
Untangling Fine-Grained Code Changes

Martín Dias1, Alberto Bacchelli2, Georgios Gousios3, Damien Cassou1, Stéphane Ducasse1
1: RMoD Inria Lille–Nord Europe, University of Lille — CRIStAL, France

2: SORCERERS @ Software Engineering Research Group, Delft University of Technology, The Netherlands
3: Digital Security Group, Radboud Universiteit Nijmegen, The Netherlands

Abstract—After working for some time, developers commit
their code changes to a version control system. When doing so,
they often bundle unrelated changes (e.g., bug fix and refactoring)
in a single commit, thus creating a so-called tangled commit.
Sharing tangled commits is problematic because it makes review,
reversion, and integration of these commits harder and historical
analyses of the project less reliable.

Researchers have worked at untangling existing commits, i.e.,
finding which part of a commit relates to which task. In this
paper, we contribute to this line of work in two ways: (1) A
publicly available dataset of untangled code changes, created
with the help of two developers who accurately split their code
changes into self contained tasks over a period of four months;
(2) a novel approach, EpiceaUntangler, to help developers share
untangled commits (aka. atomic commits) by using fine-grained
code change information. EpiceaUntangler is based and tested on
the publicly available dataset, and further evaluated by deploying
it to 7 developers, who used it for 2 weeks. We recorded a median
success rate of 91% and average one of 75%, in automatically
creating clusters of untangled fine-grained code changes.

I. INTRODUCTION

Version Control Systems (VCS), such as Git and Subversion,
allow programmers to control changes to source code and make
it possible to find who made each software change, when,
and where. This information is important to support both the
coordination of developers working in teams [1] and the creation
of many recommendation and prediction systems related to
software quality [2].

Developers often bundle unrelated changes (e.g., bug fix and
refactoring) in a single commit [3], thus creating a so-called
tangled commit, such as the following taken from Jaxen:1

r1252 | elharo | 2006-11-09 [...] | 2 lines

Pulling getOperator up into BinaryExpr per Jaxen-169

[...]
Index: src/java/main/org/jaxen/expr/AdditiveExpr.java
===
--- src/[...]/AdditiveExpr.java (revision 1251)
+++ src/[...]/AdditiveExpr.java (revision 1252)
@@ -61,7 +61,7 @@

*
- */public interface AdditiveExpr extends BinaryExpr
+ */
+public interface AdditiveExpr extends BinaryExpr
{

- String getOperator();
}

The tangled commit above contains both a refactoring (the
move of ‘getOperator’ to a different place, not shown in this
extract), and code formatting (the move of an interface definition

1http://jaxen.codehaus.org, commit: svn-1252, 2006-11-09

to its own line). Sharing tangled commits is problematic as
they make code review, reversion, and integration harder and
historical analyses of the project less reliable [4]. For example,
even integrating the code formatting change included in the
aforementioned commit (without the refactoring) would be a
demanding task.

Untangling existing commits (i.e., finding how to separate
parts of a commit relating to different tasks) is an open research
problem. Herzig and Zeller presented the earliest and most
significant results in this area [3]: They implemented the
first algorithm that can automatically untangle commits given
artificially tangled ones.

In this paper, we expand on this previous work by:
(1) working in an untyped setting where a part of the approach
by Herzig and Zeller is inapplicable; (2) considering fine-
grained code change information gathered during development
(e.g., time at which each line has changed and all versions of
each line); and (3) evaluating the resulting approach both on
data generated by programmers who manually label it and with
programmers working on real-world development tasks.

The ultimate goal of our work is to help developers of
dynamically-typed code share untangled commits. To that end,
we: (1) asked 7 developers to manually cluster changes for
each of their commits using a dedicated tool, for a period of 4
months; (2) manually validated the generated data, selecting
the data recorded by two of these developers, and computed a
number of features based on their fine-grained code changes;
(3) modeled the problem of predicting whether two fine-grained
changes belong together, with a variety of machine learning
approaches, determined the most appropriate one, and identified
the most significant features; (4) designed an algorithm that uses
the machine learning result to propose an automatic clustering
of any tangled commit and developed a corresponding tool,
EpiceaUntangler; and (5) evaluated the effectiveness of our
approach with developers who used EpiceaUntangler in their
daily work for two weeks.

Our results show that three features are especially important
to perform clustering of fine-grained code changes: (1) the time
between two changes; (2) the number of other changes between
two changes; and (3) whether the two changes modify the same
class. By modeling these features with Random Forests [5],
we identify whether two changes belong to the same commit
with an accuracy of 95%, if training and testing on the same
developer, and more than 88% if tested on a different developer.
A set of 200 manually clustered fine-grained code changes (i.e.,
the equivalent of a few days of work) was sufficient to reach
good performance. When deploying EpiceaUntangler with new
developers during their daily tasks, we recorded an average
success rate of 75% and a median one of 91%.

ar
X

iv
:1

50
2.

06
75

7v
1

 [
cs

.S
E

]
 2

4
Fe

b
20

15

http://jaxen.codehaus.org

II. PROBLEM DESCRIPTION

When developers want to share their work in a VCS, they
will, more often than not, realize that they have done more
than one activity, e.g., fixed a bug, reformatted a method, and
fixed a typo in a comment. Sharing everything in a single
tangled commit is regarded as bad practice because it makes
the following activities more difficult:

• Review – Reviewers have to understand the code changes
of all the activities at once [6]–[8];

• Reversion – Developers have to revert all changes of a
problematic commit even when only the code change of
one activity is problematic [1];

• Integration – Integrators have to merge or reject whole
commits, e.g., they will typically reject a code formatting
operation and a bug fix included in the same commit [9];

• Historical analysis – Researchers need to associate ac-
tivities to files to conduct statistical analyses while, e.g.,
mining software repositories [4].

A. Existing Solutions for Tangled Changes

To avoid tangled commits, developers could organize their
work so that, at commit time, only one activity’s code is to be
shared. This requires frequent commits and interruptions in the
developer’s work flow [10]–[13]. Even with a lot of discipline,
there will be times when a developer will have to split changed
code into several commits.

To separate code from several activities into different
commits, some tools (e.g., ‘git add’) let the user selects which
files and lines to commit first. Being line based, these tools
share the following problems: (1) The code present at commit
time might be incomplete [14]: Each change to a line shadows
previous changes of the same line, thus making it impossible to
commit the line as it was before the last change; (2) a commit
resulting from a manual selection of a subset of all changed lines
might be invalid: e.g., a developer might commit the beginning
of a function definition but not the end; and (3) changed lines
are shown in the order they appear in their files irrespective of
their modification time: This makes it difficult for developers
to select lines changed closely in time.

A great source of inspiration for us comes from Herzig et
al. [3], [4], who implemented an algorithm to automatically
untangle commits. Their algorithm uses several confidence
voters to decide whether two lines of a tangled commit should
be put in the same cluster. They aggregate the results of each
confidence voter into a single score, and then use the concepts
of a multilevel graph-partitioning algorithm by Karypis and
Kumar [15] to generate the clusters. Their voters include:

• ‘FileDistance’: the number of lines between the two lines
if they are both in the same file;

• ‘PackageDistance’: the number of different package name
segments within the package names of the changed files;

• ‘CallGraph’: the difference between the call graphs of the
program with each line change applied separately;

• ‘ChangeCouplings’: the frequency with which the files both
lines were changed into are committed together, using the
work from Zimmermann et al. [2];

• ‘DataDependency’: a boolean indicating if the two lines
read or write the same variable(s).

In the work by Herzig et al. we see the following limitations:

Dependence on static-analysis: The voters ‘CallGraph’ and
‘DataDependency’ rely on static analyses that might not be
possible for dynamically-typed programming languages,
or that might be available in a weaker form;

Incompleteness: The tangled commits used as input to the al-
gorithm suffer from the incompleteness problem described
earlier in this section: If a line is changed twice before
a commit, the commit only contains the latest version of
the line, shadowing a previous version of the line which
could have been part of an untangled commit;

Artificiality: The validation by Herzig et al. relies on a
classification of 7,000 existing commits done by the
researchers without feedback from each project’s experts.
We believe that only the author of each commit can, at
commit time, best organize his changes into untangled
commits. Moreover, the untangling algorithm by Herzig
et al. relies on the knowledge of the expected number of
untangled commits for a particular tangled one. With the
goal of helping developers creating untangled commits,
we do not have access to this information.

B. Addressing the Current Limitations

In our work, we propose to alleviate the aforementioned
limitations by (a) expanding the setting to a dynamically-typed
environment where some kinds of analyses are not available;
(b) using fine-grained code changes that we collect during
development sessions; (c) relying on developer-approved data
for the validation of untangling approaches. This results in the
following requirements for the approach, EpiceaUntangler, that
we present in this paper:

The Dynamically-Typed Setting: Whereas the approach of
Herzig et al. relies on static analysis of Java programs to
untangle commits, our approach helps developers to create
untangled commits in an environment that is dynamically-typed.
Certain types of static analysis, e.g., accurate call graph analysis,
is not possible for dynamically-typed languages. Therefore, our
approach cannot rely on such static analysis.

Fine-Grained Changes: In modern integrated development
environments (IDEs), tools can be notified each time a software
artifact is changed and saved. As a result, a tool could listen
to all fine-grained changes made by developers and, at commit
time, present the developer a list of all the changes they have
done. For example, a developer changing and saving the source
code of a method 3 times will result in 3 fine-grained changes.
This is in contrast with most tools that only present the latest
version of each changed line; this requirement tackles the
incompleteness limitation.

Developer-Approved Data: The untangling algorithm should
be based on data created by developers who personally untangle
the tangled commits that they produced in the first place. The
final version of the approach should provide each developer,
at commit time, with a list of the automatically untangled
commits containing their fine-grained changes: Each developer
could then reorganize these automatically-computed clusters
of changes. Results must be validated by comparing the
change clusters that are automatically computed against the
reorganization done by the developer in a manual way.

IDE event

Workspace save

Versioning system

Expression evaluation

Code change
Class change

Add

Modify

Delete

Method change

Load

Store

Undo / Redo

Automated refactoring

Test suite run

Add

Modify

Delete

Fig. 1. IDE events recorded by Epicea; dashed ones are not considered.

III. PROPOSED SOLUTION

In a nutshell, our solution is to develop an approach and
associated tools to help developers share untangled commits.
The tools log all the fine-grained changes made by developers
as they change the source code. When a developer wants to
commit her changes, the tool, based on an analysis of the
recorded information, presents several automatically-computed
clusters of changes: Each cluster represents a distinct activity
of the developer since last commit. The developer may then
add a comment to each cluster and, if necessary, adapt the
automatic clustering (by adding/removing clusters and moving
changes to different clusters). Once the developer validates
the clusters, the tool generates one commit per cluster and
publishes them to the repository. In the following section, we
present our solution decomposed in individual parts.

A. Epicea: Event Modeler with Fine-Grained Changes

Central to our approach is the collection of fine-grained
information. To conduct this task, we use Epicea [16], a tool
we developed to model IDE events. In essence, Epicea listens
to actions taking place in the IDE and records different types of
events. A simplified version of the events recorded by Epicea
is shown in Figure 1. Epicea records complete information
of these events (e.g., whether a test run failed), including a
timestamp. As previous studies (both in Eclipse [17] and in
Smalltalk [18]) showed that save-based recording produces
reliable fine-grained code change data, we record code change
operations (add, modify, and delete classes and methods) every
time the user saves the code. Epicea is invisible to the user as
there is no impact on performance. Epicea stores the collected
data as a sequence of serialized objects in plain text files.

B. Voters

Once the data is collected, we have to characterize it in
a way that it can be used for generating untangled changes.
Similarly to Herzig et al. [3], [4], as a first step we model
our clustering task as a binary classification problem: For all
the potential pairs of recorded fine-grained changes, we want
to determine whether they belong in the same cluster. To this
end, we implement a number of features or, maintaining the
term used by Herzig et al. [3], voters, which describe different
relations between the considered changes. Our voters (detailed
in Table I) span the following six dimensions:

1) Code structure: Although dynamic languages make it
difficult to conduct static analysis, it is possible to compute

basic relations. Our three voters in this dimension consider
whether two changes happen in the same package, class,
and/or method.

2) Content: This voter returns true if the two changes to a
method are only source-code reformats, i.e., if the abstract
syntax tree of a method remains the same after a change
on it. This voter should help linking changes regarding
refactoring actions.

3) Testing: Epicea records test runs. The rationale of this
voter is that two changes happening between runs of the
same test could be related to the same task (e.g., this
should hold in the case of test-driven development).

4) Spread: These voters measure the distance between the two
considered changes, considering time passed and number
of other changes in between. We expect close changes to
be more related.

5) Message sending: This dimension analyzes whether the
changes involve related message sending (also known as
‘method invocations’, in languages such as Java or C#).

6) Variable accessing: This dimension computes relations
between the variables accessed by the two changes: For
example, a change that adds a new instance variable to
a class may be related to a change that adds an usage of
the same variable in a method.

The input of each voter is a pair of changes, and the output
is of the type specified in column ‘Type’ of Table I.

C. Machine Learning Approaches

Our approach computes the values for each voter for each
pair of changes (for performance reasons, we only consider
fine-grained change pairs that are less than 3 days apart); to
aggregate these values and train models that would predict
whether two changes should be in the same cluster, we use
machine learning (ML).

We consider three well-known machine learning algorithms
that can handle binary classification [19]: (1) binary logistic
regression (‘binlogreg’), (2) naïve bayes (‘naivebayes’), and
(3) random forests [5] (‘ranforest’). We chose these algorithms
not only because they have been applied successfully to a
number of data mining tasks related to software engineering,
but also because they make quite different assumptions on
the underlying data and model (e.g., ‘naivebayes’ relies on
the conditional independence assumption, i.e., the value of a
voter is unrelated to the value of the others, and ‘binlogreg’
requires each observation to be independent and linearity
of independent variables and log odds), thus they can offer
different interpretations. The choice of the most appropriate
machine learning algorithm is based on the empirical data
collected during the experiment.

This machine learning step takes as input the values
computed by the voters for two particular changes, and it
outputs the probability of the two changes belonging to the
same cluster.

D. Clustering

The last necessary step in our approach is to take the output
of the machine learning step, computed on each pair of changes,
and aggregate it to form the clusters of changes for the user.

TABLE I. DIFFERENT VOTERS TESTED IN OUR INVESTIGATION.

Voter Name Dimension Type Relation between the two considered changes

samePackage Code structure Boolean They involve the same package.
sameClass Code structure Boolean They involve the same class.
sameSelector Code structure Boolean They involte a method with the same name (regardless its class).

bothCosmeticChanges Content Boolean They are both cosmetic (i.e., pretty-printing—both versions of the method return the same result).

sameTestRun Testing Boolean They are modified between the same unit-test runs.

numberOfEntriesDistance Spread Numeric How close they are in the history; the voter computes number of other changes between them.
timeDifference Spread Numeric How close in time they are in the history; the voter computes the seconds between them.

reciprocalMessageSends Message sending Nominal They invoke each other; it computes 0, 1 or 2 if, respectively, no, one, or both call the other.
numberOfSharedMessageSends Message sending Numeric They share a number of the same message sends.
numberOfSharedMessageSendsInDelta Message sending Numeric They add or remove a number of the same message sends.

numberOfVariableAccesses Variable accessing Numeric One change modifies or adds definitions of instance variables, the other accesses some of them.
numberOfSharedVariableAccesses Variable accessing Numeric They access a number of the same instance variable names.
numberOfSharedVariableAccessesInDelta Variable accessing Numeric They start or stop accessing a number of the same variable names.

In this method, each change is initially considered to be
a cluster of its own. Then pairs of clusters are successively
selected by their maximum scores and merged. The result of this
method is a dendrogram, which is a binary tree that represents
the nested clustering of code changes. In this dendrogram,
each non-leaf node has a similarity level that represents how
similar are both children. In our problem, a similarity level of
1 corresponds to two clusters that must be merged, while a
level of 0 corresponds to the opposite decision.

Finally, the desired clustering of code changes is obtained
by cutting the dendrogram at some similarity threshold. Using
a too low threshold produces too many small clusters, while a
threshold that is too high produces a single cluster. The choice
of the most appropriate similarity threshold depends on the
change set and, similarly to the machine learning approach, is
based on the empirical data collected during the experiment.

The output of this step is the set of independent clusters of
fine-grained changes, which is eventually displayed to the user
with a dedicated user interface.

IV. RESEARCH METHOD

In this section, we describe how we structure our research
in terms of research questions, we present the research settings,
and we outline our research method.

A. Research Questions

The ultimate goal of our work is to help developers of
dynamically-typed code share untangled commits. For this we
devise and test the approach we previously described to untangle
code changes at a fine level of granularity. Accordingly, we
structure our empirical investigation through the following three
research questions:

RQ1: Which voters are significant to untangle fine-grained
code changes?
With this question we aim to understand which are the
most important voters in our untyped setting. To answer
this research question, we consider the machine learning
task of deciding whether two changes should belong to
the same cluster. In doing so, we also determine which
machine learning approach among the three we test, is
better suited to model the problem through our voters.

RQ2: How effective is a machine learning model based on
the significant voters in untangling historical fine-
grained code changes?
Once we find the most significant voters and the best
machine learning approach, we are interested to know
their performance in predicting whether two changes
should belong to the same cluster. We also want to
investigate the effect asserted by individual developers’
working styles on prediction performance; for this we
train and test the machine learner on data generated by
different developers (e.g., training on one developer’s
data and testing on another developer’s data).

RQ3: How effective is a tool based on the best voters
and machine learning approach, when deployed with
developers working on their daily tasks?
Finally, we want to devise an approach EpiceaUntangler,
based on the best machine learner and voters, to generate
clusters and present them with a graphical user interface.
We want to test its effectiveness when deployed with
participants (1) whose data should not have been used
for training the classifier, and (2) who should be working
on their usual development tasks.

B. Research Settings

Our study took place with professional developers, re-
searchers, and students using the Pharo environment.2 Pharo is
an open-source dialect of Smalltalk and implementation of its
programming environment. Pharo was forked from Squeak3 in
2008 and it is rapidly evolving. Currently, Pharo has around 60
worldwide contributors, it is used by more than 15 universities
to teach programming and by 10 research groups to build tools,
and more than 50 companies are using it in production.

We chose Pharo as a case study for two main reasons: (1) the
Pharo open-source community of developers has been receptive,
since its inception, to welcome and thoroughly evaluate research
tools (e.g., [20]–[22]); and (2) the programming language, the
development environment, and the versioning system are tightly
integrated. The later feature allows for a fast prototyping of an
approach to record fine-grained code changes and interaction
with testing and the versioning system. The former feature allow
us to collect fine-grained data about code changes and IDE
interactions from participants doing real-world development

2Pharo: http://pharo.org/
3Squeak: http://www.squeak.org/

http://pharo.org/
http://www.squeak.org/

21

6
3

4

5

Fig. 2. UI used in training stage. The user manually clusters the changes.

work. It also enabled us to deploy our resulting tool with more
participants to evaluate its results. Moreover, many research
tools tested within Pharo later became integral part of the
environment (e.g., [23]); we want both to improve the state of
the art in untangling code changes and to create an approach
that can be used in real-world scenarios.

C. Research Steps

1) Fine-grained data generation and collection: To answer
our first two research questions, we need a ground truth to train
and test our voters and machine learning approaches. Such a
ground truth should be a reliable dataset containing fine-grained
code changes correctly split into tasks by their authors. To
obtain this, we contacted 7 participants actively contributing to
Pharo, including the first author of this paper. We asked them
to install Epicea and to use the tool (i.e., Epicea Task Clusterer
(ETC), Figure 2) that we devised to manually cluster their
fine-grained code changes. We showed a screencast4 demoing
the tool to all the participants before they started using it, so
that they could understand the goal of the experiment and adapt
their workflow accordingly. Every time the participants decided
to commit their code to the versioning system, during their
normal work, the ETC’s interface would appear (as in Figure 2)
with a list of all the fine-grained changes, since the previous
commit, that the user had to manually cluster into tasks.

TABLE II. PARTICIPANTS’ INFORMATION

P_ID current programming experience (in months)
role overall industrial with Pharo

Data generation and collection phase
P1 Ph.D. student 168 60 48
P2 Ph.D. student 48 36 24

Evaluation in real-world development phase
P3 Ph.D. student 180 18 36
P4 software engineer 132 72 13
P5 associate professor 72 12 24
P6 Ph.D. student 72 11 11
P7 software engineer 180 10 30
P8 software engineer 60 18 36

4Available at: https://www.youtube.com/watch?v=fQVWuMQUBew

In detail, the main user interface of Epicea Task Clusterer
(shown in Figure 2) works as follows: In the top pane,
each column (e.g., Point 1) represents a task (to group an
activity of the user), and each item in a column represents
a code change (e.g., Point 2). Each code change is in a
ClassName»methodName format, and the icon shows the type
of change (as in Figure 1). The bottom pane (Point 3) shows
the details of the selected change, in a unified-diff format. The
user can review the listed changes and perform three actions
to specify the expected clustering for them: Add a new empty
task/cluster (Point 4), reopen an already closed task/cluster
(Point 5), and move changes between columns (with drag and
drop, Point 6). Once the clustering task is completed, the user
presses the button ‘Done’, and the interface disappears.

2) Data analysis and evaluation of voters: Once the
participants concluded the data collection period of 4 months,
we conducted exploratory data analysis [24] on the generated
clustered changes. The data generated by five users was
extremely sparse and inconsistent; these users confirmed this
explaining that they could not afford the time required by
Epicea Task Clusterer to review each change made during the
experiment period. We removed this data and kept the data
generated from the remaining two users (including the first
author of this paper) whose features are described in the top
half of Table II. Table III describes the resulting dataset (2devs).

TABLE III. DESCRIPTIVE STATISTICS OF DATASET 2DEVS

P_ID Total number of Changes per cluster
changes clusters Mean Median St. Dev. Max

P1 15,175 298 50.9 8 153.1 1,582
P2 9,601 119 80.7 16 151.9 812

Using 2devs we answered RQ1 and RQ2. As previously
detailed (Section III-C), we used machine learning to identify
pairs of changes belonging to the same commit, by modeling
it as a binary classification. For all potential pairs of changes
in 2devs, we calculated values for all the voters in Table I and
labeled with ‘true’ if the changes belonged to the same commit
or ‘false’ otherwise. As our dataset was unbalanced (the false
class overruled the true one by a ratio of 4:1), we adjusted to
avoid overfitting. Models where thus trained with a ratio of 2:1
samples for the false and true class respectively.

Evaluation of voters. To evaluate each trained model,
we used standard machine learning metrics [19], such as
precision (prec), recall (rec), accuracy (acc), the Area Under
the receiver operating characteristic Curve (auc) and the F-
measure (f.measure). Models where trained with an increasing
number of samples as input (104 to 106 samples) to determine
the minimum number of samples required to obtain adequate
performance. At each input size, we used random selection
10-fold cross validation to evaluate model stability and reported
results based on the mean of the 10 runs. We selected the best
classifier and applied a classifier-specific process to rank voters
according to their importance in the classification. Then we
incrementally trimmed the voter set starting from the least
important feature until the performance of the classifier was
severely impacted. Finally, we retrained the best classifier with
the trimmed voter set and used that as our final prediction
model. The final model was then exposed as a web service that
EpiceaUntangler used to drive the change untangling process
to answer RQ3.

https://www.youtube.com/watch?v=fQVWuMQUBew

Ch1 Ch2 Ch3 Ch4 Ch5

0

1

0.5

0.25

0.75 m
ax

 s
im

ila
rit

y
ga

p
Ch6

Fig. 3. Determining the similarity threshold to cut the dendrogram.

3) Deployment and evaluation with developers: Once we
completed the creation and evaluation of the best ML approach
and features on dataset 2devs, and obtained promising results,
we created the corresponding implementation in EpiceaUntan-
gler, a tool that developers can use in real-world development.

During developer’s work, EpiceaUntangler records the
fine-grained change information, exactly as done for the data
collection phase. When the developer wants to commit, our
approach computes the values for all the significant voters
for each pair of code changes, and queries the web service
implementing the final model of the ML classifier. For each
pair, the web service returns a score between 0 and 1, indicating
the probability that the two changes belong to the same cluster,
according to the trained model. EpiceaUntangler aggregates
all the scores to form clusters using agglomerative hierarchical
clustering method (see Section III-D). This method outputs a
dendrogram, which has to be cut at some similarity threshold
to obtain the clusters of changes. We created a testbed with
‘change set-expected clustering’ pairs whose purpose is to help
us to conceive a good function for obtaining the similarity
threshold for cutting the dendrogram. In Figure 3 we illustrate
the function. The similarity threshold we chose corresponds to
the maximum similarity gap between all nodes whose similarity
level is less than 0.25. The intuition behind taking the maximum
similarity gap is that continue merging code changes together
is not worth, because the meaningful clusters have already been
detected. The reason to use 0.25 as a lower bound is that we
observed from data that such a low likelihood indicates in most
cases changes that should not be merged.

This process happens in the background: After the developer
decides to commit, she sees an interface similar to that used
to generate the data for 2devs (Figure 2), with the difference
that the clusters are already pre-computed by the tool. Then,
the user browses the clusters and reorganizes the changes in
case the pre-computed clusters are wrong.

Evaluation of clustering. To conduct this evaluation, we
recruited six participants, whose features are described in the
bottom half of Table II. They all used EpiceaUntangler for 2

ch3

ch5 ch6

ch1 ch2

ch4

C1

C2

C3

C4

C5

computed

ch1 ch2

ch3

ch4

ch5

ch6

E1

E2

E3

E4

E5

expected E1 E2 E3 E4 E5
C1 0 1 0 0 0
C2 0 0 0 ½ ½
C3 1 0 0 0 0
C4 0 0 1 0 0
C5 0 0 0 0 0

Fig. 4. Comparison between a computed clustering and an expected clustering.
On the left-hand side, each box represents a cluster of changes. The computed
clustering contains 4 clusters labeled from C1 to C4 (cluster C5 is a virtual
cluster to ease comparison). The expected clustering has 5 clusters: E1 to E5.
On the right-hand side, the matrix shows the corresponding Jaccard indexes.

weeks. To evaluate the clustering, each participant was asked
to confirm whether the automatic clustering was correct; if not
they could rearrange changes to the correct clusters. We used
the resulting data to evaluate the accuracy of our approach.

To measure the success rate of our approach, i.e., how
similar the computed clustering (from our algorithm) is to the
expected clustering (from the developer), we need to know the
ratio between the number of successfully clustered changes
and the total number of changes. To know if a change has been
successfully clustered, we must find which computed cluster
best matches which expected cluster.

Figure 4 shows a sample comparison between a computed
clustering and an expected clustering. The matrix on the right
represents the Jaccard indexes computed for each pair of
clusters; this index is defined as using the following formula:

JCiEj =
|Ci ∩ Ej|
|Ci ∪ Ej|

This Jaccard index represents how much two sets coincide.
It ranges from 0 to 1, where 1 means the two sets are equal
(e.g., C3 and E1 in Figure 4) and 0 means the two sets have
nothing in common (e.g., C4 and E2 in Figure 4).

From the resulting matrix we want to know which computed
cluster matches which expected cluster. This can be obtained
by maximizing the sum of the Jaccard indexes over all
permutations. For the sample in Figure 4 the maximum sum
over all the permutations (3.5) is attained for this set of pairs:

Matching = {(C1, E2)(C2, E4)(C3, E1)(C4, E3)(C5, E5)}

We compute the success rate of our algorithm using the
following formula:

SuccessRate =
#SuccessfullyClusteredChanges

#Changes

A change chi is successfully clustered if the computed
and expected clusters that contain chi are in the same pair of
the Matching set. In Figure 4, all changes are successfully
clustered except ch6. This gives us a success rate of 5/6 = 0.83.

V. RESULTS

In this section we answer our research questions, by
describing the results we obtained in our evaluations.

A. What Are the Dominant and Significant Voters?

As a first step to answer our first research question, we
use all the machine learning approaches we consider on
the collected data and we evaluate whether an approach
performs undoubtedly better. Table IV reports the results of the
classification performance of each machine learning approach
for predicting whether two changes belong together, using
a training size of n = 320,000 pairs (or 800 fine-grained
changes), on the 2devs dataset. Overall, and across all metrics,
the Random Forests algorithm delivers the best results, by a
large margin. The high REC measurement of the ‘binlogreg’
result can be justified by its equally low PREC; the classifier
marks most of the file changes as belonging in the same cluster,
but few of those decisions are correct.

TABLE IV. CLASSIFICATION PERFORMANCE ON 2DEVS BY APPROACH

Classifier AUC ACC PREC REC F.MEASURE G.MEAN

‘binlogreg’ 0.92 0.68 0.43 0.96 0.60 0.76
‘naivebayes’ 0.88 0.65 0.41 0.94 0.57 0.73
‘ranforest’ 0.99 0.96 0.96 0.88 0.92 0.93

‘ranforest-trimmed’ 0.98 0.95 0.96 0.82 0.88 0.90

Once we established that ‘ranforest’ delivers the best results,
we assessed the importance of each voter for its classification
result. We used the process suggested by Genuer et al. [25].
Specifically, we run the algorithm 50 times on a randomly
selected sample of 106 change pairs, using a large number of
generated trees (500) and trying 5 random variables per split.
Then, we used the mean across 50 runs of the Mean Decrease
in Accuracy metric, as reported by the R implementation of the
ranforest algorithm, to evaluate the importance of each feature.
The results can be seen in Figure 5. The three most important
voters are: (1) the time difference between the changes, (2) the
ordered distance of the changes, (3) and whether the changed
code belonged in the same class. We cannot make inferences
about whether the effect of each voter is positive or negative to
the response class; nevertheless, we believe that the results are
indicative of the task-based nature of software development.

B. How Effective Is Random Forests with the Dominant Voters?

We answer our second research question by using only
the three most important voters to train the prediction model.
The prediction results are reported in Table IV, marked as
‘ranforest-trimmed’. We see that even with just those voters we
obtain very good prediction results: The new model is within
3% of the performance of the model trained in all metrics.

Furthermore, we analyze the impact of the developer who
made the changes on training and testing. We expect that
behaviors of developers might be different and have a significant
impact on the model.

We start showing that we obtain the best results when we
train and test from data generated by the same developer (the
‘intradev’ dataset in Figure 6). This confirms our hypothesis
that the behavior of the specific developer has an impact on the

●

●

●

●

●

●

●

●

●

●

●

●

●numberOfVariableAccesses

numberOfMessageSends

sameSelector

numberOfSharedVariableAccessesInDelta

numberOfSharedMessageSendsInDelta

samePackage

numberOfSharedMessageSends

sameTestRun

bothCosmeticChanges

numberOfSharedVariableAccesses

sameClass

numberOfEntriesDistance

timeDifference

50 100 150
Mean Decrease in Accuracy

V
ar

ia
bl

e
Fig. 5. Voter importance for the random forest classifier.

●

●● ● ● ● ● ●

●

●
● ● ● ● ● ●

●

●
● ● ● ● ● ●

●

●
● ● ●

● ● ●

● ●
● ● ● ● ● ●

●
●

● ● ● ● ● ●

auc acc f.measure

prec rec g.mean

0.900

0.925

0.950

0.975

0.89

0.91

0.93

0.95

0.75

0.80

0.85

0.90

0.91

0.93

0.95

0.97

0.6

0.7

0.8

0.9

0.80

0.85

0.90

200 400 600 800 200 400 600 800 200 400 600 800

Number of fine−grained changes

dataset ● combined crossdev intradev

Fig. 6. Dataset performance metrics

model and the results. Furthermore, we see that the results are
not equally good when training with data from one developer
and testing on the other (the ‘crossdev’ dataset); moreover we
see that as we increase the training size, there is a drop in
performance. This can be attributed to overfitting the model to
the working habits of each individual developer. Finally, we
see that we can train accurate models by combining data from
multiple developers. In the ‘combined’ dataset, we combine

the data generated by both developers and use this to train the
model; this means that training and testing data is taken from
both samples. Figure 6 shows that this dataset reaches high
and stable results; and overfitting seems not present.

What is interesting to note is that the number of fine-grained
changes required for training in both the combined and intradev
cases is low: with 200 changes we can obtain prediction results
only 2% worse (in terms of acc) on average than if we train with
800 changes. As 200 fine-grained changes are the equivalent
of a few days of work,5 we have encouraging evidence that
an accurate model can be trained fast and deliver good results
for a single developer. Moreover, a pre-trained model with
data from multiple developers might be enough as a starting
point for an untangling tool, which could then be trained to a
particular developer’s working habits.

Overall, the results show that using the random forest
algorithm, a randomized set of about 200 fine grained changes
and a few easy-to-calculate voters, we can train a prediction
model that can identify whether two changes belong in the
same commit with an accuracy of 95% for a single developer.

C. How Effective Is EpiceaUntangler for Developers?

We answer research question three by deploying EpiceaUn-
tangler with developers and recording whether the clustering
that it proposes corresponds to participants’ expectations. The
dataset devEval, resulting from this evaluation is described in
Table V. We notice that not all the developers coded full time
during the two weeks, thus some produced fewer changes.

TABLE V. DESCRIPTIVE STATISTICS OF DATASET DEVEVAL

P_ID Total number of Changes per cluster
changes clusters Mean Median St. Dev. Max

P3 350 22 15.9 11 13.5 42
P4 826 28 29.5 3.5 50.9 228
P5 200 13 15.4 10 17.3 65
P6 166 12 13.8 6.5 15.6 47
P7 347 18 19.3 7 27.8 88
P8 162 11 14.7 10 12.7 37

We compared each cluster we proposed to the cluster that
the participant eventually judged as correct to be committed.
The histogram in Figure 7 shows the frequency of the obtained
results: We observed a median6 success rate of 0.915 and
an average of 0.753 with a standard deviation of 0.30. By
inspecting the instances with a success rate in the range [0,0.4]
we could not pinpoint any systematic error; we plan to further
address these cases in future work.

We asked developers their opinion on the tool and received
diverse feedback. Most developers were positive [P3, P4, P6,
P8], e.g., P3 expressed the feeling that “EpiceaUntangler
guesses correctly the clusters of changes, also in a big commit
were I had 10 different clusters,” and P4 said: “It works good in
many cases, especially for not so big change sets.” At the same
time, most developers [P4, P5, P6, P8] expressed concerns with
the large amount of fine-grained information to be processed;
they explained that it adds too much noise to see not only the
last state of a method but also all the intermediate modifications

5From the data we recorded, 200 fine-grained code changes correspond to
two to five days of work, depending on the developer’s style and pace.

6The results are not normally distributed, thus we report the median value.

SuccessRate

N
um

be
r o

f i
ns

ta
nc

es

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Fig. 7. Frequency of success rate of EpiceaUntangler clustering approach

to it, especially when belonging to the same cluster. In the
words of P8: “It was a bit painful to check everything.”

Some participants suggested improvements to the user
interface: For example, P7 said that he “would like to option
to delete tasks in the UI”, and P6 said: “I would like to type a
name for each task in the UI, as a reminder while I cluster.”

VI. DISCUSSION

In this section we discuss our results and show how we
mitigate the threats that endanger them.

A. Results

In the first research question, we asked which voters, or
features are significant to untangle fine-grained code changes.
Despite the fact that we implemented voters along six dimen-
sions, only two dimensions were significant and contributed to
most of the outcome: code structure and spread. In particular,
the latter dimension has the greatest impact, by a large margin;
the only significant voter in the former dimension measured
whether the two changes were happening in the same class.
This implies that these voters can be applied to other object-
oriented programming languages regardless of whether they use
types or not. This is a ripe opportunity for testing the approach
with different languages and in different settings. Moreover,
although we have no information about the significance of the
voters implemented by Herzig et al. [3], [4], studies can be
designed and carried out to determine if and how untangling
effectiveness increases as a result of combining their voters
with our significant ones.

We were surprised by the low impact of many of the voters
in the untangling task: We expected message sending and
variable access, as well as testing information, to contribute
more. Since our initial data analysis was conducted with
changes collected by only two developers, a further study with
a larger set of developers for generating training data would
be useful to confirm or alter this result.

In the second research question, we asked how effective is
the best performing machine learning algorithm (i.e., random
forests) when used with the most significant voters. The results
were overall very good. Expectedly, we achieved the best
results when training and testing on data from the same
developer, nevertheless cross-developers results are promising
and merged-developers results do not show overfitting; in
addition, approximately 200 fine-grained code changes were
enough to reach most of the effectiveness. This implies that
training on more developers is necessary to achieve a more

general approach, and there seem to be no risk of overfitting by
doing it. Moreover, ideally every user should train the approach
on her own programming behavior; this seems reasonable since
the training is effective with as little as a few days of work.

In the third research question, we investigate the effective-
ness of the whole approach when deployed to programmers.
Considering that the recruited participants were not used for
the training phase, the results are in line with the effectiveness
measured for RQ2. One of the most recurring complaints
was about the large number of changes to be verified and
sorted at every commit. This is due to the fact that we showed
all the fine-grained changes recorded, thus also intermediate
states for the same method (when the developer saved multiple
times). We expect this information overload problem to be
mitigated once the approach is stable enough to work correctly
in most cases. Nevertheless, we see a good opportunity for
further investigating how certain fine-grained code changes
can be omitted, without losing relevant information that
would lead to the incompleteness discussed in Section II-A.
Moreover, valuable comments were provided about the UI of
EpiceaUntangler. The UI evaluation goes beyond the scope of
this paper, but improving the UI can help to have an impact on
reducing the information overload of fine-grained code changes.

B. Threats to Validity

Internal Validity. Our models and feature selection process
are based on a dataset generated through the actions of
two developers. While we have combined the actions of the
developers and shown that they provide very good prediction
performance and the evaluation of the EpiceaUntangler has
been overwhelmingly positive, it is possible that our findings
are biased towards the two developers’ working habits.

Bias with respect to developer working habits might also
occur in our selection of evaluation subjects. To reduce this
risk, we selected diverse developers, all of them working in
different projects and even in different physical locations. Thus,
we believe the participants represent a heterogeneous enough
population of Pharo developers.

Construct Validity. The notion of task is ambiguous. In particu-
lar, each participant can interpret the task granularity differently.
For example, consider a single bug fix which is intended to fix
two broken features. The participant could consider the changes
either as two individual tasks, or everything as a single bug-
fixing task. For mitigating this risk, we prepared a screencast
with an example for users trying to establish a common criterion
for task granularity. Moreover, we kept in close contact with
users for answering any doubt. However, this ambiguity in the
definition of task does not reduce the precision of our success
metric for answering RQ3 (SuccessRate), since it represents
each user expectation: it compares EpiceaUntangler’s clustering
with the participant’s expected clustering.

The clustering computed by EpiceaUntangler may have in-
fluenced participants. When users had to evaluate the computed
clustering (as shown in Figure 2), the initial clustering might
have biased their answers.

External Validity. We used a specific platform (Pharo) and
language environment (Smalltalk) to facilitate our study. A
specific language may dictate a specific working style. For

example, in a typed language setting, an IDE would immediately
mark as erroneous cases where a type signature has changed
and not all uses have been adapted, therefore prompting the
developer to fix such cases. Therefore our results may not be
generalizable to all languages or working environments.

VII. RELATED WORKS

The impact of tangled changes has been reported in several
contexts: The inspiring work by Herzig et al. [4], reported
that at least 16.5% of all source files in the datasets they
considered were incorrectly associated with bug reports when
ignoring the existence of tangled change sets. In a large-scale
study done at Microsoft on how developers understand code
changes, Tao et al. reported that developers find it important
for understanding to decompose changes into the individual
development issues, but there is currently no tool support for
doing so [6]. Bacchelli and Bird reported that tangled changes
in code to be reviewed often cause low quality reviews or
require longer time to review [7].

Herzig et al. were the first to implement an algorithm to
automatically generate untangled commits given a tangled one.
Their work greatly inspired our research. However, we see some
limitations to their work that we explained in Section II: static-
analysis dependency, incompleteness, and artificiality. The main
differences with our work is that: (1) we count with fine-grained
timing information of code changes as well as IDE events like
test runs; (2) we work in a dynamically-typed language; (3) we
evaluated our approach with developers.

Another source of inspiration comes from Robbes, who
created a fine-grained change model of software evolution
based on three principles [26]: (1) a program state needs to be
represented accurately by an Abstract Syntax Tree (AST); (2) a
program’s history is a sequence of changes, each one producing
a program state (an AST) and changes can be composed into
higher-level changes; (3) changes should be recorded by the
IDE as they happen, not recovered from a VCS. Robbes et
al. show how a fine-grained change model can better detect
logical coupling between classes [27]. Their article presents
new measures of logical coupling that we consider as a future
extension of our voters.

Steinert et al. propose CoExist, an approach and associated
tool set to navigate the different states of a project based
on its fine-grained changes [13]. CoExist’s tool suite allows
for reverting any fined-grained change at the project level,
comparing different states of a program, localizing the cause
of a failing test in the development history, and reassembling
changes to share untangled commits. Automatic clustering of
dependent fine-grained changes to create untangled commits is
left as future work. Our work can be seen as an extension of
CoExist tool suite in this direction, despite its totally unrelated
implementation.

Wloka et al. presented a program analysis technique to
identify committable changes that can be released early, without
causing failures of existing tests [28]. Wloka remarks that
an untangling algorithm would clearly benefit from having
a model with a more accurate concept of change to add
context information for individual change operations. Beyond
our ‘Same Test Run’ voter, we leverage more the results of
unit-test execution to cluster related changes.

VIII. CONCLUSION

In this paper, we have devised and evaluated EpiceaUntan-
gler, an approach whose ultimate goal is to help developers
share self-contained changes that are well-decomposed into
individual tasks. We build on the shoulders of others, and
expand previous work by: (1) Working in an untyped language
setting where static code analyses are more limited; (2) con-
sidering fine-grained code change information gathered during
development; and (3) evaluating the resulting approach both
on data generated by programmers who manually labeled it
and with programmers working on real development tasks.

Our results show that three features are especially important
to perform clustering of fine-grained code changes: the time
between the changes, the number of other modifications
between the changes, and whether the changes modify the
same class. By testing the features on historical data manually
labeled by developers, we obtained good results (over 88% of
accuracy in the worst case) in determining whether two changes
should be together. When deploying our approach with new
developers, we obtained a median success rate of 91%.

Overall, this paper makes the following main contributions:

1) An analysis of the current points for improvement in the
state of the art in untangling code changes.

2) A publicly available7 dataset of fine-grained code changes
collected by recording the development sessions of two
developers over the course of four months, and the
corresponding manual clustering.

3) The creation of different features/voters and their evalua-
tion, based on the aforementioned dataset, using machine
learning approaches to model and classify pairs of fine-
grained code changes, resulting in good accuracy results.

4) The creation of an approach, EpiceaUntangler, and cor-
responding tool implementation, Epicea Task Clusterer,8
to untangle fine-grained code changes into clusters based
on the three best voters and the best performing machine
learning algorithm.

5) The deployment and a two-week evaluation of EpiceaUn-
tangler with developers with good results.

ACKNOWLEDGEMENTS

We thank our study participants for their feedback and the
European Smalltalk User Group9 for its support.

REFERENCES

[1] A. Guzzi, A. Bacchelli, Y. Riche, and A. van Deursen, “Supporting
developers’ coordination in the ide,” in In Proceedings of CSCW 2015
(8th ACM Conference on Computer Supported Cooperative Work and
Social Computing). ACM, 2015, p. in press.

[2] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, Jun. 2005.

[3] K. Herzig and A. Zeller, “Untangling changes,” Unpublished manuscript,
Sep. 2011. [Online]. Available: https://www.st.cs.uni-saarland.de/
publications/files/herzig-tmp-2011.pdf

[4] ——, “The impact of tangled code changes,” in Proceedings of 10th
Conference on Mining Software Repositories. IEEE, 2013, pp. 121–130.

7Available at: http://dx.doi.org/10.6084/m9.figshare.1241571
8Available at: http://smalltalkhub.com/#!/~MartinDias/EpiceaTaskClusterer
9ESUG: http://esug.org

[5] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[6] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,” in
Proceedings of FSE 2012 (20th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering). ACM, 2012.

[7] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), 2013, pp. 712–721.

[8] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s per-
spective,” in Proceedings of ICSE 2015 (37th International Conference
on Software Engineering), 2015, p. in press.

[9] V. Uquillas Gómez, “Supporting integration activities in object-oriented
applications,” Ph.D. dissertation, Vrije Universiteit Brussel - Belgium &
Université Lille 1 - France, Oct. 2012.

[10] “Subversion best practices,” Apache, Software Foundation, 2009.
[11] K. Beck, Extreme Programming Explained: Embrace Change. Addison

Wesley, 2000.
[12] M. Fowler, Refactoring: improving the design of existing code. Addison-

Wesley Professional, 1999.
[13] B. Steinert, D. Cassou, and R. Hirschfeld, “CoExist: Overcoming

aversion to change,” in DLS’12: Proceedings of the 8th Dynamic
Languages Symposium. ACM, 2012, pp. 107–118.

[14] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is it
dangerous to use version control histories to study source code evolution?”
in Proceedings of the 26th European Conference on Object-Oriented
Programming (ECOOP), 2012.

[15] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,”
in Proceedings of Supercomputing 1995 (ACM/IEEE Conference on
Supercomputing). ACM, 1995.

[16] M. Dias, D. Cassou, and S. Ducasse, “Representing code history with
development environment events,” in IWST’13: International Workshop
on Smalltalk Technologies 2013, 2013.

[17] L. Hattori and M. Lanza, “Syde: A tool for collaborative software devel-
opment,” in Proceedings of ICSE 2010 (32nd ACM/IEEE International
Conference on Software Engineering), 2010, pp. 235–238.

[18] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 166, pp. 93–109, Jan. 2007.

[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2001.

[20] L. Renggli, S. Ducasse, T. Gîrba, and O. Nierstrasz, “Domain-specific
program checking,” in Proceedings of the 48th International Conference
on Objects, Models, Components and Patterns (TOOLS’10), ser. LNCS,
J. Vitek, Ed., vol. 6141. Springer-Verlag, 2010, pp. 213–232.

[21] A. Hora, N. Anquetil, S. Ducasse, and M. T. Valente, “Mining system
specific rules from change patterns,” in Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE’13), 2013.

[22] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente,
“Apievolutionminer: Keeping api evolution under control,” in Proceedings
of the Software Evolution Week (CSMR-WCRE’14), 2014.

[23] T. Verwaest, C. Bruni, M. Lungu, and O. Nierstrasz, “Flexible object lay-
outs,” in Proceedings of OOPSLA ’11 (26th International Conference on
Object-Oriented Programming, Systems, Languages, and Applications).
ACM, 2011, pp. 959–972.

[24] C. O’Neil and R. Schutt, Doing Data Science. O’Reilly, 2013.
[25] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using

random forests,” Pattern Recognition Letters, vol. 31, no. 14, 2010.
[26] R. Robbes, “Of change and software,” Ph.D. dissertation, University of

Lugano, Switzerland, 2008.
[27] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on fine-

grained change information,” in Reverse Engineering, 2008. WCRE’08.
15th Working Conference on. IEEE, 2008, pp. 42–46.

[28] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit analysis to
facilitate team software development,” in Proceeding ICSE 2009 (31st
International Conference on Software Engineering), 2009, pp. 507–517.

https://www.st.cs.uni-saarland.de/publications/files/herzig-tmp-2011.pdf
https://www.st.cs.uni-saarland.de/publications/files/herzig-tmp-2011.pdf
http://dx.doi.org/10.6084/m9.figshare.1241571
http://smalltalkhub.com/#!/~MartinDias/EpiceaTaskClusterer
http://esug.org

	I Introduction
	II Problem Description
	II-A Existing Solutions for Tangled Changes
	II-B Addressing the Current Limitations

	III Proposed Solution
	III-A Epicea: Event Modeler with Fine-Grained Changes
	III-B Voters
	III-C Machine Learning Approaches
	III-D Clustering

	IV Research Method
	IV-A Research Questions
	IV-B Research Settings
	IV-C Research Steps
	IV-C1 Fine-grained data generation and collection
	IV-C2 Data analysis and evaluation of voters
	IV-C3 Deployment and evaluation with developers

	V Results
	V-A What Are the Dominant and Significant Voters?
	V-B How Effective Is Random Forests with the Dominant Voters?
	V-C How Effective Is EpiceaUntangler for Developers?

	VI Discussion
	VI-A Results
	VI-B Threats to Validity

	VII Related Works
	VIII Conclusion
	References

