In (XU; ZHANG; JAYASENA, 2015) it is proposed a PIM that targets Convolu-

tional Neural Network (ConvNet). Their design is comprised of a network of four HMC

modules and a host CPU. Each HMC is augmented with an accelerator layer of several

Graphics Processing Units (GPUs) and CPU. To take advantage of their design, the au-

thors have classified the layers of a ConvNet into two categories: explores data parallelism

and explores model parallelism. When data parallelism is used, the input batch of images

is partitioned equally between the PIM stacks. Thus each accelerator can execute indepen-

dently of each other. On the other hand, when model parallelism is employed, the Neural

Network (NN) itself is partitioned between the PIMs, allowing much larger ConvNets to

execute. The authors do not provide information about the architecture of the employed

31

GPU and CPU in the PIM layers and how the communication between modules is han-

dled. Also, to evaluate their design, the authors make use of a machine learning-based

simulator that only take into account the difference between bandwidth measures.

In (AZARKHISH et al., 2017), the authors presented Neurostream, a ConvNet ar-

chitecture built as a network of 4 HMC devices. In the logic layer of each memory cube,

there is a Neurocluster device, which is composed of four RISC-V processors, 32 stream-

ing co-processors built to accelerate multiply-and-accumulate operations. Their design

was developed based on the observation that the most significative operation executed by

today’s ConvNet is the MAC one. The major drawback to their design is the fact that their

accelerator layer is placed outside HMC vaults. Therefore, it is not possible to employ

the maximum available bandwidth provided by the memory.

The authors of (OLIVEIRA et al., 2017) proposed NIM, a PIM-based approach

that targets Spiking Neural Networks, another class of NNs. In this class of NNs, the

primary challenge is that to evaluate each neuron it is necessary to evaluate complex

mathematical equations under a strict time window. The authors have observed this appli-

cation does not take advantage of the cache hierarchy due to the lack of significative data

reuse between layers. Also, the time the application spent loading the parameters required

to evaluate a single neuron represented was significantly notable when compared to the

rest of the execution. In their design, the authors have elaborated tailored vector units

placed inside the HMC vaults that were specialized to compute the required mathematical

equations for two different neuron models.

Finally, in (SANTOS et al., 2017), the authors have observed that database oper-

ations have a similar behavior to streaming applications, i.e., there was not a significant

amount of data reuse between different queries execution. Another observation they made

was that, for queries that have a composed condition statement (SELECT * FROM table

WHERE [a AND b AND c ...]), data requests could be reconfigurable based on the result

of the previous conditional statement. With these two notes in mind, the authors built a

simple reconfigurable PIM mechanism to accelerate database operation, improving en-

ergy efficiency by reducing the total amount of data that needs to travel through the whole

memory system.

32

3.2 Processing-in-Memory Simulators

Since the release of the first 3D-stacked memory, several attempts to build a con-

cise simulator have been made by different researcher groups. However, it is not an

easy task to replicate those devices functionalities because their internals are not avail-

able as open source information. Besides that, most of the simulators presented in this

section have been implemented using sequential high-level programming languages. This

methodology faces some issues since memory modules have a highly-parallel behavior.

For example, any cycle-accurate simulator implemented using a non-parallel language

would need to check at every single clock single the current state of all modules in the

simulation, causing long simulation times.

From all currently available HMC simulators, HMC-Sim (LEIDEL; CHEN, 2016)

is the most similar to our framework. This simulator was developed using the C++ pro-

gramming language and provides a cycle-accurate memory simulation. Also, the simula-

tor provides a simple data-structure based interface. Thus one could extend the already

presented HMC instructions. Even though their approach can assist one to investigate the

PIM capabilities of an HMC device, it has some limitations. First, to implement custom

instructions, the authors have taken advantage of all opcodes that are not being used by

the current HMC specification. However, this methodology adds a scalability problem

to their interface due to two factors. First, only seventy (the number of currently free

opcodes) new instructions can be created by the user, and second, as it had happened

from HMC specification 1.0 to 2.0 (Hybrid Memory Cube Consortium, 2013), new native

instructions are introduced by the HMC Consortium, making use of reserved opcodes.

Finally, since shared library objects were used in their framework to provided a friendly

interface to include the new HMC instructions, only Unix users can take advantage of the

HMC-Sim framework. One significant difference from (LEIDEL; CHEN, 2016) and the

presented work is that our PIM interface allows the user to include new architectures into

HMC logic layer, rather than extending the already included instructions.

CasHMC (JEON; CHUNG, 2016) is a C++ HMC simulator that provides full

HMC capabilities. It is an offline simulator that uses an external memory trace as its

input generated by any processor simulator. This simulator aims to implement most of

the HMC resources, as packet error detection, link flow control, and HMC instructions,

while providing to the user some output files as performance summary, trace logs, and

simulation graphs. This approach can lead to longer simulation times since the simulator

33

needs to write information to four different files in each clock since. Besides that, the

simulation accuracy can be profoundly affected by the fact that the simulation does not run

alongside the program execution. Finally, CasHMC does not provide any PIM extension.

The Smart Memory Cube (SMC) Simulation Environment (AZARKHISH et al.,

2016a) is a complete set of applications built inside the gem5 framework targeting PIM

architectures. The simulator makes use of the already present memory modules, intercon-

nection networks, and CPU implementation to create the HMC device. Also, it provides

a software stack, including drivers and code annotation, to forward instructions to the

processor core inside the memory device. Even though SMC-Sim is a complete and well-

developed set of tools that can help the user to investigate the advantages of 3D-stacked

memories, it is possible to point out some implementation choices that may limit perfor-

mance exploration. First, the PIM layer is located between the memory controllers and

the interconnection layer. Therefore it is not possible to extract all the bandwidth pro-

vided by the memory because a significant portion of bandwidth contention exists at this

area. Second, although Azarkhish et al. (2016) have claimed to have validated their de-

sign latency and performance parameters using a complete Register Transfer Level (RTL)

design, the memory implementation inside the gem5 simulator is based on correlations

between Double Data Rate (DDR) and HMC architectures. This approach is valid in

most parts, but the HMC architecture presents some particular characteristics that are not

present in current DDR controllers, like Through-Silicon Via (TSV) access control. Fi-

nally, to obtain significant performance from their simulator, the authors have employed

some structural modifications to the current HMC implementation, for example, changing

the maximum request size from 256B to 512B, increasing the number of interconnection

from 4 to 8, while duplicating its data width from 128b to 256b. Some previous studies,

as (ROSENFELD, 2014), have shown that it is possible to extract close to the theoretical

HMC bandwidth using the already presented design modules.

Finally, many in-house simulators have been employed during the past few years

to obtain information regards PIM advantages. To illustrate, the author of (ALVES et

al., 2016) have used a functional HMC simulator to implement different accelerators that

target vector operations, database, and deep learning applications. Stelle et. al. (2014)

use a Structural Simulation Toolkit (SST) simulator to investigate how data and computa-

tional locality impact PIM design. ZHang et. al. (2014) implement an analytic simulator

aiming to understand how High Performance Computing (HPC) applications can benefit

from 3D-stacked memories. Sura et. al. (2015) present a set of methodologies that can

34

Table 3.1: Comparison between available PIM simulators. "?" indicates the information
could not be obtained.

Simulator
Simulation
Accuracy

Native PIM
Capabilities

Novel PIM
Capabilities

Peak
Bandwidth

Deal with
Parallelism

Input
Type

Parame-
terizable

Simulation
Time

HMC-SIM
Cycle-

Accurate
Yes

Yes -

Limited
320 GB/s

Event

queues

Offline

Trace
No ?

Cas-HMC
Cycle-

Accurate
Yes No ?

Event

queues

Offline

Trace
No 28.7s

SMC
Cycle-

Accurate
Yes Yes 205 GB/s

Event

queues

Online

Trace
Yes 4.5s

Source: Provided by the author.

help reducing access latency of 3D memories. To evaluate their proposal, the authors

implemented a timing-accurate simulator.

Today’s PIM simulators can be categorized into three broad groups: functional,

cycle-accurate, and analytical models. Analytical models provide faster simulations but

may not take into account important design metrics. Functional models execute only

the behavior of the target architecture, instead of implementing and simulating the in-

ternals of the architecture itself. Cycle-accurate models are the most precise but can

lead to slow simulations. Our simulator fits the latter category, but since we have used a

high-level hardware description language to build our design, the simulation time is sig-

nificantly lower than previous implementations. Also, our proposed framework has been

constructed following the most current HMC specifications.

To summarize, Table 3.1 list the most important open-source HMC simulators

available currently. Each simulator is categorized by their simulation’ accuracy, if it im-

plements the native HMC ’s PIM instructions, if it provides any means to include novel

PIM architectures into the simulator, the peak bandwidth obtained by the simulator, its

type of input file, whether or not the simulator is parameterizable, and the time it took

to simulate 1 M read instructions. As one can notice, all listed simulators claim to be

cycle-accurate, implement the native HMC atomic instructions, and deal with parallelism

using event queues. While HMC-SIM provides the user the ability to include novel PIM

instructions by extending the already present HMC atomic instructions, SMC allows the

user to insert a whole architecture within the HMC logic layer. However, as aforemen-

tioned, SMC cannot achieve HMC peak bandwidth. SMC is the only online simulator,

meaning it can run alongside a CPU simulation. It is the only parameterizable simulator,

while also being the fastest.

35

4 SIMULATOR IMPLEMENTATION

This section describes in details our simulator’s architecture and discusses some

design choices we have made during the implementation process. To implement the sim-

ulator, we have carefully studied the current Hybrid Memory Cube (HMC) specification

(Hybrid Memory Cube Consortium, 2013) and then elaborated each component described

in the documentation.

The presented simulator, called Cycle Accurate Parallel PIM Simulator (CLAPPS),

is divided into three major blocks: Vault, Transceiver, and Traffic Monitor. The first one

is responsible for receiving a memory request, translating the request into memory com-

mands, scheduling and executing the generated memory operations, and generating the

appropriate response packet for either a READ, WRITE, native Processor-in-Memory

(PIM), or custom PIM request. The second one is responsible for encapsulating requests

coming from the host, sending and controlling the request flow from the host to the Vault

and vice-versa. Finally, the latter one is a pure C++ model that is responsible for tracking

the request/response flow to produce statistics at the end of the simulation.

Figure 4.1 provides a simplified view of CLAPPS’s UML packet diagram. Due to

the complexity of the system, we broke-down the major modules into sub-modules and

give a detailed description of their functionalities and interconnections.

Figure 4.1: Simplified packet diagram of the proposed simulator.

Source: Provided by the author.

36

4.1 Transceiver

Figure 4.2 shows the packet diagram of the Transceiver module. As aforemen-

tioned in Section 2.2, the Transceiver is divided into two big blocks: the Requester and

the Responser modules. First, we described the Requester block, its internal modules and

operation, and then the Responser block.

4.1.1 Requester

The Requester module is composed of the transaction and link layer and physical

layer sub-modules. The former one is responsible for implementing the HMC communi-

cation protocol. It provides the definition of FLITs and also ensures that order between

Figure 4.2: Simplified packet diagram of the Transceiver Layer.

link_slave

link_master

physical_tx

physical_rx

link_slave

link_master

physical_tx

physical_rx

Source: Provided by the author.

37

Figure 4.3: Block diagram of the packet generator module.

link_master_requester

packet_generator

Source: Provided by the author.

requests is maintained. The latter one controls the high-speed serial links by serializing

and de-serializing request and response FLITs. The transaction and link layer is once

again divided into two sub-modules: link master and link slave. The link master encap-

sulates the request command that comes from the host, stores all generated FLITs at a

local queue related to each link and also saves the generated tag identifier of the current

request. Meanwhile, the link slave receives the response FLITs that come from the Vault,

and stores them into the target link response buffer. Then, it reads all tag values that come

from all link response buffers and based on the identifier stored at the link master queue

it allows the appropriate link response buffer to send its FLITs back to the host. The

physical layer is also split into two other sub-modules: physical tx and physical rx. While

the physical tx sub-module reads FLITs stored in each link queue and serializes them into

chunks of 16 bits, the physical rx sub-module reads chunks of 16 bits of data that come

from the Responser module and reconstructs them into whole 128-bit width FLITs.

The primary module inside the link master sub-layer is the packet generator. Fig-

ure 4.3 illustrates the packet generator internal organization. The module works as fol-

lows. First, when a change happens in either the address, cmd, data, or cub_id input, the

prc_flit_generator() method is launched. This method will first create the header and tail

portions of the FLIT related to the new request using the create_header() and create_tail()

functions. In the former one, the decode_cmd() function is called, so the number of FLITs

necessary by this request can be generated appropriately. After that, the generate_tag()

38

Figure 4.4: Block diagram of the link slave module.

link_slave_requester

reorder_response

mux_select set_mux

mux_4x1_w_set_bit

select set_bit

Source: Provided by the author.

function creates a unique tag identifier to the request. This tag is then stored into the

global tag buffer. When creating the tail part of the packet, the link_to_send() function is

called to indicate the path the request should follow through one of the four links. This

decision is made by selecting the destination link in a round-robin fashion. Finally, in

the case of a WRITE request, the appropriate chunks of input data are inserted into the

FLITs, and then the packet1 can be stored in the local buffer related to the chosen tran-

sition link. The prc_send_flit_to_physical_tx() method runs at all positive edges of the

clock, and is responsible for reading the link’s request buffer, and writing the request at

the top of the buffer in the flit_out port, and also rising the flit_available signal. To con-

clude, the prc_check_tag_ordering() reads the global tag buffer and writes its value at the

request_global_tag signal during all positive clock edges.

In the other hand, as illustrated by Figure 4.4, the link slave module has two sub-

modules, the reorder_response, and the mux_4x1_w_set_bit. The first one is an Finite

State Machine (FSM) that keeps track of the order which the link master module generated

packets, and based on that, selects the appropriate response packet to send back to the host.

To do so, it reads the tag at the top of the global tag buffer at the link master module and

1We assume during the rest of the text that a packet is equal to the set of FLITs generated.

39

the available FLITs that come from the downstream traffic. If any of the four links have a

response packet with a tag field matching the one at the global tag buffer, the multiplexer

is set to this link, and the path between link and host is locked until all FLITs from the

response packet have been sent. When this process is concluded, the reorder_request

sends a pop signal to the link master module so that the next global tag can be output.

Figure 4.5 depicts the physical layer module. This module is built using two sub-

modules, a serializer (physical tx) and a de-serializer module (physical rx). Each link has

its own set of serializer/de-serializer modules. The serializer (Figure 4.5a) splits the 128-

bit FLIT request into eight chunks of 16 bits and then transmits the fragmented pieces to

the high-speed serial lanes. All four serializers can work in parallel, i.e., sending different

requests at the same time, but only one request can navigate through a link per time.

Therefore, one link must conclude to service (transmit) all FLITs of a request before

switching to another request. On the other hand, the de-serializer (Figure 4.5b) receives

chunks of 16 bits of data and reconstructs the FLIT so that it can be sent to the transaction

and link layer.

Figure 4.5: Block diagram of the physical layer.

physical_tx_requester

serializer_requester

serializer_requester

serializer_requester

serializer_requester

(a) Physical tx module.

physical_rx_requester

deserializer_requester

deserializer_requester

deserializer_requester

deserializer_requester

(b) Physical rx module.

Source: Provided by the author.

40

4.1.2 Responser

Similarly to the Requester module, the Responser module has two internal sub-

modules, the physical and transaction and link layers. The physical layer has the same

functionality as the Requester’s one. It serializes FLITs that come from the Vaults and

de-serialize the ones received from the Requester.

Figure 4.6 illustrates the link slave organization. The module is composed of a

four by four crossbar network, four one by eight de-multiplexers, and the link control.

The interconnection between the four serial links and the 32 Vaults is a critical perfor-

mance bottleneck for an HMC device. Potentially, all four links will be sending data for

all the 32 Vaults, and vice-versa, creating a producer–consumer scenario. Ideally, this

interconnection would have low-latency to transmit packets, would be no-blocking, and

also would be scalable in size. However, it is not possible to always address these three

characteristics at the same time. For example, a non-blocking interconnection network, as

a crossbar network, does not scale well in size 2. Meanwhile, a smaller and scalable inter-

connection network, as a butterfly networks, will potentially generate conflicts between

accesses. Azarkhish et. al. (2014) have addressed this problem by proposing to employ a

Network-on-Chip (NoC) as the interconnection network between Vaults and Links. The

proposed NoC was based on the AMBA AXI-4.0 standard (AMBA, 2003). Even though

this solution provided a non-blocking and scalable interface, it added extra latency to the

Transceiver mechanism.

To cope with this problem, we have decided to implement a two-level intercon-

nection network. The first level connects the four links to four quadrants using the 4x4

crossbar switch. As specified by (Hybrid Memory Cube Consortium, 2013), a quadrant

is a group of eight Vaults. Then, each quadrant is connected to the Vaults using either an

8x1 multiplexer (in the downstream flow) or a 1x8 de-multiplexer (in the upstream flow).

Consequentially, we can archive a low-latency and non-blocking communication at the

first level, and a low-latency and blocking communication at the second level. Regarding

scalability, the crossbar switch now grows with the number of quadrants, in contrast to a

fully-connected 4x32 crossbar that would grow in terms of the number of Vaults.

The link control is responsible for managing the interconnection network and

works as follows. At the link slave, when the physical layer sends a new FLIT, the link

control reads the packet’s header to obtain the address, and the number o FLITs related to

2In fact, a crossbar network with N inputs and M outputs will require O(NM) switches.

41

Figure 4.6: Block diagram of the link slave module
link_slave_responser

xbar_4x4

select select select select

demux_1x8

demux_1x8

demux_1x8

demux_1x8

link_control

link_control

link_control

link_control

Source: Provided by the author.

the request. The address is important because it tells the destination Vault, based on the

interleaving being employed. The number of FLITs is required because the link control

must ensure that all FLITs from the request are sent prior servicing a new request. Then,

it sets the crossbar network and the de-multiplexer based on the obtained Vault address.

Besides that, it stores in the tag_per_link queue the tag related to the request.

At the link master (downstream flow), the link control reads the FLITs available

from the Vaults, checking if there is a response tag that matches the tag at the top of

the tag_per_link queue, therefore ensuring ordering between response packets within a

quadrant. If the required response packet is ready to be sent, the link control sets the

multiplexer and the crossbar to close the path between the Vault and the physical layer.

At the end of the process, the link control sends a pop signal to remove the current tag at

the top of the tag_per_link queue, allowing the next request can be serviced.

4.2 Vault

Figure 4.7 shows the UML packet diagram of the Vault module. The Vault mod-

ule is similar in functionality to Double Data Rate (DDR) Dynamic Random Access

Memory (DRAM)’s memory controller. However, due to intrinsic characteristics of 3D-

42

Figure 4.7: Simplified packet diagram of the Vault Layer.

request_traffic_controller

request_decoder

response_control

response_buffer

data_request_buffer

bank_request_buffer

data_response_buffer

bank_response_buffer

memory_controller

tsv_controller

pim_hmc

pim_hmc_data_buffer

pim_interface_instructio
n_buffer

pim_interface_read_writ
e_controller

bank

Source: Provided by the author.

stacked memories and also to respect the HMC protocol, diverse modifications to a simple

DRAM’s memory controller must be employed. The Vault is divided into Vault Controller

and Bank. The first one has the following sub-modules: request, response, memory con-

troller, Through-Silicon Via (TSV) controller, PIM HMC, and PIM interface. The PIM

interface is the principal contribution of this work. The last one implements the function-

alities of a DRAM bank.

In the following sections we discuss all the sub-modules present in the Vault. In

contrast to the Transceiver module, the HMC Consortium (Hybrid Memory Cube Con-

sortium, 2013) does not give information related to the Vault internal organization, TSV

width and operational frequency, the number of banks that can be opened per time, and

native PIM instructions’ implementation. To overcome this issue, we have gathered infor-

mation related to the Vault implementation from previously published works, in special

from (AZARKHISH et al., 2016b), (MATHEW et al., 2017), (ROSENFELD, 2014), and

(LEE et al., 2016). From (AZARKHISH et al., 2016b), we could obtain a general view

43

Figure 4.8: Block diagram of the Vault Request module.

Request

traffic controller

Request

decoder

Bank

request

buffer

Data

request

buffer

Memory

Controller

Bank

request

buffer

Data

request

buffer

Memory

Controller

Bank

request

buffer

Data

request

buffer

Memory

Controller

Bank

request

buffer

Data

request

buffer

Memory

Controller

Source: Provided by the author.

of the Vault organization, and how the elements of the module correlate to traditional

memory controllers. From (MATHEW et al., 2017), we gather the timing parameters and

operational frequency for the DDR memories, and also the Vault operational frequency.

From (ROSENFELD, 2014), we obtained information about the expected memory band-

width for diverse set of Vault configurations. Finally, from (LEE et al., 2016), we extracted

information about how the TSV is expected to work.

4.2.1 Request

Figure 4.8 shows the block diagram of the Vault Request module. This module is

composed of the request_traffic_controller, request_decoder, bank_request_buffer, and

data_request_buffer sub-modules. The request_traffic_controller is responsible for man-

aging the stream of FLITs coming from the host and from the PIM Interface (we give

more information about the PIM Interface in Section 4.2.5). Inside the module, an arbiter

decides which request’s flow can send its FLITs to the Vault in a round-robin fashion.

Therefore, if only requests from the host-side or only from the PIM Interface-side of the

flow are coming to the Vault, the request_traffic_controller just forwards the FLITs to the

Vault without checking the arbiter mechanism. On the other hand, if requests are coming

from both host and PIM Interface, the request_traffic_controller checks the round-robing

counter and forwards the request of the flow that has priority. At the end of the traffic, the

module increments the round-robin counter and serves the next requests.

The request_decoder module is the primary component of the Vault’s request

44

Table 4.1: Description of th request_decoder module, its input/output ports, methods, and
functions.

Inputs Outputs Methods Functions

start_decoding data_from_packet en_bank_data_buffer prc_decode header_decoder

request tag en_bank_response_buffer tail_decoder

link en_response_buffer decode_address

cub_id packet_to_pim_interface decode_cmd

response_lng en_pim_instruction_buffer bank_policy

cmd address_offset operation_size

pim_instruction alu_operation

operation bank_id

operation address

response_dst en_bank_operation_buffer

Source: Provided by the author.

block. It reads the upcoming FLITs and translates the request into READ/WRITE com-

mands, which the memory controller can understand. The module also schedules the

request to the appropriate memory controller, aiming to explore the maximum bank-level

parallelism by avoiding bank conflicts. Also, it stores upcoming data from the request

into the bank’s data request buffer. Finally, it sends important package-information that

comes with the request to the response module.

Table 4.1 specifies the internal organization of the request_decoder module, its set

of input and output ports, methods, and functions. The module works as follows. During

all rising edges of the clock, the prc_decode() method checks if the start_decoding signal

was raised. When the signal is set, the module starts decoding the upcoming flow of

FLITs. To keep track of the number of FLITs related to the request, the module has

an internal counter, which is initialized with zero during reset. If the counter is equal

to zero during decoding, it means that the module is dealing with the first FLIT of the

request. Then, the header_decoder() function is called to split the header’s fields into

command opcode, tag, the number of FLITs within the request, address, and cube. With

the command opcode, the module can call the decode_cmd() function to translate the

HMC instruction into simple READ/WRITE/ATOMIC commands, obtain the size of the

operation, and the number of response FLITs that the response module will generate when

the request process concludes. Also, the header_decode() calls the decode_address()

function to obtain the bank address targeted by the current request, the address within the

bank, and starting position data should be read/write in the row buffer.

45

When the header_decode() function returns, the bank_policy() function is called

to decide which memory controller should manage the current request. This decision is

made based on the target bank from the request, and the banks that are currently being

serviced by the memory controllers. If any memory controller is servicing the same bank

targeted by the current request, the request is sent to this memory controller. Otherwise,

the request is sent to the next memory controller in a round-robin fashion. To simplify our

simulator’s design, we decided to correlate the number of memory controllers that can be

operating in parallel with the tFAW DRAM timing parameters. This parameter specifies

the number of rows that can be kept open at the same time, without overheating the chip.

Since the HMC row policy is defined as close-row, there is no row buffer parallelism

to explore. Therefore, it is possible to implement several memory controllers working

in different banks in parallel, instead of a single memory controller managing several

banks without losing performance because the memory controllers do not need to share

row-level information. In today’s DDRx modules, the tFAW is up to four. Therefore we

implemented four memory controllers into the Vault. However, one could potentially keep

all 16-row buffers (there are sixteen banks per Vault) open at the same time to explore the

available bank level parallelism dramatically3.

Following the request decoding process, after decoding the header and deciding

the destination memory controller, it is required to determine if the upper part of the cur-

rent FLIT represents a portion of data or it is the tail field. If the number of FLITs is

one, the higher part of the current FLIT has the tail payload, where the return link id can

be obtained. Otherwise, it will be data coming from a WRITE or ATOMIC request. In

this case, the request_decoder module stores all following data chunks in the respective

data_request_buffer (each memory controller has it private set of bank operations and

data request buffers) until the final FLIT arrives. When this happens, the returning link

id can be extracted, and finally, all pieces of information related to the request were ob-

tained. Then, the request command is stored in the bank_request_buffer, and the memory

controller can start working.

3For a more detailed exploration of the available bank level parallelism in HMC devices, we conduct
the reader to (ROSENFELD, 2014).

46

4.2.2 Memory and TSV Controllers

Figure 4.9 illustrates the memory controller and the TSV controller modules. The

memory controller reads the current request at the top of the bank_request_buffer and

generates a sequence of DDR commands that are sent to the memory banks via the TSV

bus. The module is implemented as an FSM. When a new request is available, the mem-

ory controller reads the target bank address, the operation (READ/WRITE/ATOMIC), the

operation size, the memory address, and the memory offset from the buffer into local reg-

isters. The memory controller follows the same path as presented in Section 2.1.3. Then,

it decodes the bank id and sends the CS command to the destination bank. After that, the

memory controller issues a RAS command followed by the row address to bring data from

the rows to the row buffer at the selected bank. After the row-to-column delay (tRCD) has

passed, the memory controller can start reading/writing data from/to the banks. Then, the

memory controller first selects the portion of data within the row buffer that is related to

the request by issuing a CAS command, following the column address. At this point, the

memory controller can start transferring data to the bank, in the case of a WRITE request

(issuing a WE command), or from the bank in the event of a READ request (issuing an

OE command). The memory offset value is used to indicate the start position within the

row buffer the operation should start being performed. This value is incremented by one

until the total request size has been performed. Since the TSV width is limited, potentially

several chunks of data need to be transmitted between the memory banks and the memory

controller’s queues (up to 8 transmissions to move 256 bytes of data). Data from a READ

request is stored into the data_response_buffer, while data from a WRITE request is read

from the data_request_buffer. The memory controller controls both buffers.

The TSV is a bi-directional vertical bus with a width of 32 bytes that connects the

memory banks to the Vault Controller. Since the memory controllers work in parallel and

do not share requests’ information between them, there must be a module that controls

the flow of data and commands through the bus. In consequence, the TSV controller

is responsible for monitoring the TSV traffic. The module is connected to all memory

controllers, which share information regarding the requested bank address, the size of

the request, and the operation being performed. The module implements a round-robin

mechanism to select which memory controller has the ownership of the bus. Also, based

on the current memory operation being executed, the controller selects the appropriate

direction of the bus, allowing data to navigate to the bank or from the bank.

47

Figure 4.9: Block diagram of the Memory and TSV controller modules.

Data

response

buffer

Data

request

buffer

Data

response

buffer

Memory

Controller

Data

request

buffer

Memory

Controller

Data

request

buffer

Data

response

buffer

Memory

Controller

Data

request

buffer

Data

response

buffer

Memory

Controller

TSV

Controller

Data

response

buffer
Bank

Data

response

buffer
Bank

Data

response

buffer
Bank

Data

response

buffer
Bank

TSV

Source: Provided by the author.

4.2.3 Native PIM

As previously mentioned, the HMC device is natively capable of executing some

arithmetic operations, like addition and bitwise logic operations. All these operations are

performed over 8 bytes or 16 bytes of data. Also, they are atomic read-modify-operations,

meaning that they operate over a single memory address. To provide these capabilities,

we implemented a simple Arithmetic Logic Unit (ALU), which is controlled by one of

the memory controllers. Therefore, all native PIM requests are sent to the same memory

controller by the request_decoder module.

Figure 4.10: Block diagram of native PIM module.

pim_hmc

pim_hmc_alupim_hmc_alupim_hmc_data_bufferpim_hmc_data_buffer

Source: Provided by the author.

48

Figure 4.11: Block diagram of the Vault Response module.

Data

response

buffer

Response

buffer

Response

control

Bank

response

buffer

Data

response

buffer

Memory

Controller

Bank

response

buffer

Memory

Controller

Bank

response

buffer

Data

response

buffer

Memory

Controller

Bank

response

buffer

Data

response

buffer

Memory

Controller

Source: Provided by the author.

Figure 4.10 illustrates the pim_hmc module, which is composed of a local data

buffer and a simple ALU. Any native PIM instruction follows three steps during their

execution. First, when the instruction arrives at the memory controller, the module is-

sues a READ command to the bank. However, instead of storing the read data into the

data_bank_buffer, the data is sent to the pim_hmc_data_buffer. Since the maximum size

of a native PIM instruction is 16 bytes, the pim_hmc_data_buffer has this same length.

Second, the memory controller issues an execute command to the pim_hmc module by

setting the operate signal to high. With this signal, the memory controller also sends

the required ALU operation that will be performed, the portion of the data from the

data_buffer that should be read (in a case of an eight bytes request), and any immediate

value that came with the request package. Finally, after executing the atomic instruction,

the memory controller sends a WRITE command bank to the bank, with the result data

from the operation. Different from a standard WRITE request, instead of sending data

from the bank_request_data_buffer to the bank, the memory controller sends the resulted

computation that the pim_hmc module outputs back to the memory bank.

4.2.4 Response

Figure 4.11 illustrates the Vault response mechanism and its internal modules. The

response_control module is the principal component of the response mechanism, being

responsible for scheduling response packets based on the request order, encapsulating the

response packet into FLITs, and sending the FLITs back to the Transceiver layer.

49

Table 4.2 describes the internal set of input/output ports, methods, and func-

tions present at the response_control module. The module works as follows. First,

the prc_response_control() method is called during all positive edges of the clock. This

method implements the FSM that controls the scheduling response mechanism. The FSM

works as follows. First, at the IDLE state, the method reads the the tag_from_rsp_buffer

and the is_pim_instruction fields at the top of the response buffer. The first signal tells the

current tag that must be serviced by the response mechanism, and the second indicates

if this tag is related to a custom PIM instruction. All this information was stored at the

response_buffer by the request_decoder module at the moment the request packet arrived

at the Vault Controller. If the current response tag is related to a custom PIM instruction,

the FSM can follow to the next state. Otherwise, it needs to check the tag at the top of

each bank_response_buffer to identify which memory controller is servicing the request

related to the current tag. After that, the FSM needs to wait for this particular memory

controller to raise the bank_status signal, indicating that it has finished servicing the re-

quest. Then, the FSM reads relevant pieces of information from the specific memory

controller bank_response_buffer, as the number of FLITs within the response packet, the

link the response must travel, the cub id of the response, and the command that came with

the request packet. After that, the FSM can raise the rsp_will_send signal indicating to the

memory controller that its request was chosen to be serviced by the response module. Fi-

nally, the FSM transitions from IDLE to the SENDING state. At this state, the FSM starts

encapsulating the response packet. First, it creates the header portion of the response

FLITs. If the number of response FLITs is one, it also creates the tail portion of the FLIT

and stores the produced FLIT into the local host_response_buffer. Otherwise, it needs

to read the response data from the specific data_response_buffer, encapsulate it into the

FLIT, and store the produced FLIT into the host_response_buffer. The process of reading

data from the data_response_buffer is repeated until the number of response FLITs of

the response was obtained. When that happens, the FSM can go to the FINISHED state,

when it sends a pop signal to the response buffer, and the next response tag can be ser-

viced. This described process is performed when the response_dst input signal is equal to

zero, indicating that the request packet came (and must return) to the host. If this signal

is equal to one, the request came (and must return) from the PIM Interface. In this case,

the buffer that the FSM stores the produced FLITs would be the pim_response_buffer. At

the end of the FINISHED state, the FSM return to the IDLE state.

The prc_response_control_read_host() method runs at all positive edges of the

50

Table 4.2: Description of th response_control module, its input/output ports, methods,
and functions.

Inputs Outputs Methods Functions

bank_status packet_out_host prc_response_control creat_header

en_pop packet_out_pim prc_response_control_read_host creat_tail

en_pop_from_pim packet_available_host prc_response_control_read_pim creat_data

is_pim_instruction packet_available_pim creat_response_packet

tag_from_bank_rsp_buffer en_pop_bank_response_buffer

tag_from_rsp_buffer rsp_will_send

data en_pop_data_buffer

link_from_pim_rqst en_pop_response_buffer

response_dst

link

cub

response_lng

cmd

Source: Provided by the author.

Transceiver clock. This method is responsible for reading the FLIT at the top of the

host_response_buffer, and writing its value to the packet_out_host output signal. It also

raises the packet_available_host signal, indicating that there is a new response FLIT avail-

able to the Transceiver Layer. On the other hand, the prc_response_control_read_pim()

method runs at all positive edges of the PIM Interface clock. It has the same func-

tionality of the prc_response_control_read_host() module, but it reads the FLITs from

the pim_response_buffer, and sets the packet_out_pim and packet_available_pim output

ports.

4.2.5 PIM Interface

The primary goal of this work is to provide a simple yet concise infrastructure

that allows new PIM architecture exploration. To do so, we have implemented the HMC

design as previously described, and studied a way to insert a custom processing module

into HMC without having to worry about HMC organization. We came to a simple PIM

Interface, placed into the Vault Controller, that receives custom PIM instructions, and also

provides a mechanism to perform read/write operations.

To implement the PIM Interface, we decided not to modify dramatically the HMC

data-path and its communication protocol. However, we still had to perform four minor

modifications to the HMC design. First, we have included a new opcode command to the

set of HMC command operations. The opcode included was the PIM_INSTRUCTION.

51

Figure 4.12: Block diagram of the proposed PIM Interface.

pim_interface

pim_instruction_buffer

pim_interface_read_write_controller

custom_pim

instruction_in instruction_available

instruction_out instruction_availableen_pop

en_pop

Source: Provided by the author.

All custom PIM instructions will make use of this same opcode. A single PIM request

is seen by our simulator similarly to a 16 bytes write request. All information related

to the custom PIM instruction will be placed in the data sections of the request packet.

Therefore, the user does not need to worry about violating already reserved opcodes or

being limited by the number of free available HMC opcodes when designing his or her in-

struction set. Second, we have included the already mentioned traffic_request_controller

module. This module is required to allow a request flow to come from both the host and

from the PIM Interface. Third, we have made use of a reserved bit from the request header

field (bit 23), to indicate to the request_controller whether the current READ/WRITE re-

quest should return to the host or the PIM Interface. Finally, we have included a path

between the request decoder and the PIM Interface, therefore FLITs related to a PIM

request can be sent to the PIM Interface.

Figure 4.12 depicts the proposed PIM user interface. The module is composed of

the pim_instruction_buffer and the pim_interface_read_write_controller. The process of

performing custom PIM operations works as follows. First, when issuing a new request

to the Transceiver module, the user must specify the PIM_INSTRUCTION opcode, the

address of the request, and then a 16 bytes of data that represents their custom instruc-

tion. The packet_generator will encapsulate this request the same way it makes a write

request. After that, the produced FLITs will travel through the same path as a standard

52

request until arriving at the request_decoder. At this point, when the request_decoder

de-codifies the command portion of the request, it will not recognize the opcode, and then

will send the upcoming FLITs to the pim_instruction_buffer at the PIM Interface. The

pim_instruction_buffer will then remove additional payloads of the FLITs (as header and

tail fields), and will raise the instruction_available output signal to notify the custom_pim

module that there is a new instruction currently available to it. The custom_pim does not

need to have any information about how the packet was encapsulated since the upcoming

PIM instructions have only information related to its own instruction set.

When the custom_pim instruction decides to perform a READ or WRITE oper-

ation to the HMC module, it sets the request_read or request_write signal, informing

to the pim_interface_read_write_controller that a new HMC request must be generated.

The custom_pim also provides the address it wants to access, the size of the request, and

data values in the case of a WRITE operation. The controller will then encapsulate the

PIM request into FLITs, creating a header and tail field in accord with the HMC protocol,

and then transmitting the generated request back to the Vault Controller. Also, it will set

bit 23 of the header field to one, indicating that the response package must return to the

PIM Interface. The request will be sent to the traffic_request_monitor, and when appro-

priated, it will be sent to the request_decoder. Once at the Vault Controller, the request

will follow the same path as any standard host request. However, once the request goes

through the response_control, the module will check that the rsp_destination signal is set

to one (recall this signal stores the value of bit 23 of the header), and then all response

FLITs will be sent back to the PIM Interface. Finally, when the PIM Interface receives

the response packets from the Vault Controller, it will notify the custom_pim module that

its READ/WRITE request is completed by raising the write_ack or read_ack signals. In

the case of a READ request, the PIM Interface removes the header and tail payloads of

the response package, and send the requested data to the custom_pim.

4.2.6 Bank

The Bank module replicates the behavior of a DRAM bank, as described in Sec-

tion 2.1. The module receives the CS, RAS, CAS, OE, WE signal from the memory

controller. The memory controller also sends the request address and the row buffer off-

set to the bank. Finally, data can traffic through the Vault Controller and the banks, and

vice-versa.

53

Figure 4.13: Block diagram of the Traffic Monitor class.

Vaults

Transceiver Link MasterLink Master Link Slave Link Slave

Vault RequestVault RequestVault ResponseVault Response

Link SlaveLink Slave Link Master Link Master

Requester

Responser

Traffic
Monitor

Source: Provided by the author.

Each HMC bank stores 16 Mbytes of data (there are 16 banks per Vaults, and 32

Vaults, summing up 8 Gbytes of memory). To reduce the amount of data that the simulator

has to allocate to each bank, we have implemented the 2D grid of DRAM cells using the

C++ standard hash data structure. In this way, we could reduce the amount of memory

that our simulator will allocate during simulation. In other words, our simulator will only

allocate all 8 Gbytes of memory when all bank addresses, from all banks, in all Vaults are

currently being accessed. To perform a READ/WRITE operation, the bank module goes

through the following states. First, when a CS signal arrives, the bank will decode this

signal to check if the upcoming request targets itself. If it does, the bank will go to the

activated state. Second, when the RAS signal is received, the bank loads the data stored

in the hash in the request address into the row buffer. Third, when the CAS signal arrives,

the bank will select the section of the row buffer related to the received column address.

Fourth, when receiving a WE signal, the bank reads data from the TSV bus and writes it

back to the row buffer. If it receives an OE signal, it writes the row buffer value to the

TSV bus. Finally, at the arrival of a DONE signal, the bank writes back the row buffer

value at the hash.

54

4.3 Traffic Monitor

The Traffic Monitor class is responsible for tracking the request and response flux

of packets in both Transceiver and Vault modules. Figure 4.13 illustrates how the traffic

monitor is connected to the system. The class has internal variable counters that store

the number of packets transmitted, the total number of bytes written/read by the host, the

total number of READ/WRITE instructions, and the total time spent during run-time.4 To

connect the traffic monitor to the rest of the HMC design, a pointer to the class is stored in

some key hmc_device modules. These modules are the link_master and link_slave mod-

ules of both Requester and Responder Layers. Also, we connected each Vault’s request

and response modules to the traffic monitor class. In this way, we can check the external

Link bandwidth and internal Vault bandwidth.

The monitoring process works as follows. When creating a new request packet,

the Requester Layer informs the Traffic Monitor the size of the request in bytes and its

type (READ/WRITE). If this is the first package being created, the Traffic Monitor sets its

timing counter. Then, every time the request passes through one of the modules that have a

Traffic Monitor pointer, it writes the current timing stamp back to the Traffic Monitor. The

timing stamp depends on the clock of the module. Also, it can depend on specific timing

parameters (as the DDR timings). To end the simulation, the Traffic Monitor also checks

if and request_global_tag buffer at the Request Layer is empty, what indicates that all

request packets have already been returned to the host. Also, it checks if the custom_pim

is not executing any instruction. If both conditions are true, the Traffic Monitor can end

the simulation and finish to count the execution run-time.

4It is important to differentiate the total simulation time and the final run-time. The former one tells the
time the simulator spent running on the user machine. The latter informs the time the proposed HMC model
took to service all host requests.

55

5 SIMULATION MECHANISM

In this section, we explain the steps to produce a simulation using the proposed

framework. There are eight important files related to the simulation process. First, since

our simulator is trace-based, we provided some scripts that can produce valid trace files

to feed the simulator. There are four distinct trace scripts available. The trace-generator-

seq.py script generates READ/WRITE requests that accesses memory sequentially. The

trace-generator-pim-seq.py script also generates a trace file that access memory sequen-

tially, but creates native PIM HMC requests. On the other hand, both trace-generator-

rand.py and trace-generator-pim-rand.py scripts generate READ/WRITE and PIM HMC

requests, respectively, that access memory randomly. The trace file generated has the

memory address, HMC command, cub_id, and in the case of a WRITE request, the input

data. Besides that, the defines configuration file specifies some parameterizable HMC val-

ues. The user can modify the number of Vaults, the number of links, the row buffer size,

the TSV width, the number of memory controllers, the DRAM’s timing parameters, and

the Vault and Transceiver clock rate in the defines file. Meanwhile, the hmc-testbench

file drives and monitors the hmc-device module. As previously mentioned, the traffic-

monitor gathers run-time statistics. The hmc-device is the implementation of the HMC

architecture. Finally, the simulator outputs the simulation results and simulation statistics

files.

Figure 5.1 illustrates the simulating steps that CLAPPS goes through during exe-

cution. In 1 , the user generates the trace file that will be used during simulation. The

trace file can be produced using any of the available trace generator scripts. However, if

the user decides to evaluate the memory execution of a real benchmark, he or she needs

to convert the benchmark’s memory access pattern to the simulator’s trace format. Each

line of the trace file has the HMC opcode, the memory address, the number of data FLITs

in the request, and the list of data itself. For example, in the following line of a trace file,

0001001 0000000000000000000000000000000000 2 7 9

the first seven bits (0001001) indicate the operation is a WRITE request of 32 bytes, the

following 34 bits indicate the target memory address, then the third portion indicates that

the list of input data has two elements, and then 7 and 9 are the input data elements

themselves.

In 2 , the user can modify the standard HMC structure by changing the define

file. Then, he or she needs to compile the simulator. Since SystemC is based on C++, the

56

Figure 5.1: Simulation steps our mechanism travels through execution.

Trace

generator

hmc_device

definesdefines

hmc_testbench traffic_monitor

Trace

Simulation

Results

Simulation

Statistcs

1 2

3

54

Source: Provided by the author.

only library the user needs to provide and link during compilation is the SystemC 2.3.1.

one. When the compiling and linking process has finished, the user can run the simulator.

3 describes the run-time process. The hmc-testbench will read the trace file, driving the

hmc-device with all requests in the trace file. The requests are sent to the hmc-device one

per clock. Besides that, the hmc-testbench will monitor the output port of the hmc-device,

writing all response packets generated by the latter into the simulation results file 4 . To

check the correctness of the simulation, the user can compare the simulation result file

with the gold file produced by each one of the four trace generator scripts. Finally, at the

end of the simulation, the traffic-monitor writes the produced statistics to the simulation

statistics file 5 . This file is divided into per Vault and per Link statistics. In both cases,

it is shown the total number of bytes and written, the total time (in ns) the hmc-device

took to perform all requests, the obtained individual and global bandwidth (in GB/s), and

the number of packets produced.

57

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we will show the simulation potential provided by our mechanism.

All our experiments target the entire vault and link bandwidth that we were able to ex-

tract during simulation. To simplify the analysis, we have divided our results in three

categories: HMC Memory Validation, HMC Atomic Requests, and PIM Implementation.

Table 6.1 describes all configured parameters used in all presented results. All these pa-

rameters can be modified as needed.

6.1 Memory Validation

Our first concern when building the simulator was to create an architectural HMC

design that would also work as a simple memory simulator. However, since there is

no public information about the HMC internals or even about the DDRx memories that

composes the design, we have used as an implementation guide published related work,

in special the work presented by (ROSENFELD, 2014).

First, we were interested in investigating if there was a significant performance dif-

ferent when comparing read, write, and read+write requests, as cited in (ROSENFELD,

2014). Therefore, we have run 8K read and write requests for various row buffer sizes.

All the requests match the row buffer size. Therefore we could extract maximum perfor-

mance from the current simulation. We have used a 50% read/write ratio in our testbench.

Table 6.1: HMC configuration.

Number of Vaults 32

Number of Links 4

Banks/Vault 16

Lane Bandwidth 30 Gbs

Memory Size 8 GB

Burst Width 8B

Number of DRAM Dies 8

RCD Latency 10.4 ns

DRAM Frequency 166 MHz

Row Buffer 32, 64, 128, 256B

Row Policy Close-row

Source: Provided by the author.

58

Figure 6.1: Link and Vault total bandwidth for sequential read and write requests.

0

50

100

150

200

250

300

350

R
EA

D

R
EA

D
/W

R
IT

E

W
R

IT
E

R
EA

D

R
EA

D
/W

R
IT

E

W
R

IT
E

R
EA

D

R
EA

D
/W

R
IT

E

W
R

IT
E

R
EA

D

R
EA

D
/W

R
IT

E

W
R

IT
E

32B 64B 128B 256B

B
an

d
w

id
th

 (
G

B
/s

)

TOTAL VAULT TOTAL LINK

Source: Provided by the author.

Besides that, the request addresses were generated aiming to evict link/vault/bank con-

flicts. Figure 6.1 shows the results of the simulation. One can notice that read requests

are faster than write requests when considering the total vault bandwidth. That happens

because, from the DDR point of view, a read request loads data from the memory cells,

stores the data into the row buffer, to then be read out by the memory controller. On the

other hand, write requests will generate the same process, and also it will need to write

user data to the row buffer, to then, be stored back into the memory cells. To summarize, a

Figure 6.2: Vault total bandwidth for sequential read requests.

0

50

100

150

200

250

300

350

32 128 512 8K 1M

B
an

d
w

id
th

 (
G

B
/s

)

32B 64B 128B 256B

Source: Provided by the author.

59

Figure 6.3: Link total bandwidth for sequential read requests.

0

20

40

60

80

100

120

140

160

180

32 128 512 8K 1M

B
an

d
w

id
th

 (
G

B
/s

)

32B 64B 128B 256B

Source: Provided by the author.

write request is slower than a read request because a write command generates a sequence

of reading and writing requests. However, this observation is not valid for the links. In

general, the maximum link bandwidth will be achieved when a mix up of reading and

writing request occurs. That behavior is caused by the fact that the overhead to send the

read request to the memory or to send the acknowledge packet back to the host, in the

case of a write request. This observation agrees with the one presented in (ROSENFELD,

2014).

Next, we have focused on obtaining the maximum vault bandwidth that our sim-

ulator can provide. To do so, we have simulated five different scenarios with 32 to 1M

read instructions while varying the row buffer size. This number of requests was chosen

because with 32 requests one could measure the bandwidth in the case of only one request

per vault; with 512 requests one can understand the available vault parallelism when all

banks of all vaults receive a single request; with 1M requests, one could saturate the mem-

ory performance. 128 and 8K requests were used as intermediate points. Figure 6.2 and

Figure 6.3 show the vault and link performance results respectively. It is evident that the

biggest the row buffer size, the better the achieved bandwidth. This result is explained

because the vault controller works in a pipeline fashion. Once a bank row buffer has been

opened, the only performance limitation would be receiving or sending data from/to the

bank unit through the TSV. However, since DDRx memories reply to requests in bursts of

data, this extra latency to access the TSV is reduced. The maximum bandwidth CLAPPS

could achieve 312 GB/s, with row buffer size of 256B.

60

Figure 6.4: Vault total bandwidth for sequential and random atomic requests.

0

10

20

30

40

50

60

32 Requests 512 Requests 8K Requests 32K Requests

B
an

d
w

id
th

 (
G

B
/s

)

Vaults Sequencial Vaults Randomic

Source: Provided by the author.

6.2 Atomic Requests

With our memory architecture validated, we needed to experiment with the HMC

atomic instructions. Since all atomic instructions follow the same data path, they all

have the same execution latency. Therefore, all our simulation were based on the add

dual 8B instruction. Also, we have generated testbenches with random request addresses.

Experimenting with a random set of requests is important because HMC devices were

first designed to target applications with sparse data accesses. Figure 6.4 and Figure 6.5

show our simulation results. The results for the random-based requests were obtained

Figure 6.5: Link total bandwidth for sequential and random atomic requests.

0

10

20

30

40

50

60

32 Requests 512 Requests 8K Requests 32K Requests

B
an

d
w

id
th

 (
G

B
/s

)

Links Sequencial Links Randomic

Source: Provided by the author.

61

with three different set of inputs. Some observations can be pointed out by these results.

The first observation one could make is that atomic operations provide significative lower

bandwidth than reading or writing requests. The bandwidth reduction happens because

a single atomic request will generate a sequence of reading and write requests. Besides

that, only one ALU is available to execute the instruction, therefore limiting the vault

parallelism. Secondly, it is possible to notice that unpredicted access patterns do not

severely prejudice the bandwidth for random requests.

6.3 Case of Study: PIM Interface

To test the effectiveness and usability of our PIM Interface, we included into

CLAPPS, using the provided set of resources, the PIM architecture developed by (SAN-

TOS et al., 2017).

RVU is a reconfigurable accelerator that targets vector operations with varied

operand sizes. Figure 6.6 illustrates the internal organization of (SANTOS et al., 2017).

It is an improvement over the work proposed by (ALVES et al., 2016) that aims to reduce

unnecessary data movement from memory to the accelerator device. One RVU device

was inferred inside each vault module. A single accelerator has a set of 8 registers with

up to 256B each, 32x64 integer, and floating-points Functional Units (FUs), and operates

Figure 6.6: Overview of the Reconfigurable Vector Unit (RVU) organization.

Cross-bar switch

Vault 0
logic

16
lanes

16
lanes

16
lanes

16
lanesLinks

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

DRAM
layers

...
Logic
layer

Read
buffer

Write
buffer

DRAM sequencer

Vault controller
HMC vaults

PIM

PIM
Small

Register
bank

Simple
Processing Units

PIM
sequencer

Stat. Inst.

Data

Stat/Rqst

PIM inst.

PIM PIM

Source: (SANTOS et al., 2017).

62

Figure 6.7: RVU’s FSM

FETCH DECODE EXEC

REQUEST
READ

REQUEST
WRITE

WAIT
READ

WAIT
WRITE

WRITE
BACK

Source: Provided by the author.

at the same frequency as the vault controller. Besides that, each device can operate over

a maximum of 256B at the time; therefore all accelerators together being able to execute

an 8KB vector operation at a given time.

To implement the (SANTOS et al., 2017) architecture into our simulator, we in-

cluded two new files: the rvu_defines and the rvu_implementation. The first one defines

the accelerator’s Instruction Set Architecture (ISA), the number of FUs, and the number

and width of the register file. The second one is the actual implementation of the pro-

posed RVU architecture. We have developed RVU as a simple FSM, which is illustrated

in Figure 6.7. While in the initial state, FETCH, RVU waits until there is a new instruction

available. When this happens, RVU reads and stores the instruction into the instruction

register, then sending a pop signal to the pim_interface to pop the instruction out the

instruction_queue. Then the FSM goes to the DECODE state, where it decodes the in-

struction in accord to its ISA defined at the rvu_defines file. Once the instruction has been

decoded, the FSM can go to either the REQUEST_READ, REQUEST_WRITE, or EXEC

states, depending on the instruction type. If it goes to the REQUEST_READ, it means

data needs to be loaded from memory. To do so, it writes the required memory address, the

size of the request, and rises the en_read_request signal, indicating to the pim_interface

that a new request needs to be serviced. Then the FSM goes to the WAIT_READ state,

where it waits until the pim_interface raises the read_response_available signal, indicat-

ing that the data from memory is available. When this happens, the machine goes to the

63

WRITE_BACK state, where it stores the returned data into the register indicated by the

instruction, and sends an acknowledge signal back to the pim_instruction, indicating it

can pop the data out its data queue. This process is repeated until all requested data has

been returned from memory and stored in the vectorial register. Then, the FSM goes back

to the FETCH state to wait for new instructions. In the case of a WRITE instruction,

the FSM passes through the same states. However, it provides the data from a register to

be written back to memory. In the EXEC state, RVU performs actual computational, in

accord to the instruction received.

According to (SANTOS et al., 2017), when the user configures their mechanism

to run over its maximum operation size, it will achieve similar results to the work of

(ALVES et al., 2016). Besides that, from all benchmarks executed by (ALVES et al.,

2016), the vec-sum algorithm provided a maximum bandwidth exploration from memory.

Thereby, since our evaluation metric is vaults and links total bandwidth, we have decided

to perform this same benchmark in our experiment.

In the results provided by (ALVES et al., 2016), the total vault bandwidth obtained

for a vec-sum operation was 315.9 GB/s. There is no information in (ALVES et al., 2016)

regarding of the total link bandwidth. In our simulation, we have obtained similar results.

In total, the vault performance was 317.8 GB/s, and the link performance was 213.36

GB/s.

64

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented CLAPPS, a generic Cycle Accurate Parallel Processing

In Memory Simulator. Our simulator provides an interface to implement PIM architec-

tures targeting new 3D-stacked memories devices, in particular, the HMC architecture.

CLAPPS has been built using the SystemC programming language since it can provide

the flexibility of a high-level programming language while generating a final design de-

scription similar to the one an HDL language would produce. We have demonstrated that

our memory model can achieve closer to the total amount of bandwidth cited by the HMC

consortium. Moreover, we have shown with a case of study, how our PIM interface can

be useful to the final user.

Table 7.1 compares the simulators discussed in Section 3 with the proposed simu-

lator. First of all, it is important to point out that, similar to the other simulators, CLAPPS

is also cycle-accurate and implements the native HMC atomic instructions. It provides a

simple mechanism to include novel PIM architectures into the simulator while achieving

the theoretical HMC peak bandwidth of 320 GB/s. Besides that, CLAPPS deals with par-

allelism natively by making use of SystemC’s concurrent execution model. Finally, our

simulator is fully parameterizable.

There are some known limitations of our simulator. First, it is the fact that our

simulator is trace-based. It means that the memory footprint generated by an application

needs to be recorded during run-time and then read back into our simulator off-line. Even

though this is a common practice of memory simulators, it might include some error to

the simulation results, since online behaviors, as changes in context or interrupts, are

Table 7.1: Comparison between available PIM simulators and CLAPPS. "?" indicates the
information could not be obtained.

Simulator
Simulation
Accuracy

Native PIM
Capabilities

Novel PIM
Capabilities

Peak
Bandwidth

Deal with
Parallelism

Input
Type

Parame-
trizable

Simulation
Time

HMC-SIM
Cycle-

Accurate
Yes

Yes -

Limited
320 GB/s

Event

queues

Offline

Trace
No ?

Cas-HMC
Cycle-

Accurate
Yes No ?

Event

queues

Offline

Trace
No 28.7s

SMC
Cycle-

Accurate
Yes Yes 205 GB/s

Event

queues

Online

Trace
Yes 4.5s

CLAPPS
Cycle-

Accurate
Yes Yes 320 GB/s Natively

Offline

Trace
Yes 20m

Source: Provided by the author.

65

not replicated during the off-line simulation. To cope with this problem, we expect to

integrate our simulator into the gem5 (BINKERT et al., 2011) infrastructure, since it

supports SystemC-based designs. Second, the custom PIM programmability can impose

a challenge for novel architectures. Despite the fact that this is not a problem intrinsic of

the presented simulator but indeed an issue related to state-of-the-art PIM architectures,

this can be a problem when implementing a cycle-accurate detailed model of the proposed

PIM design, since probably there will be no compiler to generate code for the design.

Some previous works, as (AHN et al., 2015b), have offered to solve this problem by

developing PIM architectures with the same ISA as the host device. However, there is

a trade-off between flexibility and programmability in this case. Third, data coherence

is not guaranteed by our simulator. This problem occurs when both host and PIM are

working in parallel, and the PIM generates a READ request, and in the sequence, the

host sends a WRITE request to the same memory address. It might happen in this case

that the WRITE request to be serviced before the READ request. Then the data read by

the PIM will be the newest one, instead of the that was stored in memory at the time

the PIM received the READ request. Fourth, CLAPPS’s simulation time is orders of

magnitude larger than the other simulators. This happens for two reasons. The first one

is because the HMC device is highly parallel in its organization. For example, during

simulation, only considering the HMC Vaults, 32 distinct modules need to be launched

and executed concurrently on a single CPU core. This is similar to simulate 32 CPU cores,

which is even a challenge for the most popular architectural simulator, gem5. The second

one, and most important, is the fact our simulator implements HMC in a granularity of

bits, which is different from the other simulators that use a behavior simulation. With

this, our design can be easily converted to an RTL description, allowing to perform logic

synthesis directly from our code. Finally, our simulator does not implement the HMC

engine that deals with errors correction. We have chosen not to design this part of the

HMC architecture because the primary source of errors in a real HMC device is the one

generated by the high-speed serial links. Since we do not run the link lanes at the same

high frequency as the actual hardware, an error coming from the links would not happen.

Therefore, the error correction mechanism would only slow down the simulation process.

In future works, we aim to include statistics about power and energy consumption into

our design.

66

REFERENCES

AHN, J. et al. A scalable processing-in-memory accelerator for parallel graph
processing. In: 42ND ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE (ISCA), 2015, Portland, USA. Proceedings... [S.l.]: IEEE, 2015. p.
105–117.

AHN, J. et al. Pim-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. In: 42ND ANNUAL INTERNATIONAL SYMPOSIUM ON
COMPUTER ARCHITECTURE (ISCA), 2015, Portland, USA. Proceedings... [S.l.]:
IEEE, 2015. p. 336–348.

ALVES, M. A. Z. et al. Large vector extensions inside the hmc. In: DESIGN,
AUTOMATION AND TEST IN EUROPE CONFERENCE (DATE), 2016.
Proceedings... [S.l.]: IEEE, 2016. p. 1249–1254.

AMBA, A. Protocol specification v2. 0. ARM Holdings plc Std, 2003.

AZARKHISH, E. Memory Hierarchy Design for Next Generation Scalable
Many-core Platforms. Thesis (PhD) — alma, 2016.

AZARKHISH, E. et al. A case for near memory computation inside the smart memory
cube. In: INTERNATIONAL WORKSHOP ON EMERGING MEMORY SOLUTIONS,
2016. Proceedings... [S.l.:s.n.], 2016.

AZARKHISH, E. et al. Design and evaluation of a processing-in-memory architecture for
the smart memory cube. In: INTERNATIONAL CONFERENCE ON ARCHITECTURE
OF COMPUTING SYSTEMS, 2016. Proceedings... [S.l.]: Springer International
Publishing, 2016. p. 19–31.

AZARKHISH, E. et al. Neurostream: Scalable and energy efficient deep learning with
smart memory cubes. In: ARXIV PREPRINT ARXIV:1701.06420, 2017. Proceedings...
[S.l.:s.n.], 2017.

BINKERT, N. et al. The gem5 simulator. In: SIGARCH COMPUT. ARCHIT. NEWS,
2011. Proceedings... New York, NY, USA: ACM, 2011. p. 1–7.

EBRAHIMI, E. et al. Fairness via source throttling: a configurable and high-performance
fairness substrate for multi-core memory systems. In: ACM SIGPLAN NOTICES, 2010.
Proceedings... New York, USA: ACM, 2010. p. 335–346.

ELLIOTT, D. G. et al. Computational ram: Implementing processors in memory. In:
IEEE DESIGN AND TEST OF COMPUTERS, 1999. Proceedings... [S.l.]: IEEE, 1999.
p. 32–41.

FARMAHINI-FARAHANI, A. et al. Drama: an architecture for accelerated
processing near memory. In: IEEE COMPUTER ARCHITECTURE LETTERS, 2014.
Proceedings... [S.l.]: IEEE, 2014. p. 26–29.

FARMAHINI-FARAHANI, A. et al. Nda: Near-dram acceleration architecture
leveraging commodity dram devices and standard memory modules. In: 21ST
INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER
ARCHITECTURE (HPCA), 2015. Proceedings... [S.l.]: IEEE, 2015. p. 283–295.

67

GHENASSIA, F. et al. Transaction-level modeling with SystemC. [S.l.]: Springer,
2005.

HASSAN, H. et al. Softmc: A flexible and practical open-source infrastructure for
enabling experimental dram studies. In: IEEE INTERNATIONAL SYMPOSIUM
ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2017.
Proceedings... [S.l.]: IEEE, 2017. p. 241–252.

HONG, D. U. L. et. al. S. 25.2 a 1.2v 8gb 8-channel 128gb/s high-bandwidth memory
(hbm) stacked dram with effective microbump i/o test methods using 29nm process
and tsv. In: IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE
DIGEST OF TECHNICAL PAPERS (ISSCC), 2014. Proceedings... [S.l.]: IEEE, 2014.
p. 432–433.

HSIEH, K. et al. Accelerating pointer chasing in 3d-stacked memory: Challenges,
mechanisms, evaluation. In: IEEE 34TH INTERNATIONAL CONFERENCE ON
COMPUTER DESIGN (ICCD), 2016. Proceedings... [S.l.]: IEEE, 2016. p. 25–32.

Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification Rev. 2.0.
2013. Http://www.hybridmemorycube.org/.

JACOB, B.; NG, S.; WANG, D. Memory systems: cache, DRAM, disk. [S.l.]: Morgan
Kaufmann, 2010.

JAYADEVAPPA, S.; SHANKAR, R.; MAHGOUB, I. A comparative study of modelling
at different levels of abstraction in system on chip designs: a case study. In: IEEE
COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, 2004. Proceedings...
[S.l.]: IEEE, 2004. p. 52–58.

JEON, D. I.; CHUNG, K. S. Cashmc: A cycle-accurate simulator for hybrid memory
cube. In: IEEE COMPUTER ARCHITECTURE LETTERS, 2016. Proceedings... [S.l.]:
IEEE, 2016. p. 1–1.

LEE, C. J. et al. Dram-aware last-level cache writeback: Reducing write-caused
interference in memory systems. HPS Technical Report, TR-HPS-2010-002, 2010.

LEE, D. et al. Simultaneous multi-layer access: Improving 3d-stacked memory
bandwidth at low cost. ACM Transactions on Architecture and Code Optimization
(TACO), ACM, v. 12, n. 4, p. 63, 2016.

LEE, D. et al. Adaptive-latency dram: Optimizing dram timing for the common-case. In:
21ST INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER
ARCHITECTURE (HPCA), 2015. Proceedings... [S.l.]: IEEE, 2015. p. 489–501.

LEIDEL, J. D.; CHEN, Y. Hmc-sim-2.0: A simulation platform for exploring
custom memory cube operations. In: IEEE INTERNATIONAL PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016.
Proceedings... [S.l.]: IEEE, 2016. p. 621–630.

LI, S. et al. The McPAT Framework for Multicore and Manycore Architectures:
Simultaneously Modeling Power, Area, and Timing. Transactions on Architecture and
Code Optimization, v. 10, n. 1, p. 5, 2013.

68

LIM, K. et al. Disaggregated memory for expansion and sharing in blade servers. In:
ACM SIGARCH COMPUTER ARCHITECTURE NEWS, 2009. Proceedings... New
York, USA: ACM, 2009. p. 267–278.

LIU, J. et al. Disaggregated memory for expansion and sharing in blade servers. In: ACM
SIGARCH COMPUTER ARCHITECTURE NEWS, 2013. Proceedings... New York,
USA: ACM, 2013. p. 60–71.

LIU, J. et al. Raidr: Retention-aware intelligent dram refresh. In: ACM SIGARCH
COMPUTER ARCHITECTURE NEWS, 2012. Proceedings... New York, USA: ACM,
2012. p. 1–12.

MATHEW, D. et al. A bank-wise dram power model for system simulations. In:
WORKSHOP ON: RAPID SIMULATION SIMULATION AND PERFORMANCE
EVALUATION: METHODS AND TOOLS (RAPIDO), 2017, Stockholm, Sweden.
Proceedings... [S.l.:s.n], 2017.

MOSCIBRODA, T.; MUTLU, O. Memory performance attacks: Denial of memory
service in multi-core systems. In: 16TH USENIX SECURITY SYMPOSIUM ON
USENIX SECURITY SYMPOSIUM, 2007. Proceedings... [S.l.]: USENIX Association,
2007.

MURPHY, R. On the effects of memory latency and bandwidth on supercomputer
application performance. In: 10TH INTERNATIONAL SYMPOSIUM ON
WORKLOAD CHARACTERIZATION (IISWC), 2007. Proceedings... [S.l.]: IEEE,
2007. p. 35–43.

NAIR, R. et al. Active memory cube: A processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development, v. 59, n. 2/3, March 2015.

OLIVEIRA, G. F. et al. Nim: An hmc-based machine for neuron computation.
In: INTERNATIONAL SYMPOSIUM ON APPLIED RECONFIGURABLE
COMPUTING, 2017, Delft, Netherlands. Proceedings... Cham, Switzerland: Springer,
2017. p. 28–35.

PANDA, P. R. Systemc-a modeling platform supporting multiple design abstractions.
In: 14TH INTERNATIONAL SYMPOSIUM ON SYSTEM SYNTHESIS, 2001.
Proceedings... [S.l.]: IEEE, 2001. p. 75–80.

PATEL, M.; KIM, J. S.; MUTLU, O. The reach profiler (reaper): Enabling the mitigation
of dram retention failures via profiling at aggressive conditions. In: 44TH ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 2017.
Proceedings... New York, USA: ACM, 2017. p. 255–268.

PATTERSON, D. et al. A case for intelligent ram. IEEE Micro, v. 17, n. 2, p. 34–44,
Mar 1997. ISSN 0272-1732.

PUGSLEY, S. et al. Comparing Implementations of Near-Data Computing with
In-Memory MapReduce Workloads. IEEE Micro, v. 34, n. 4, p. 44–52, July 2014.

RADULOVIC, M. et al. Another trip to the wall: How much will stacked dram
benefit hpc? In: INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS, 2015.
Proceedings... [New York, USA]: ACM, 2015. p. 31–36.

69

ROSENFELD, P. Performance exploration of the hybrid memory cube. Thesis (PhD)
— University of Maryland, 2014.

ROSENFELD, P.; COOPER-BALIS, E.; JACOB, B. Dramsim2: A cycle accurate
memory system simulator. IEEE Computer Architecture Letters, IEEE, v. 10, n. 1, p.
16–19, 2011.

SANTOS, P. C. et al. Exploring cache size and core count tradeoffs in systems
with reduced memory access latency. In: 24TH EUROMICRO INTERNATIONAL
CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED
PROCESSING (PDP), 2016. Proceedings... [S.l.]: IEEE, 2016. p. 388–392.

SANTOS, P. C. et al. Operand size reconfiguration for big data processing in memory.
In: DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE (DATE), 2017,
Lausanne, Switzerland. Proceedings... [S.l.]: IEEE, 2017.

SCHALLER, R. R. Moore’s law: past, present and future. IEEE Spectrum, v. 34, n. 6,
p. 52–59, Jun 1997. ISSN 0018-9235.

SESHADRI, V. et al. Rowclone: Fast and energy-efficient in-dram bulk data copy
and initialization. In: 46TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM
ON MICROARCHITECTURE (MICRO), 2013. Proceedings... [S.l.]: IEEE, 2013. p.
185–197.

SHIVAKUMAR, P.; JOUPPI, N. P. Cacti 3.0: An integrated cache timing, power, and
area model. Technical Report 2001/2, Compaq Computer Corporation, 2001.

STUECHELI, J. et al. The virtual write queue: Coordinating dram and last-level cache
policies. In: ACM. ACM SIGARCH Computer Architecture News. [S.l.], 2010. v. 38,
n. 3, p. 72–82.

SUBRAMANIAN, L. et al. Mise: Providing performance predictability and improving
fairness in shared main memory systems. In: IEEE 19TH INTERNATIONAL
SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA),
2013. Proceedings... [S.l.]: IEEE, 2013. p. 639–650.

SURA, Z. et al. Data access optimization in a processing-in-memory system. In:
PROCEEDINGS OF THE 12TH ACM INTERNATIONAL CONFERENCE ON
COMPUTING FRONTIERS, 2015. Proceedings... New York, USA: ACM, 2015.

Tezzaron. DiRAM4 - 3D Memory. 2015. Https://tezzaron.com/products/diram4-3d-
memory/.

WULF, W. A.; MCKEE, S. A. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, ACM, New York, NY, USA,
v. 23, n. 1, p. 20–24, mar. 1995. ISSN 0163-5964. Available from Internet:
<http://doi.acm.org/10.1145/216585.216588>.

XI, S. L. et al. Quantifying sources of error in mcpat and potential impacts on architectural
studies. In: 21ST INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE
COMPUTER ARCHITECTURE (HPCA), 2015. Proceedings... [S.l.]: IEEE, 2015. p.
577–589.

http://doi.acm.org/10.1145/216585.216588

70

XU, L.; ZHANG, D. P.; JAYASENA, N. Scaling deep learning on multiple in-memory
processors. In: WONDP: 3RD WORKSHOP ON NEAR-DATA PROCESSING IN
CONJUNCTION WITH MICRO-48, 2015. Proceedings... [S.l.:s.n], 2015.

YOO, J. et al. Vssim: Virtual machine based ssd simulator. In: 29TH SYMPOSIUM ON
MASS STORAGE SYSTEMS AND TECHNOLOGIES (MSST), 2013. Proceedings...
[S.l.]: IEEE, 2013. p. 1–14.

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background
	2.1 DRAM Basics
	2.1.1 DRAM Organization
	2.1.2 DRAM Operations and Commands
	2.1.3 DDR Command Interface

	2.2 Hybrid Memory Cube
	2.2.1 Transceiver Layer
	2.2.2 Vault Layer

	2.3 The SystemC Programming Model

	3 Related Work
	3.1 Processing-in-Memory Architectures
	3.2 Processing-in-Memory Simulators

	4 Simulator Implementation
	4.1 Transceiver
	4.1.1 Requester
	4.1.2 Responser

	4.2 Vault
	4.2.1 Request
	4.2.2 Memory and TSV Controllers
	4.2.3 Native PIM
	4.2.4 Response
	4.2.5 PIM Interface
	4.2.6 Bank

	4.3 Traffic Monitor

	5 Simulation Mechanism
	6 Experimental Setup and Results
	6.1 Memory Validation
	6.2 Atomic Requests
	6.3 Case of Study: PIM Interface

	7 Conclusions and Future Work
	References

