<]
TUDelft

Delft University of Technology

Tracking known security vulnerabilities in proprietary software systems

Cadariu, M; Bouwers, EM..; Visser, J.; van Deursen, A.

DOI
10.1109/SANER.2015.7081868

Publication date
2015

Document Version
Accepted author manuscript

Published in
Proceedings - 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering

Citation (APA)

Cadariu, M., Bouwers, EM., Visser, J., & van Deursen, A. (2015). Tracking known security vulnerabilities in
proprietary software systems. In YG. Guéhéneuc, B. Adams, & A. Serebrenik (Eds.), Proceedings - 22nd
IEEE International Conference on Software Analysis, Evolution, and Reengineering (pp. 516-519). IEEE
Society. https://doi.org/10.1109/SANER.2015.7081868

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/SANER.2015.7081868
https://doi.org/10.1109/SANER.2015.7081868

Tracking Known Security Vulnerabilities in
Proprietary Software Systems

Mircea Cadariu*¥, Eric Bouwers*, Joost Visser*!, Arie van Deursen*
* Software Improvement Group, The Netherlands
 Radboud University Nijmegen, The Netherlands
1 Delft University of Technology, The Netherlands
m.cadariu@sig.eu, e.bouwers @sig.eu, j.visser @sig.eu, arie.vandeursen @tudelft.nl

Abstract—Known security vulnerabilities can be introduced in
software systems as a result of being dependent upon third-party
components. These documented software weaknesses are ‘“hiding
in plain sight” and represent low hanging fruit for attackers.
In this paper we present the Vulnerability Alert Service (VAS),
a tool-based process to track known vulnerabilities in software
systems throughout their life cycle. We studied its usefulness
in the context of external software product quality monitoring
provided by the Software Improvement Group, a software ad-
visory company based in Amsterdam, the Netherlands. Besides
empirically assessing the usefulness of the VAS, we have also
leveraged it to gain insight and report on the prevalence of
third-party components with known security vulnerabilities in
proprietary applications.

I. INTRODUCTION

The OWASP Top Ten [3] exposes typical software security
flaws of software systems. In 2013, Using Components with
Known Vulnerabilities [2] is listed as number 9 in this list.
Known vulnerabilities are security flaws which are disclosed
through public communication channels. When a component
with a vulnerability is used in a software system the risk of
leaking data or loosing control over servers increases.

Known vulnerabilities are easy to track by attackers and
they enable automated large scale exploits. To illustrate this,
consider Shodan, a search engine which has been shown
to be useful in identifying Internet-facing industrial control
systems [5]. A keyword search query on Shodan containing the
term Jerty 6.1.1 retrieves the Internet addresses of 464 hosts
that expose their online services using this open-source vul-
nerable web server [8], for which the vulnerability description
can also be accessed online [12].

The driving motivation of the work presented in this paper
is that known vulnerabilities may be widespread and easy
to exploit, but they can, and should, also be leveraged as
efficiently as possible for benign purposes, such as to trigger
corrective measures that reduce the opportunity for security
breaches in software systems.

For example, automated solutions such as OWASP Depen-
dency Check [15] are available to statically scan a software
system and generate a report which lists those components for
which a known security vulnerability is available. However,
despite OWASP’s awareness raising effort and the availability
of these tools, it has been reported that approximately 1 out
of 4 Java component downloads from the Maven Central
Repository features a software component with a known vul-
nerability [19].

978-1-4799-8469-5/15 © 2015 IEEE 516

To understand this situation better, we present a case-study
in which we embedded one of the available vulnerability scan-
ning tools in the existing software quality monitoring process
that SIG offers as a service to its customers. We call this
monitoring service extension the Vulnerability Alert Service.
With this set up, we first established how large the problem of
using components with known security vulnerabilities actually
is. Secondly, we evaluated the usefulness of the VAS, by
observing the handling of over 400 alerts and by conducting
interviews with VAS operators.

In short, this paper offers the following contributions:

e An empirical investigation into the prevalence of using
components with known security vulnerabilities in
practice

e A description of a process to handle alerts addressing
security concerns

e An evaluation of the usefulness of vulnerability alerts
in the context of external software product quality
monitoring

II. AUTOMATED KNOWN VULNERABILITY DETECTION

In this section, we describe a way to determine known
vulnerabilities in Java projects. A known vulnerability has a
CVE identifier and is identified by the OWASP Dependency
Check tool. The use of this tool currently restricts the analyzed
software systems to Java projects built with Maven. In the fol-
lowing subsections we provide some background information
of these concepts and explain the matching mechanism used
by the tool.

A. Maven

Maven' is the most widely used software tool used by Java
developers to automate the application build process. One of
its features is dependency management for which POM files
are used — XML files in which (third-party) dependencies to
be included in the build are specified.

B. CVE

The Common Vulnerabilities and Exposures (CVE) iden-
tifiers were introduced in 1999 to enable comparison between
the existing security tools at the time [1]. Their format is

Uhttp://www.maven.org

SANER 2015, Montréal, Canada

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

CVE-<year>—<identifier> (e.g.: CVE-2011-2730) and their
description contains among others, the CPE and the vulnera-
bility description.

The CPE identifiers uniquely identify the applications
affected by the CVEs [6]. For example, the CPE identifier
for the vulnerable Java library Apache Commons FileUpload
is: cpe:/a:apache:commons_fileupload:1.0.

C. OWASP Dependency Check

After executing a selection procedure [7], the OWASP
Dependency Check 1.0.5 [15] is selected in this study for
automating the vulnerability scan. We extended the tool to
be able to extract systems dependency information from the
POM files of Java systems and to create list of the depen-
dencies associated known vulnerabilities in XML, HTML or
plain text formats. The extraction process only handles direct
dependencies. Support for transitive dependencies is currently
not available.

D. Matching Mechanism

We can extract dependency identification information from
software projects from multiple sources. Considering applica-
tions in the Java ecosystem, we can find traces of third party
code in their bytecode, JAR files, import statements or build
manifest files (such as Maven POMs). These traces have to be
matched with their counterparting CPEs in order to retrieve
a list of CVEs. Below is an example match automatically
conducted by Dependency Check using information from
Maven POMs:

Maven dependency: org.mortbay.jetty jetty 6.1.20
CPE: cpe:/a:mortbay:jetty:6.1.20

The tool is based on partial token set overlap, in which
tokens from the CPE identifier(mortbay, jetty) are searched in
the tokens of the Maven dependency identifiers. If all CPE
tokens are present, then it is declared a successful match,
no matter if there are other tokens present in the Maven
dependency description (such as org, in our example).

Working on the level of application names instead of
matching them by code provides the following advantages:

e the approach is more lightweight — less data to be
processed and stored than when working with snippets
of binary code

e it removes the need to always obtain the source code
of an application for which a vulnerability is disclosed

e it avoids the need to abstract from language-specific
elements (e.g: compiler specific meta-data in binary
code)

The trade-off that we have to make is in terms of accuracy.
Using the name-based approach may result in false positives
as a result of component identification incoherences between
CPE and the application names found in software projects.
This shortcoming would be avoided if CPE identifiers would
align perfectly to the way in which component names can be
retrieved from software systems.

After obtaining the list of CPEs from input systems, getting
the corresponding CVEs means querying our data source to
retrieve the CVEs indexed under the input CPEs.

517

E. Precision/Recall Analysis

To study false positive and false negative rates we used
precision and recall. Precision is the fraction of retrieved
results which are relevant. Recall is the fraction of the relevant
results which are retrieved from the data set.

We scanned the Maven dataset [16] with Dependency
Check and created a list of matched pairs from the output
files. By manually labelling a random selection of 50 matches
as being either true positive or false positive we obtained the
false positive rate.

For studying recall, we constructed a dataset of library
Maven identifiers for which we know that it has already
one or more CVE entries assigned. This way, we can create
specific inputs for which we expect the tool to capture, and
see how many of the expected flags actually get raised. The
false negative rate is determined by how many of these input
elements do not get flagged, when in fact they should have.

Most of the matches for the precision study are false
positives. Among the total of 50 matches, 7 were matched
correctly, yielding a precision value of 7/50~0.14. The major-
ity of matches for the recall study are correct matches. The
recall value for this dataset is 47/59~0.80.

These values do not immediately deem the technique
unusable, the low precision value indicates that only 1 out
of every 7 alerts would be a true positive. On the other hand,
the dataset used is large and contains many projects which
are not necessarily used in an industrial context. Taking into
account that any security issue found is useful, we proceeded
with evaluating the tool in practice.

III. VULNERABLE DEPENDENCIES IN PRACTICE

This research has been conducted within the Software
Improvement Group (SIG), an advisory company based in
Amsterdam, the Netherlands. Among its services, it provides
Software Risk Assessment [18], Software Monitoring [10] [11]
and Security Risk Assessment [20]. The professionals em-
ployed at SIG take the role of external quality evaluators
for the software systems developed by various customers
from multiple domains, such as banks, public transportation
companies, governmental organizations, etc.

To assess the state of practice in the industry with regards
to known security vulnerabilities, we used 75 proprietary
systems currently or previously monitored or analysed by
SIG. They come mostly from large Dutch companies which
operate in the banking, public transportation, governmental,
consultancy, electronic payments and household utilities fields.
Technologically, these projects are Java projects built with
Maven which include their third-party dependencies in POM
files. The sizes of these projects range from 1.7 to 968 KLOC,
and have between 4 and 238 dependencies.

After scanning the projects with the OWASP Dependency
Check tool the resulting lists of security vulnerabilities was
manually pruned of false positives. The results of the analysis
show that 54 out of 75 projects use at least 1 (and up to 7)
vulnerable libraries.

Vulnerability Checker

Extract
dependency
Information

Software
Project

Alerts

"
Vulnerability D
Disclosures
T —

Legend
Data
Procesq
Step

Fig. 1.

Matching
dependencies with
vulnerability data

Operator

The Vulnerability Alert Service process

IV. VULNERABILITY ALERTING

The Vulnerability Alert Service is illustrated in Figure 1.
As process input we have two elements: a software project and
vulnerability data. Using Fawcett et al’s activity monitoring
problems [9] terminology, the inputs are derived from the
positive activity indicators. For our context, these are: a project
is found to include a library with known vulnerabilities, or a
vulnerability was disclosed that is found to affect one of the
libraries of the monitored projects.

This input is destined for the vulnerability checker (in our
study OWASP Dependency Check takes this role) which has
two tasks: extract dependency data, recognize them and match
them with known vulnerabilities. The software projects are in-
put for the extracting task, which produces a list of recognized
dependencies. This list and vulnerability disclosures are input
for the matching task.

Upon a successful match, the application generates an alert,
which is consumed by a human operator. After acknowledging
them, the operator proceeds to filter the alerts based on
usefulness, and then reports them to the interested party.

V. USEFULNESS EVALUATION

For evaluation, we constructed a three-part evaluation
study. The first step is embedding the monitoring process in
the daily operations of our host company and collecting the
alerts which are raised. The second part covers the task of
collecting relevant information from the research context with
regards to the usefulness of the alert. This data is then used in
the subsequent step, data analysis.

We used two data collection procedures: interviewing and
direct observation. For both activities, technical consultants
(TCs) from our host company participated. Both were not time-
boxed, in order to allow sufficient time for thorough responses
to emerge. See Table I for an overview of our data.

With interviewing, a series of questions regarding specific
findings among monitored software systems were asked to
technical consultants. After interviewing we have observed that
generally, without this alerting service, the consultants would
not consider outdated libraries and their security impact. Some
considered that these findings would be easy to communicate
to the clients, as the vulnerabilities are presented under a
standard form which they can refer to. On the other hand,
due to the fact that upon closer inspection these vulnerabilities

518

TABLE 1. DATA COLLECTED

Data collection step | Nr. of alerts | Nr. of TCs | Nr. of projects
Interview-based 4 4 4
Observation-based 449 4 34

do not make the application vulnerable right away, they were
not immediately disclosed to the client. These findings would
be presented at established meetings where multiple types of
updates are presented.

For the observation-based study, for a period of time, the
technical consultant responsible with observing the evolution
of software systems was informed of the alerts that were issued
the day before, and he/she was asked to point out the useful
ones which were written down on a note. This way, we can get
insight on the usefulness of the alert methodology as a whole
in its real context of use. The technical consultants considered
two thirds of the alerts as useful.

One of the useful findings’> produced in our research
was communicated to the security officer at a large dutch
banking organization. He was pleased with this finding and
insisted on the application of corrective measures to remove
the security vulnerability from their product. In addition, he
expressed his interest in this type of findings and encouraged
the responsible persons on behalf of our host company to
continue contributing with such security-related findings. This
provides further evidence for the practical usefulness of this
information to technical consultants and the potential to make
an positive impact at the customers.

VI. DISCUSSION

The data collected in Section III and Section IV-A shows
that the problem of depending on third party components with
known vulnerabilities is prevalent in the software industry. The
use of these types of components increase exploitation risks
if the vulnerable libraries are not updated, and it is a general
signal that this aspect is not properly taken care of in the
industry.

The data and experiences in Section IV-A indicate that
it is possible to to use tools like the OWASP Dependency
Check in external software product quality assurance. While
the raw figures state a false positive rate of over 70%, the
false positive rate observed while deploying the solution is
experienced to be lower. Reasons for this discrepancy can be
that some vulnerable components are simply not widely used
in industry.

An other explanation for the deviation is that even though
the reported security vulnerability is incorrect, the information
in the alert can still be considered useful. For example, many
false positives are due to the fact that the mysgl-connector
jar is flagged with the vulnerabilities of the mysgl database
server. Even though this is technically a false positive, since
the vulnerability is not in the connector itself, the information
that mysqgl is used together with an overview of existing
vulnerabilities in this application is deemed valuable by the
operators.

Zhttp://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2010-3700

VII. THREATS TO VALIDITY

There is a risk of interviewer bias as a result of the fact
that the author of the research is asking the questions. This risk
is mitigated by the fact that interviewees may potentially use
the proposed solution, therefore they will be inclined to give
honest responses because their future way of working may be
influenced by the outcome of the current study.

The selection of technical consultants coming from a single
company limits the generalizability. In order to generalize the
results beyond the research context, replication of the experi-
ment using subjects from multiple organizations is needed.

Another threat is the fact that we have used only Maven-
based Java systems. Our findings can be generalized to com-
parable technologies (Ruby when using Gems, .NET when
using NuGet). These technologies also require dependencies
declared in specific files before build time, and the way in
which dependencies are declared is also similar — we input
application names, which can be extracted and matched with
CPEs.

Due to tooling limitations, the data we worked with may
be unreliable due to false positives or false negatives. Where
appropriate, this threat was removed through manual adjust-
ment.

VIII. RELATED WORK

Our research extends prior work on software product qual-
ity monitoring by Bijlsma et al. [4] which defined a process
for detecting interesting events in streams of quality attribute
metric values. However, instead of looking at metric values we
define an interesting event to be the use of a component with
a known security vulnerability.

Mitropoulos et al. [14] and Saini et al. [17] used the
FindBugs static analysis tool to investigate the security of
Java components to create bug catalogs and bug evolution
trend reports [13]. Their work is mainly focusses on finding
security vulnerabilities inside a Java component, while our
work focusses on the detection of the usage of components
with known security vulnerabilities.

IX. CONCLUSION

This paper presents a case-study in which we employed an
automated vulnerability scanning tool in the process of external
quality assurance. The tool itself is evaluated, as well as the
usefulness of the tool inside the context of our host company.
In short, this paper makes the following contributions:

e We empirically show that using components with
known security vulnerabilities is common in practice

e We provide a description of a process to handle alerts
addressing security concerns

e We evaluated the usefulness of vulnerability alerts
in the context of external software product quality
monitoring with positive results

In our view, future work revolves mainly around replicating
our study in the same setting for confirming the findings, but
also in a different setting, in order to understand the impact

519

of the context on the conclusions drawn. Another element
of future work relevant for our study are extensions to the
contributions: more precise tooling, the handling of transitive
dependencies, more and varied types of software systems, more
heterogeneous interview subjects.

REFERENCES
[1] CVE identifiers. http://cve.mitre.org/cve/identifiers/. Last visited 2014-
01-19.
[2] OWASP - Using Components with Known Vulnerabilities.

https://www.owasp.org/index.php/Top_10_2013-A9-Using\ _
Components_with_Known_Vulnerabilities. ~ Last visited 2014-
01-19.

[3] OWASP Top 10 Homepage. https://www.owasp.org/index.php/Top\ _
10_2013-Table_of_Contents. Last visited 2014-01-19.

[4] D. Bijlsma, J. P. Correia, and J. Visser. Automatic event detection
for software product quality monitoring. Eighth International Confer-
ence on the Quality of Information and Communications Technology
(QUATIC), IEEE, pages 30-37, 2012.

[5S] R. Bodenheim. Evaluation of the ability of the shodan search engine to
identify internet-facing industrial control devices. International Journal
of Critical Infrastructure Protection, pages 114-123, 2014.

[6] A. Buttner and N. Ziring. Common platform enumeration (cpe)
specification. http://cpe.mitre.org/files/cpe-specification_2.1.pdf. Last
visited 2014-04-30.

[71 M. Cadariu. Tracking vulnerable components in software systems.
Master’s thesis, Delft University of Technology, 2014.

[8] Shodan Search Engine. Jetty 6.1.1 keyword search on shodan. http:
/Iwww.shodanhq.com/search?q=jetty+6.1.1. Last visited 2014-04-30.

[9] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting
changes in behavior. Proceedings of the fifth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages
53-62, 1999.

[10] T. Kuipers and J. Visser. A tool-based methodology for software
portfolio monitoring. Software Audit and Metrics, pages 118—128, 2004.

[11] T. Kuipers, J. Visser, and G. de Vries. Monitoring the quality
of outsourced software. Proceedings of the International Workshop
on Tools for Managing Globally Distributed Software Development
(TOMAG 2007), pages 3-12, 2007.

[12] MITRE. Known vulnerability entry for jetty. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2009-4610. Last visited 2014-04-30.

[13] D. Mitropoulos, G. Gousios, and D. Spinellis. Measuring the occurrence
of security-related bugs through software evolution. In PCI 2012:
Proceedings of 16th Panhellenic Conference on Informatics (PCI 2012),
pages 117-122, 2012.

[14] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinel-
lis. The Bug Catalog of the Maven Ecosystem. In Proceedings of the
11th Working Conference on Mining Software Repositories, pages 372—
375, 2014.

[15] OWASP. Owasp dependency check home page. https://www.owasp.org/
index.php/OWASP_Dependency_Check. Last visited 2014-03-13.

[16] S. Raemaekers, A. van Deursen, R. Schuppenies, and J. Visser. The
maven repository dataset of metrics, changes, and dependencies. Pro-
ceedings of the Tenth International Workshop on Mining Software
Repositories, 2013.

[17] V. Saini, H. Sajnani, J. Ossher, and C. V. Lopes. A dataset for maven
artifacts and bug patterns found in them. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 416-419,
2014.

[18] A. Van Deursen and T. Kuipers. Source-based software risk assessment.
Proceedings of the International Conference on Software Maintenance,
pages 385-388, 2003.

[19] J. Williams and A. Dabirsiaghi. The unfortunate reality of insecure
libraries. Aspect Security, Inc., March 2012.

[20] H. Xu, J. Heijmans, and J. Visser. A practical model for rating software

security. In Software Security and Reliability-Companion, pages 231—
232, 2013.

