
 
 

Delft University of Technology

Analyzing the State of Static Analysis
A Large-Scale Evaluation in Open Source Software
Beller, Moritz; Bholanath, Radjino; McIntosh, Shane; Zaidman, Andy

DOI
10.1109/SANER.2016.105
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering

Citation (APA)
Beller, M., Bholanath, R., McIntosh, S., & Zaidman, A. (2016). Analyzing the State of Static Analysis: A
Large-Scale Evaluation in Open Source Software. In Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (pp. 470-481). IEEE.
https://doi.org/10.1109/SANER.2016.105
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105


Analyzing the State of Static Analysis:
A Large-Scale Evaluation in Open Source Software

Moritz Beller, Radjino Bholanath
Delft University of Technology

The Netherlands
m.m.beller@tudelft.nl

radjino.bholanath@gmail.com

Shane McIntosh
McGill University

Canada
shane.mcintosh@mcgill.ca

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Abstract—The use of automatic static analysis has been a
software engineering best practice for decades. However, we still
do not know a lot about its use in real-world software projects:
How prevalent is the use of Automated Static Analysis Tools
(ASATs) such as FindBugs and JSHint? How do developers
use these tools, and how does their use evolve over time? We
research these questions in two studies on nine different ASATs
for Java, JavaScript, Ruby, and Python with a population of
122 and 168,214 open-source projects. To compare warnings
across the ASATs, we introduce the General Defect Classification
(GDC) and provide a grounded-theory-derived mapping of 1,825
ASAT-specific warnings to 16 top-level GDC classes. Our results
show that ASAT use is widespread, but not ubiquitous, and that
projects typically do not enforce a strict policy on ASAT use.
Most ASAT configurations deviate slightly from the default, but
hardly any introduce new custom analyses. Only a very small
set of default ASAT analyses is widely changed. Finally, most
ASAT configurations, once introduced, never change. If they do,
the changes are small and have a tendency to occur within one
day of the configuration’s initial introduction.

I. INTRODUCTION

Automated Static Analysis Tools (ASATs) scan the source
or binary code of a software system for a set of pre-defined
problems. ASATs can be configured to detect: (1) functional
problems, such as resource leakage or incorrect logic; and (2)
maintainability problems, such as non-compliance with best
practices or violations of style conventions.

Next to testing and manual code review, ASATs have
become an important pillar of modern Software Quality As-
surance approaches. By heeding the warnings that are reported
from ASATs, development teams can address problems before
they escape into released versions of their software. Coding
standards like NASA’s JPL C [1] and Java [2] standards
mandate the use of ASATs during the development process;
stronger still, they require that crucial software components be
free of any ASAT warning.

However, aside from anecdotal evidence, little is currently
known about whether and how rigorously developers use
ASATs in the ecosystem of Open-Source Software (OSS). A
deeper understanding of the real world application of ASATs
can guide researchers’ future work, help ASAT developers
adapt their offerings to better fit their user base, and ultimately
improve the user experience of ASATs.

In this paper, we set out to understand the prevalence
of ASATs, their configuration in real software systems, and
how those configurations evolve. To study the prevalence of
ASATs, we quantitatively and qualitatively analyze 122 pop-
ular OSS projects from the GITHUB, OPENHUB, SOURCE-
FORGE, and GITORIOUS software forges in search of the use
of 9 popular ASATs. In a second study on the configuration
and evolution of ASATs, we: (1) produce a General Defect
Classification (GDC) in order to map the specific problems
that are detected by the 9 studied ASATs to a common
format; and (2) analyze how 168,214 OSS projects configure
the studied ASATs with respect to the GDC. We address the
following broad research questions:
RQ 1 How common is the use of ASATs in practice?

Half of the state-of-the-art OSS projects already em-
ploy automated static analysis, although they typically
use only one ASAT in an ad-hoc fashion, where the
ASAT is not integrated with the flow of development.

RQ 2 How are ASATs configured?
The ASAT configurations in the studied OSS projects
barely deviate from the default ASAT configuration
and rarely introduce custom checks.

RQ 3 How does the use of ASATs evolve?
Most ASAT configurations, once committed, never
change. The ASAT configurations that do change are
typically only very slightly modified within the first
week of their appearance in the studied repositories.

The remainder of this paper is structured as follows. Sec-
tion II situates this study with respect to the literature on
ASATs. Section III provides the rationale for our research
questions. Section IV presents the results of our prevalence
study (RQ 1). Section V provides an overview of our GDC,
while Section VI leverages this classification to analyze ASAT
configuration (RQ 2) and evolution (RQ 3). Section VII
discusses the broader implications of our results and, finally,
Section VIII draws conclusions.

II. RELATED WORK

We first review existing research on ASATs and discuss
how it is related to our study of the prevalence and the use
of ASATs. Finally, we give an overview of the classifications
that the GDC builds upon.



A. Automatic Static Analysis Tools

ASATs traditionally use techniques such as data-flow analy-
sis and control-flow analysis to find defects in source code [3]–
[5]. However, because these techniques do not scale at large,
abstractions have to be introduced [4]. These abstractions,
plus the fact that checking common properties of programs is
an undecidable problem [6], lead to false positives, warnings
about defects that do not exist, and false negatives, when
warnings about actual defects are missing.

While false negatives impact the efficiency of ASATs be-
cause defects are missed, false positives cause developers
to waste time investigating incorrect warnings in the code.
Deciding whether a warning is a real defect or a false positive
takes three to eight minutes on average [7]–[9]. As there can be
as many as 50 false positives for every accurate warning [10],
analyzing warnings is a time-consuming activity. In general,
there are roughly 40 warnings for every thousand lines of
code [11]. This overload of warnings is a prime reason for
developers to avoid using ASATs [12]. While researchers have
studied the reasons why developers do or do not use ASATs,
there is little data on the prevalence of ASATs in practice. In
this study, we therefore quantitatively investigate the state of
adoption of ASATs in OSS projects.

Many ASATs differ in the type of defects that they detect.
However, even when tools focus on uncovering the same defect
type, the variance in defects found is still very large [6],
[13]–[15]. These results indicate that using several ASATs has
benefits over using just a single ASAT. However, this increases
the number of warnings that developers need to investigate.
Thus, deciding to use multiple ASATs is striking a balance
between an improved defect detection rate and the additional
investigation effort of an increased number of warnings. We
aim to determine how common the use of multiple ASATs is.

To better deal with a large number of warnings, studies
have investigated ways to prioritize them [9], [11], [16]–
[18]. This has the advantage that a developer can decide how
many warnings to analyze based on the importance of the
warnings. In lieu of those ranking algorithms, developers can
use configuration files to indicate which rules they consider
important. This can reduce the number of warnings generated
and suppress rules that are prone to emitting false positives.
Another reason to study developer preferences is to observe
if the use of ASATs reflects their potential. Wedyan et al.
and others observed that 15% of all detected defects were
functional and the rest maintainability-related [15], [19], [20].
Many studies observed that ASATs rarely find any functional
defects [15], [20]–[23]. In this paper, we analyze a large
number of ASAT configuration files to see how these previous
observations are reflected in them.

B. Defect Classifications

In 1993, the IEEE published a standard for classifying
defects [24]. It served as the basis for IBM’s Orthogonal
Defect Classification (ODC) scheme [25]. This scheme uses
the defect type as one of the aspects from which to classify the
defect. While the ODC scheme has been used in research [26],

[27], several studies conclude that it was too abstract and
required adaptations to fit any particular use in practice [14],
[28], [29]. In this paper, we propose the General Defect
Classification (GDC), a remote ODC-descendant that is a
generalization of the scheme refined by Beller et al. [28] and
Mäntylä and Lassenius [29]. Its ancestry can be traced back
to the work of El Emam et al. [30]. Central to this genealogy
of classifications is their high inter-rater reliability. The GDC,
in contrast to its predecessors, is specifically tailored to reason
across multiple ASATs.

III. RESEARCH QUESTIONS

The goal of this paper is to increase our understanding of
how static analysis tools are used in the real-world. To that
end, we study a large collection of OSS projects from both
statically (Java) and dynamically typed languages (JavaScript,
Ruby, and Python) in professional and non-professional pop-
ular OSS settings.

In pursuing our goal, we must first establish a baseline of
how widely-used static analysis is in these projects. Hence, in
our first research question, we ask:
RQ 1 How common is the use of ASATs in practice?

We refine the research question into three sub-research
questions that we manually investigate:

RQ 1.1 What is the prevalence of ASATs?
RQ 1.2 How common is the simultaneous use of multiple

ASATs?
RQ 1.3 Do projects enforce ASAT use?

Having gained insight into how widespread the use of
ASATs is through manual analysis, we set out to study
how a large corpus of projects use ASATs by automatically
investigating the ASAT configuration files in their repositories:
RQ 2 How are ASATs configured?

The answer to this this research question can be important
for the creators of ASATs and their users: Coming up with
sensible defaults for software is a hard problem [31]. A large-
scale study of their user base could help ASAT developers
uncover if their defaults generally fit the tool’s use in practice
so that users spend less time configuring their ASATs. To this
end, we want to gain insight specifically into the following
sub-research questions:

RQ 2.1 What type of warnings are explicitly enabled?
RQ 2.2 What type of warnings are explicitly disabled?
RQ 2.3 How well do default configurations reflect real-

world configurations?
RQ 2.4 How prevalent are custom rules in the OSS

configurations?
Finally, in order to understand which role ASATs take in

the development process, and if and how their configurations
files change over a project’s lifetime, we ask:
RQ 3 How does the use of ASATs evolve?

Specifically, we answer the following sub-RQs:
RQ 3.1 How often do ASAT configurations change?
RQ 3.2 How much do ASAT configurations change?
RQ 3.3 When do ASAT configurations change?



IV. PREVALENCE ANALYSIS (RQ 1)

In this section, we address the question of how wide-spread
the use of static analysis is in popular OSS Projects.

A. Methodology

To answer this question, we followed the study design
depicted in Figure 1. We started by examining the four
popular OSS project hosting platforms GITHUB, OPENHUB,
SOURCEFORGE, and GITORIOUS (Step 1) in December 2014.
We also considered other sources, primarily other code hosting
services, but found them unsuitable: Some lacked representa-
tive projects (for example, on GITLAB [32], the most popular
repositories belonged to the GITLAB company itself), others
provided no means of ranking projects by their popularity (for
example, the now-defunct GOOGLE CODE [33]).

Proportional to the number of projects that are hosted
on each platform [34], we selected the 100 most popular
repositories on GITHUB (ranked by number of stars), 20 on
GITORIOUS (ranked by development activity), and 10 from
both SOURCEFORGE (ranked by number of downloads) and
OPENHUB (ranked by number of users). In contrast to the
other three, OPENHUB is not a forge, but a “public directory
of free and open source software,” which includes links to
the project’s actual repository. OPENHUB’s overall popularity
ranking was only available for the 10 most popular projects.
After eliminating duplicates and non-software repositories, we
ended up with 122 unique projects to analyze.

Using a mixed methods approach, we investigated their use
of ASATs in two distinct ways (Step 2). On the one hand,
in a manual analysis of the projects’ websites, contribution
guidelines and ASAT configuration files in repositories, we
investigated whether and how projects documented their ASAT
use (Step 2a). On the other hand, we sent out a short survey
to contributors of the same 122 projects, asking which static
analysis tools they are using, when they are using them, if
it is a necessary precondition to check code before it can
enter the main project repository, and whether ASATs are
an integral part of their workflow (Step 2b). In order to
maximize the number of responses, we sent this question to
the projects’ mailing lists, newsgroups, or fora, and contacted
the two top-committers. We also explicitly lowered the barrier
to entry of the survey by embracing a discussion-style answer
of developers directly to our informal email [35]. Finally, in
Step 3, we compared the results that we had collected using
Steps 2a and 2b.

B. Results

In this section, we introduce the results from the manual
repository and website analysis, then describe the correspond-
ing results from the surveys, and finally compare them.
Repository Analysis. Table I presents an overview of the
results from analyzing the information in project repositories
and websites regarding ASATs for RQs 1.1-1.3. Overall, our
results stem from analyzing 122 projects (see Bholanath’s
thesis [35, Appendix A] for the complete list). Most of them
(36%+23%=59%) either mention the use of ASATs in their

TABLE I
PREVALENCE OF ASATS ACCORDING TO OUR REPOSITORY ANALYSIS.

Source Projects Use 1 ASAT Use > 1 ASATs

GitHub 83 34% 30%
OpenHub 9 67% 22%
SourceForge 10 30% 0%
Gitorious 20 30% 5%

Total 122 36% 23%

TABLE II
PREVALENCE OF ASATS ACCORDING TO OUR SURVEY.

Source Projects Use 1 ASAT Use > 1 ASATs Enforce Use

GitHub 19 36% 32% 42%
OpenHub 1 0% 0% 0%
SourceForge 3 34% 66% 0%
Gitorious 10 30% 40% 30%
Other? 3 100% 66% 33%

Total 36 41% 36% 36%

?Replied for their project B as a reaction to our survey in a mailing list of another project A (unrelated to B).

official project documentation, or their repository contains
ASAT configuration files or their build processes specify
explicit dependencies on ASATs. Of those projects, 28 use
multiple ASATs. Examining the project sources separately, 53
out of 83 GITHUB projects use ASATs and 25 of those use
multiple ASATs. Only one OPENHUB project does not use
ASATs, and 2 of the other 8 projects use multiple ASATs.
ASATs are not popular among our SOURCEFORGE projects,
with only three of them adopting ASATs, all of which use
a single ASAT. Finally, 7 out of 20 GITORIOUS projects use
ASATs, but only one of them uses multiple ASATs.
Survey. We received responses from 36 projects, achieving
a relatively high response rate for surveys of 30%. Table II
shows the corresponding results from the survey. The last
column displays the percentage of projects that use the results
of these tools as one of the factors to decide whether a code
contribution should be integrated into the project repository.
This displays information that we could not always obtain
from a repository analysis. Overall, we observe that ASATs
are used by 41% (Table I) + 36% (Table II) = 77% of projects
who answered the survey. Most respondents state that ASATs
are only sporadically used by developers when they believe
that a code change warrants ASAT use.

Concerning RQ 1.3, we observe that a slight majority of
the projects that use ASATs, 15 out of 28, rely on a single
tool. Five projects use more than two ASATs, with no project
using more than three comparable ASATs. Abilian [36] is the
only project that uses more than three ASATs, but for three
languages (JavaScript, CSS, and Python). All other projects
only use a single ASAT or multiple ASATs that check for
defects in the same language. Slightly less than half of the
projects that use ASATs (13 out of 28) place a strict ASAT-
regression policy on new code. This means that code that is
submitted for review or integrated into the project repository
must not introduce new ASAT warnings.



(Step 1)
Filter unsuitable 

repositories

(Step 2a)
Analyze 

repository

(Step 2b)
Conduct survey

Potential
Repositories

(Step 2)
Detect use of ASATs

(Step 3)
Compare survey and 
repository analysis 

results 

Results

Fig. 1. An overview of the study design for the prevalence analysis.

Comparison. Using a mixed methods approach to evaluate
the validity of our results [37], we compared the detailed
results that are summarized in Tables I and II for all 36
projects for which we had both sources available. For close
to 20% of the projects that responded to our questionnaire,
the repository analysis results deviate in some way from the
survey responses, which we consider to be the ground-truth.
In three cases, the repository analysis shows that ASATs are
used, while in reality, the project does not use any ASATs. A
reason for this might be that the information that we gathered
from the repository or website might be outdated. For example,
the Bash project [38] mentioned that they previously used
COVERITY [39], for which traces can still be found in existing
sources. For two other projects, two tools are found in the
project information, while respondents only note that one of
them is in use. Moreover, two projects use a different ASAT
than reported. Furthermore, there are seven projects that used
more ASATs than the repository analysis indicated and a single
project that used ASATs even though the repository analysis
showed otherwise.

V. GENERAL DEFECT CLASSIFICATION (GDC)

When we reason about multiple ASATs to answer RQs 2
and 3, we are confronted with the problem that each tool
provides a plethora of different individual rules (checks),
often without an explicit ordering scheme or a topology. If
we want to derive meaningful results from a comparison of
multiple ASATs, we therefore need to design a common,
more general classification scheme to allow us to abstract
over the tool-specifics. To that end, we propose the GDC,
which is based on the code review defect classification [28],
which lent itself to an adoption of ASAT warnings because it
categorizes “human static analysis” (i.e., code reviews), similar
to “automatic static analysis” warnings. One useful property
of a defect classification is that it can be used to categorize
not only defects, but also warnings (or, review suggestions)
and actual code changes. As such, we use the terms “defect”
and “warning” interchangeably.

Figure 2 depicts the two different high-level categories of
the GDC, maintainability and functional defects. It also shows
the 16 second-level defect categories (7 functional, 9 main-
tainability). Similar to our prior work [28], there are two top-
levels categories, functional and maintainability. Each of them
is refined into a set of sub-categories that further characterize

the warning. As one example of a new category, “Metric”
pertains to warnings that “measure a certain attribute of the
code,” like the “NestedIfDepth” warning in CHECKSTYLE.

In a grounded-theory-driven approach, the first two authors
separately browsed through all available FINDBUGS checks
and tried to classify them into fitting groups, using the code
review classification scheme as a blueprint [28]. Wherever we
could not find a suitable existing category, we introduced a
new one and sorted it into the topology. Upon completion
of this task, the authors met and compared their adopted
classifications, distilling a common first draft of the GDC.
After this, we mapped the traditionally more maintainability-
oriented CHECKSTYLE warnings into this preliminary ASAT
warning topology. In this round, we soon reached saturation
and only introduced two new categories under the maintain-
ability sub-level.

To stimulate future research, we distribute our GDC classifi-
cation along with detailed explanations on the error types and
our manual mapping of all 2,385 checks of the nine ASATs
to their corresponding GDC categories freely.1

VI. CONFIGURATION & EVOLUTION (RQ 2, RQ 3)

In this section, we describe the design and results of our
studies that address RQs 2 and 3.

A. Study Design

Figure 3 depicts our high-level study design for RQs 2 and
3. To facilitate the technical part of our analysis, we first
decided to only consider projects that are hosted on GITHUB

1http://dx.doi.org/10.6084/m9.figshare.1603419

Fig. 2. Top- and second-level categories of the GDC.

http://dx.doi.org/10.6084/m9.figshare.1603419


(1)
Filter unsuitable 

repositories

(2)
Analyze ASAT 

configuration files
ASAT-using
repositories

Results

General Defect Classification

Functional Maintainability

... ... ... ... ... ...

Defects

Fig. 3. An overview of the study design for the ASAT configuration analysis.

(1). Having chosen a selection of nine ASATs, we then de-
veloped two tools: ASAT-CONFIGURATION-ANALYZER2 for
RQ 2 and the ASAT-HISTORY-ANALYZER3 for RQ 3. Before
we could use them, however, we had to crawl GITHUB for the
occurrence of any of the supported ASAT configuration files
and store a URL at which we can retrieve the content of the
file (1). The tools then receive a list of URLs to configuration
files, which it downloads and parses, applying the mapping
of the individual tool checks to the GDC from Section V (2).
The results are classified distributions of warnings that capture
how developers configure their ASATs on a more abstract level
than the individual tools would allow. We answer our research
questions on the basis of these distributions.

B. Methods

In this section, we describe our study methodology.
Selection of ASATs (1). We placed some restrictions on
the ASATs that we could use. First, an ASAT has to be
configurable. If an ASAT is not configurable, then no study
regarding its use is necessary. We can simply conclude that all
developers use the ASAT in the same manner. Furthermore,
if an ASAT is configurable, it needs to store its configuration
in a separate file (and not, for example, via command line
arguments). Finally, the configuration file needs to be parsable.
In practice, this means that the configuration needs to be in
a machine-readable format such as XML, JSON, or even a
custom key-value pairing.

We used the ASATs that we encountered for RQ 1 (see
Section IV) as a starting point. We expanded our search
with search engines and programming support sites such as
Stack Overflow [40]. Table III lists the nine tools which fit
our criteria. Most tools use standard formats to store their
configuration. Two tools, JSL and PYLINT, use key-value
pairs in plain text format. FINDBUGS is a peculiar case. The
tool uses XML files to either exclude or include rules in a
specific class, file, or package. However, whether an element
is an inclusion or an exclusion of a rule is specified via
command line arguments. Thus, we could not determine this
in a consistent way. Instead, we used the configuration files
of the FINDBUGS Eclipse plugin. This plugin also stores its
configuration in plain text key-value pairs.

One factor that could influence how developers configure
their tools is what type of defects a tool focuses on. For
the Java tools, CHECKSTYLE focuses primarily on coding

2https://github.com/rbholanath/ASAT-Configuration-Analyzer
3https://github.com/rbholanath/ASAT-History-Analyzer

TABLE III
DESCRIPTION OF THE ASATS FOR RQ 2 AND 3.

Tool Language Format Extendable Released # of Rules

CHECKSTYLE [41] Java XML Yes 2001 179
FINDBUGS [42] Java Text Yes 2003 160
PMD [43] Java XML Yes 2002 330

ESLINT [44] JavaScript JSON Yes 2013 157
JSCS [45] JavaScript JSON Yes 2013 116
JSHINT [46] JavaScript JSON No 2011 253
JSL [47] JavaScript Text No 2005 63

PYLINT [48] Python Text Yes 2006 390

RUBOCOP [49] Ruby YAML Yes 2012 221

style, FINDBUGS on functional defects, and PMD tries to find
both types. For the JavaScript tools, JSCS focuses on coding
style rules, while both JSHINT and ESLINT try to find all
types of defects. JSHINT will refocus in an upcoming major
release to functional defects and has marked many rules as
deprecated in preparation for the removal of these coding style
rules [50]. This might already have affected the configurations
of developers, if they stopped using the deprecated rules in
preparation for the change. JSL, PYLINT, and RUBOCOP do
not state a particular focus on a specific subset of defects.
However, RUBOCOP seems to favor checking for coding style
issues, as made evident by the fact that most of their rules are
classified by the tool itself as belonging to the Style category.
Analyzing Configuration Files (2). Developers can configure
most ASATs to fit their specific needs through a configuration
file. For RQs 2 and 3, we study how developers use ASATs
through them as a proxy. In an ASAT configuration, developers
can enable the rules that check for defects that they consider
important, and disable rules they do not deem important (e.g.,
perhaps because of a high false positives rate). Without a
configuration file, developers rely on the default, which might
not align with their specific needs. The contents of an ASAT
configuration file are hence an important indicator of how
developers use ASATs to check for defects in their code and
how well the tool’s default settings reflect its use. A version-
controlled ASAT configuration is crucial for collaboration
because it enforces consistent static checks across developers.

For RQ 2.1 and RQ 2.2, we were interested in the distribu-
tion of the rules that are explicitly activated by developers and
likewise those that are disabled by developers. This indicates
which types of warnings are considered important by devel-
opers, and conversely, which types of warnings they avoid.
To mitigate the influence of the set of possible ASAT rules,
we normalized these distributions according to the number of
rules in a category. To see why this is important, consider a
hypothetical tool with just two defect categories, A and B,
where A has one rule and B has two. If the developers enable
the rule in category A once and each of the rules in category
B, then a uniform distribution of defects would show B as
being twice as actively-enabled as A. However, we can see
that each individual rule in A and B was enabled once. The
results in this normalized form allow us to study the relations
between a category with a large number of rules and another
with just one or two rules.

For RQ 2.3, we were interested to see if and how the

https://github.com/rbholanath/ASAT-Configuration-Analyzer
https://github.com/rbholanath/ASAT-History-Analyzer


configurations of developers deviated from the defaults, as
these are indications of whether the default configuration
accurately reflects the wishes of ASAT users. A developer
can deviate from the default configuration in three ways: 1)
Disable a rule that was enabled by default, 2) Enable a rule
that was disabled by default, or 3) Reconfigure a rule.

Not all rules can be reconfigured. An example of a con-
figurable rule is the “NestedIfDepth,” for which the depth
threshold can be customized via a simple integer value. Re-
configuring a rule indicates that developers want to check for
this convention, but do not agree with the default convention
as specified by the creators of the tool. We assume that a rule
is reconfigured when a developer includes an enabled default
rule in his own configuration.

To see if developers deviate from the default, we simply
computed what percentage of configuration files included one
or more deviations for a default rule. To examine how develop-
ers deviate from the default configurations, we computed, for
each rule, how many configuration files included a particular
type of deviation for that rule.

For RQ 2.4, we determined the prevalence of customized
warning rules in comparison to the built-in rules of a tool. We
consider a rule to be custom-made if it was not included as a
built-in rule in a recent version of the ASAT. For each tool,
this can indicate whether the developers consider the tool to be
incomplete, which might result in developers writing custom
rules to find these defects. Generally, this can be an indication
of whether current ASATs can adequately cover the defects
that developers wish to find.
Analyzing Configuration Evolution (2). For each identified
configuration file from (1), we then performed an analysis
of its evolution over time. The first metric, for RQ 3.1, is
simply how often a file was changed. This tells us if developers
have a need to adapt their ASAT configuration, either because
the ASAT was updated or because of changing needs among
developers. For RQ 3.2, we calculated the total number of line
changes in a file. We defined this as the difference between
the number of lines added and deleted in a single change. If
this number is zero, it likely means that there are only lines
modified, which count as both an addition and a deletion in
the information of a change. We did not compute more fine-
grained measures, such as an edit distance, because of the
excessive computing load for all changes of the more than
160,000 configuration files and its relatively small expected
information gain.

C. Study Objects

After selecting the ASATs to study, we needed to retrieve
configuration files for every tool. We expected to find enough
configuration files on GITHUB. However, to further augment
the study, we also collected data from KRUGLE [51] and
OPENHUB. To eliminate possible duplicates, we excluded
OPENHUB results which hosted their code on GITHUB.

Table IV details the number of configuration files split
per ASAT and hosting site. As projects typically have one
configuration, the numbers are a good estimator for the number

TABLE IV
CONFIGURATION FILES FOR EACH ASAT, GROUPED BY SOURCE.

Tool GitHub OpenHub Krugle Total

CHECKSTYLE 16,271 2,492 22 18,785
FINDBUGS 1,575 514 1 2,090
PMD 5,562 1,888 8 7,458

ESLINT 4,427 5 3 4,435
JSCS 11,656 20 1 11,677
JSHINT 105,619 3,086 65 108,770
JSL 862 0 0 862

PYLINT 3,941 123 7 4,071

RUBOCOP 10,063 0 3 10,066

Total 159,976 8,128 110 168,214

of different projects. We identify JSHINT as the most wideley-
used ASAT among our selection. The number of added files
from KRUGLE is minimal for all tools. Moreover, for some
tools, there were more configuration files hosted on GITHUB
than we could access due to limitations in GITHUB’s search
(see Section VII-B).

D. Results

In this section, we detail the results to RQs 2 and 3.
Results of RQ 2. RQ 2.1 and 2.2 are concerned with the
warning rules that developers enable and disable respectively
in their configurations. As explained in Section VI-B, we nor-
malized the distribution of the enabled and disabled warning
rules according to the number of rules in a category. Figure 4
details these normalized results for every tool. Every one of the
9 bars displays the percentage of normalized rules that belong
to a specific category in our classification. Due to this, the
differences in Figure 4 from a uniform distribution are due to
developers over- or under-proportionally enabling or disabling
rules in this category. As an example, almost 10% of the
normalized rules that are enabled in FINDBUGS configurations
belong to the Check category. The figures also allow us to
identify categories that are outliers for a specific tool. For
instance, the Metric and Migration categories contain a large
percentage of the enabled rules for RUBOCOP. In both the
enabled and disabled distributions, some tools show categories
with no enabled or disabled rules.

For RQ 2.3, we calculated how many configurations devi-
ated from the default. The second column of Table V shows
how many configuration files changed one or more default
rules, i.e., disabled a rule that was enabled in the default
configuration or vice versa. The third column shows how
many files did not change a default rule, but reconfigured a
default rule. Blank spaces indicate that the tool does not allow
individual rules to be reconfigured. The fourth column lists the
percentage of configuration files that do not contain a deviation
for any default rule.

With Table V as the basis, we also assessed in three ways
how developers deviate from a default configuration. First,
for all rules that are enabled in default configurations, we
calculated how many developers disabled them. Subsequently,
for every rule that was turned off by default, we calculated



Fig. 4. Normalized average means of enabled (top) and disabled (bottom) checks per ASAT for all 16 second-level GDC categories.

in how many configurations that rule was enabled. Finally,
for every rule that was enabled in the default configuration
and which could be configured, we calculated how many
configurations possibly reconfigured them.

Our results show that there is wide agreement with the
default rules that ASAT providers ship: Only for the tools
ESLINT (2% of default rules affected) and JSHINT (10%) did
more than 50% of configuration files deviate from the default
by reconfiguring a subset of rule defaults. For FINDBUGS and
JSHINT more than 50% of developers enabled 2 and 5 default-
disabled rules, respectively.

For RQ 2.4, we calculated the percentage of custom rules
in the configuration of developers. Table VI shows the results.
Custom rules never account for more than 5% of all of the
enabled rules of a tool. For 3 out of 8 ASATs, this percentage is
even lower than 1%. We omit JSL from these results because
JSL does not permit custom rules.
Results of RQ 3. Figure 5 shows the results for RQ 3.1
regarding how often and how profoundly configuration files
change. A little over 80% of all configuration files are never

TABLE V
SUMMARY OF RULE CHANGES FROM DEFAULT CONFIGURATIONS.

Tool Changed Reconfigured No Deviations Total

ESLINT 80.5% 5.7% 13.8% 4,274
FINDBUGS 93.0% — 7.0% 2,057
JSHINT 89.6% 0.7% 9.7% 104,914
JSL 94.6% — 5.4% 848
PYLINT 53.3% — 46.7% 3,951
RUBOCOP 79.1% 3.2% 17.7% 9,579

Fig. 5. Number of changes to an ASAT configuration (median 0, mean 0.5).

changed after their creation. The range in the chart represents
99.5% of the total data. Less than 10% of all files are changed
just once and less than 5% twice. The maximum number
of times that a configuration file was changed is 248, for a
CHECKSTYLE configuration.

For the 19% of configuration files that were changed after

TABLE VI
AVERAGE MEAN OF CUSTOM RULES IN ASAT CONFIGURATIONS.

Tool Percentage of Custom Rules

CHECKSTYLE 0.2%
ESLINT 4.1%
FINDBUGS 1.3%
JSCS 4.7%
JSHINT 0.1%
PMD 2.9%
PYLINT 1.1%
RUBOCOP 0.9%



their initial creation, we analyzed each change of every file
to determine the size of the change. The left distribution in
Figure 6 shows the results to RQ 3.2. The total number of
changes is zero for more than 25% of all files. This means that
either lines were only modified “in-place,” or that there were
as many completely new lines added as deleted. Furthermore,
there is a greater chance that a change has more additions than
deletions. The range in the chart captures more than 90% of
the data. The rest of the data is spread out from -1,126 to
2,055 total changes.

The right distribution in Figure 6 shows the results to RQ
3.3. We see that 18% of the changes are made on the same
day that the file is created and 33.5% of changes are made
within the first week. The tail of the data is quite extensive, as
the range shown in the chart covers just over 65% of the data.
However, no date more than 15 days after the creation of the
file individually represents more than 1% of all changes. The
maximum is 11.5 years for a CHECKSTYLE configuration.

VII. DISCUSSION

In this section, we discuss our results and possible threats
to the validity of our conclusions.

A. Results

For RQ 1.1, we found that the percentage of projects using
ASATs according to the survey is higher than that of our
repository analysis. Excluding projects that are present in both
sets, 77% of the respondents of our survey note that ASATs are
used compared to 52% of project resources. It seems highly
likely that the respondents to our survey were more inclined
to use ASATs, possibly explaining the 25%-point difference.

The results of a large mining repository analysis give
a useful approximation of the real ASAT use of OSS
projects. It might be inaccurate on a single project basis.

However, the results from the survey also showed that the
majority of projects that use ASATs (15 out of 28) only
run these tools sporadically and without enforcing them. Re-
searchers should avoid using data that is solely collected from
project repositories and documentation to draw conclusions
about ASAT use. This highlights the need to analyze multiple
data sources in empirical software engineering [37], [52].

Our manual repository investigation showed that less than
59% of projects use ASATs in various levels of strictness for
RQ 1.2. These results seem to contradict prior results [12],
[53], [54], which claim that ASATs have not yet achieved
significant use among software projects.

ASATs are common, but not ubiquitous in popular OSS.

Table IV shows that our ASAT selection contained six times
more JavaScript projects that used an ASAT than such Java
projects. This is against our expectation since there are only

three times more JavaScript than Java projects on GITHUB.
Before drawing further conclusions, we need to evaluate this
initial finding on a larger set of dynamic and static languages.

Projects in a dynamically-typed language like JavaScript
might require or benefit more from ASAT use than
projects in a statically-typed language like Java.

The questionnaire also showed that the way in which ASATs
are used varies. 64% of projects use ASATs sporadically and
without attaching any consequences to the warning results.

Few projects have ASATs tightly integrated into their
workflows and even fewer projects mandate that the
codebase should be ASAT-warning free.

Past research has suggested that an important factor of
improving the adoption of ASATs was to make this integration
as easy and seamless as possible [12]. For instance, COVERITY
provides both GITHUB and TRAVIS CI [55] integration [56],
[57], making it easy to integrate ASATs into an already
existing code review workflow.

In order to fully benefit from ASATs, projects should
include them into their standard workflow, for example
as part of their continuous integration processes.

Concerning RQ 1.3, we observed that most projects use
one ASAT. This is in spite of the fact that the use of mul-
tiple ASATs can provide a large increase in defect detection
capabilities [6], [13]–[15]. Developers might be unaware of
these benefits or an overload of warning messages generated
by multiple ASATs might cause developers to avoid them [12].

For RQ 2.1, we observed from Figure 4 (top graph) that
65% of all enabled rules belong to the GDC maintainability
defect category. The other 35% of rules belong to a functional
defect category. A reason for this might be that, ASATs
perform poorly at finding functional defects [15], [20]–[22].
Ayewah [19] and Wagner [20] argue that the reason could be
that ASATs do not know what code is intended to do, which
is crucial if one wants to find functional defects. If developers
notice the poor performance of these functional defect rules
they might place less importance on them and subsequently
leave them out of their configurations.

Concerning RQ 2.2, from Figure 4 (bottom graph) we
observe that 75% of all the disabled rules are maintainabil-
ity defects. However, the ratio of maintainability defects to
functional defects is not significantly larger for the rules that
developers disable than it is for those rules that developers
enable. Even though the ability of ASATs to find functional
defects is limited [15], [20]–[22], developers do not widely
disable these rules. A potential reason for this might be that
these rules do not emit a lot of false positives. On the contrary,



0%

5%

10%

15%

20%

25%

30%

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

P
er

ce
n

ta
ge

 o
f 

A
ll 

Fi
le

s

Total Amount of Changes (Addition - Deletions)

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
er

ce
n

ta
ge

 o
f 

A
ll 

Fi
le

s

Amount of Days After Creation of File

Fig. 6. Distribution of change size (left; median: 1, mean: 1.64) and changes per days after initial configuration (right; median: 32 days, mean: 151).

a rule that never emitted a warning might not be worth
disabling, as it might still find a defect in the future.

Both the majority of actively enabled and disabled rules
are maintainability-related.

As we have only compared the choices that developers
make in their configuration files explicitly, this high-level
observation is not a contradiction. To investigate it in more
depth, we need a study that also takes into account the implicit
defaults of configurations.

On a lower level, Figure 4 shows some outliers for indi-
vidual tools. For instance, regarding enabled rules, the Metric
category for RUBOCOP and the Logic category for PYLINT
stand out. For disabled rules, the FINDBUGS Code Structure
category and the RUBOCOP Migration category are noticable
outliers. These outliers indicate that, for a single tool or pro-
gramming language, developers sometimes consider a specific
category less or more important than developers using other
ASATs or languages.

For the results regarding RQ 2.3, Table V shows that, for
all tools, less than half of all configurations do not change or
reconfigure any rule from the default configuration. For 5 out
of 6 tools, this percentage is even lower than 20% and for 3
out of 6 tools it is less than 10%.

Most configurations change or reconfigure rules from the
default configuration, but typically only one rule.

The results described in Section VI-D, and Table V and
Table VI in particular, indicate that there are few rules that
a noticeable percentage of all developers change or recon-
figure. Figure 4 could suggest improvement opportunities in
the default configurations of ASATs. For the enabled rules,
5 out of 7 tools have zero default rules that are disabled
by developers in more than 25% of all configuration files.
Moreover, less than 5% of the rules for the other two tools
are disabled more than 25% of the time. For the rules that are
disabled by default, 3 out of 6 tools do not have any rules that
are turned back on by more than 25% of all developers. The

other three tools have a higher number of such rules. Most
striking are the results for FINDBUGS. Even though there are
just eight rules that are disabled by default, the results show
that the default configuration should probably enable rather
than disable some of those rules. Regarding the reconfigurable
rules, the percentage of rules that are potentially reconfigured
by developers are low among all three tools. However, both
ESLINT and JSHINT still have rules that pass the 50% mark.
The creators of these tools should therefore consider changing
the default settings.

Developers only widely disagree with few rules in default
configurations.

Finally, regarding RQ 2.4, our results show that custom rules
do not comprise a sizable segment of all rules, amounting to
less than 5% for all tools. This can indicate that developers
do consider the ASATs to be complete, in the sense that they
need not create custom rules to check for defects that are not
included in the built-in rule set. Nevertheless, this could also
be an unwillingness to create custom rules, with developers
manually checking for those rules they consider to be missing
in the ASATs that they use.

Custom rules comprise less than 5% of all rules that are
used by developers.

Regarding RQ 3.1, the results show that the use of ASATs
is relatively stagnant (i.e., does not evolve). Over 80% of all
the configuration files that we analyzed are created and then
used as-is for the remainder of the project’s lifetime to date.
Moreover, only 5% of all configuration files are changed more
than twice and less than 2% are altered more than five times.

Most configuration files never change.

Looking at only the files that are changed, the results for
RQ 3.2 show that, for most files, the total number of changed
lines lies within a reduction of five lines to an increase of five



lines. Furthermore, more than 28% of all files have an equal
number of added and deleted lines, indicating that there were
likely only modified lines.

Most changes to configuration files are small in size.

The results for RQ 3.3 show that a configuration files is
most likely to be changed on the same day that it was created.
Looking ahead one week, we see that slightly over a third of
all changes were made in this time span. Going even further,
almost half of all changes are made within a month after a
file’s creation. Thus, we observe that developers that make
changes to their configuration files do not only do so in the
period where they are still getting used to the ASAT. Assuming
that this period lasts a week, or surely no longer than a month,
at least 50% of all changes are made after the ASAT was used
for a lengthy amount of time.

A third of all changes happen in the first week after the
creation of an ASAT configuration.

B. Threats to Validity

In this section, we explain which threats affect the validity
of our study and show how we mitigated them.
Internal Validity. Since most study points stem from GITHUB
(see Table IV), this might bias our results. To minimize the
bias, we looked for all code hosting services and search
engines that allowed us to find ASAT configuration files.
Hence, our bias towards GITHUB might simply be reflective
of its current popularity among OSS projects.

There might be errors in our measurements due to the use
of our analysis tools. We verified that the tools worked as
expected on small, manually curated samples and through au-
tomated tests. Moreover, we programmed our tool defensively,
that is, the tool skips those configuration files that do not
conform to a strict specification. To mitigate this risk further,
we open-sourced our tools.

GitHub’s search only retrieves 1,000 hits. We worked
around it by strategically boxing and modifying its file size
parameter in one-byte increments. However, this was too
coarse-grained for some searches. As a result, we could not
retrieve a few hundred configuration files for most tools, and
about 220,000 for JSHINT. Our sample size of over one third
of the total JSHINT population is still significant.

For RQ 2.3, we assumed that the current default settings still
applied when the ASATs were initially adopted by the studied
repositories. If the default configuration changed significantly
over time, our results might be inaccurate. However, manual
inspection of a few projects showed that the default typically
evolves gracefully, adding new options, but not changing
existing ones.
External Validity. This study only considers the configura-
tions of ASATs from OSS projects. As such, its generalizabil-
ity towards closed-source projects might be limited.

Our study targets nine ASATs and four programming lan-
guages, representing a diverse set of tools (see Table IV).
Therefore, we expect those results that abstracted over all the
tools and presented a general view of the studied ASATs to
further generalize over ASATs outside of this study as well.
However, replication studies are needed to confirm this.

VIII. FUTURE WORK & CONCLUSIONS

In this paper, we have performed an investigation into how
a large set of OSS projects use static analysis. Our findings
show that, 60% of the most popular and (therefore arguably)
most advanced projects make use of ASATs. Projects which
use ASATs typically do not embed them in their workflow
and use them only sporadically. Our results seem to suggest
that dynamically-typed languages benefit from or require more
ASAT support than static languages. Future research could
broaden the group of languages for this analysis to assert and
further investigate this finding.

Our analysis into the usage of ASATs through their config-
uration files has shown that the default configurations of most
tools are a good fit to the majority of projects. Only two tools
contained default checks that developers regularly disagreed
with. In line with the picture of a light use of ASATs are
our results on the evolution of their configuration files: There
typically is no evolution. Most ASAT configurations, after an
initial period of change of one week, remain unchanged in
project repositories.

Our findings seem to suggest that OSS developers need to
be made aware of the benefits of using ASATs, and how easy
an integration into their fixed workflow or even continuous
integration process can be. On the other hand, developers
might be skeptical of the practical usefulness of ASATs due
to a possible overload with irrelevant warnings.

Apart from a purely empirical analysis, this paper also
contributes the GDC and practical guidelines for users and
creators of ASATs. Possible benefiters are:

Researchers, who can replicate our study and use the classi-
fication for further studies on ASATs. The GDC might
be especially useful for studies on the intersection of
ASATs with code review [58].

Practitioners, who could assess the strengths and weaknesses
of ASATs by inspecting the distribution profile of the
number of supported checks in each category. For ex-
ample, FINDBUGS emphasizes functional checks.

Tool Creators of FINDBUGS and RUBOCOP, who may want
to re-assess the defaults for their rules in two GDC
categories. Developers seem to accept the remainder of
the defaults.

Dashboard Creators of tools, such as TEAMSCALE [59] and
SONARQUBE [60], who could rank, compare, filter,
prioritize, and possibly remove duplicates when they as-
semble warnings from multiple ASATs in one location.



REFERENCES

[1] NASA, “JPL C Standard,” 2015, accessed on: November 14th, 2015.
[Online]. Available: http://lars-lab.jpl.nasa.gov/JPL Coding Standard
C.pdf

[2] NASA, “JPL Java Standard,” 2015, accessed on: November 14th, 2015.
[Online]. Available: http://lars-lab.jpl.nasa.gov/JPL Coding Standard
Java.pdf

[3] S. C. Johnson, “Lint, a c program checker,” in Computer Science
Technical Report 65. Bell Laboratories, 1977.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1165–1178, 2008.

[5] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, 2004.

[6] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,” Electronic Notes in Theoretical Computer Science, vol.
217, no. 0, pp. 5–21, 2008.

[7] Coverity Inc., “Effective management of static analysis vulnerabilities
and defects,” Coverity Inc., White Paper, 2009.

[8] S. Heckman and L. Williams, “A systematic literature review of action-
able alert identification techniques for automated static code analysis,”
Information and Software Technology, vol. 53, no. 4, pp. 363–387, 2011.

[9] J. Ruthruff, J. Penix, D. Morgenthaler, S. Elbaum, and G. Rothermel,
“Predicting accurate and actionable static analysis warnings: an exper-
imental approach,” in Proceedings of the 30th international conference
on Software engineering. ACM, 2008, Conference Proceedings, pp.
341–350.

[10] J. Kamperman, “Automated software inspection: A new approach to
increased software quality and productivity,” Reasoning Inc., White
paper, 2002.

[11] S. Heckman and L. Williams, “On establishing a benchmark for evalu-
ating static analysis alert prioritization and classification techniques,”
in Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement. ACM, 2008,
Conference Paper, pp. 41–50.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
Conference Proceedings, pp. 672–681.

[13] N. Rutar, C. Almazan, and J. Foster, “A comparison of bug finding
tools for java,” in 15th International Symposium on Software Reliability
Engineering, 2004, Conference Proceedings, pp. 245–256.

[14] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, Comparing Bug
Finding Tools with Reviews and Tests, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, vol. 3502, book section 4,
pp. 40–55.

[15] F. Wedyan, D. Alrmuny, and J. Bieman, “The effectiveness of automated
static analysis tools for fault detection and refactoring prediction,” in In-
ternational Conference on Software Testing Verification and Validation.
IEEE, 2009, Conference Proceedings, pp. 141–150.

[16] S. Heckman, “Adaptively ranking alerts generated from automated static
analysis,” Crossroads, vol. 14, no. 1, pp. 1–11, 2007.

[17] S. Kim and M. Ernst, “Which warnings should i fix first?” in Proceed-
ings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, 2007, Conference Paper, pp. 45–54.

[18] T. Kremenek and D. Engler, Z-Ranking: Using Statistical Analysis to
Counter the Impact of Static Analysis Approximations, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2003, vol. 2694,
book section 16, pp. 295–315.

[19] N. Ayewah, W. Pugh, D. Morgenthaler, J. Penix, and Y. Zhou, “Eval-
uating static analysis defect warnings on production software,” in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. ACM, 2007, Conference
Paper, pp. 1–8.

[20] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb,
“An evaluation of two bug pattern tools for java,” in 1st International
Conference on Software Testing, Verification, and Validation, 2008,
Conference Proceedings, pp. 248–257.

[21] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings
of the 19th international symposium on Software testing and analysis.
ACM, 2010, Conference Paper, pp. 241–252.

[22] C. Couto, J. Montandon, C. Silva, and M. T. Valente, “Static correspon-
dence and correlation between field defects and warnings reported by a
bug finding tool,” Software Quality Journal, vol. 21, no. 2, pp. 241–257,
2013.

[23] A. K. Tripathi and A. Gupta, “A controlled experiment to evaluate the
effectiveness and the efficiency of four static program analysis tools for
java programs,” in Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering. ACM, 2014,
Conference Proceedings, p. 23.

[24] IEEE, “Ieee standard classification for software anomalies,” IEEE Std
1044-1993, pp. 1–32, 1994.

[25] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and
M.-Y. Wong, “Orthogonal defect classification-a concept for in-process
measurements,” IEEE Transactions on Software Engineering, vol. 18,
no. 11, pp. 943–956, 1992.

[26] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M. Vouk, “Pre-
liminary results on using static analysis tools for software inspection,”
in 15th International Symposium on Software Reliability Engineering,
2004, Conference Proceedings, pp. 429–439.

[27] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and
M. Vouk, “On the value of static analysis for fault detection in software,”
IEEE Transactions on Software Engineering, vol. 32, no. 4, pp. 240–253,
2006.

[28] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, Conference Paper, pp. 202–211.

[29] M. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2009.

[30] K. El Emam and I. Wieczorek, “The repeatability of code defect
classifications,” in Proceedings of the Ninth International Symposium
on Software Reliability Engineering, 1998, Conference Proceedings, pp.
322–333.

[31] J. P. Kesan and R. C. Shah, “Setting software defaults: Perspectives from
law, computer science and behavioral economics,” Notre Dame L. Rev.,
vol. 82, p. 583, 2006.

[32] GitLab Inc., “Code, test, and deploy together,” 2015, accessed on:
November 14th, 2015. [Online]. Available: https://about.gitlab.com/
about/

[33] Google Inc., “Bidding farewell to google code,” 2015, accessed on:
November 14th, 2015. [Online]. Available: http://google-opensource.
blogspot.nl/2015/03/farewell-to-google-code.html

[34] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, Conference
Proceedings, pp. 384–387.

[35] R. Bholanath, “Analyzing the State of Static Analysis: A Large-
Scale Evaluation in Open Source Software,” Master’s thesis, Delft
University of Technology, 2015, http://repository.tudelft.nl/view/ir/uuid:
3d834130-8dd7-420a-9af9-6e77761cdad6/.

[36] The Abilian Team, “Abilian github repository,” 2015, accessed on:
November 14th, 2015. [Online]. Available: https://github.com/abilian/

[37] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and
why developers (do not) test in their IDEs,” in Proceedings of the 10th
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2015, pp. 179–190.

[38] GNU, “The bash shell,” 2015, accessed on: November 14th, 2015.
[Online]. Available: https://gnu.org/software/bash/bash.html

[39] Coverity Inc., “Software testing and static analysis tools —
coverity,” 2014, accessed on: October 3rd, 2014. [Online]. Available:
http://www.coverity.com/

[40] Stack Exchange Inc., “Stack Overflow,” 2015, accessed on: November
14th, 2015. [Online]. Available: http://stackoverflow.com/

[41] O. Burn, “checkstyle - checkstyle 5.9-snapshot,” 2014, accessed on:
October 14, 2014. [Online]. Available: http://checkstyle.sourceforge.net/

[42] FindBugs, “Findbugs - find bugs in java programs,” 2014, accessed on:
October 2nd, 2015. [Online]. Available: http://findbugs.sourceforge.net/

[43] PMD, “Pmd,” 2014, accessed on: October 2nd, 2014. [Online].
Available: http://pmd.sourceforge.net/

[44] ESLint, “Eslint - pluggable javascript linter,” 2015, accessed on:
November 7th, 2015. [Online]. Available: http://eslint.org/

http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_Java.pdf
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_Java.pdf
https://about.gitlab.com/about/
https://about.gitlab.com/about/
http://google-opensource.blogspot.nl/2015/03/farewell-to-google-code.html
http://google-opensource.blogspot.nl/2015/03/farewell-to-google-code.html
http://repository.tudelft.nl/view/ir/uuid:3d834130-8dd7-420a-9af9-6e77761cdad6/
http://repository.tudelft.nl/view/ir/uuid:3d834130-8dd7-420a-9af9-6e77761cdad6/
https://github.com/abilian/
https://gnu.org/software/bash/bash.html
http://www.coverity.com/
http://stackoverflow.com/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/
http://eslint.org/


[45] JSCS, “Jscs - about,” 2015, accessed on: May 7th, 2015. [Online].
Available: http://jscs.info/

[46] A. Kovalyov, “Jshint, a javascript code quality tool,” 2015, accessed
on: November 7th, 2015. [Online]. Available: http://jshint.com/

[47] M. Miller, “Javascript lint,” 2015, accessed on: November 7th, 2015.
[Online]. Available: http://www.javascriptlint.com/

[48] Logilab, “Pylint - code analysis for python — www.pylint.org,” 2015,
accessed on: May 7th, 2015. [Online]. Available: http://pylint.org/

[49] B. Batsov, “Rubocop — a ruby static code analyzer,” 2015, accessed on:
November 7th, 2015. [Online]. Available: http://batsov.com/rubocop/

[50] A. Kovalyov, “Jshint option reference,” 2015, accessed on: May 8th,
2015. [Online]. Available: http://jshint.com/docs/options/

[51] Aragon Consulting Group, Inc., “Krugle – #1 for enterprise code
search,” 2015, accessed on: November 14th, 2015. [Online]. Available:
http://www.krugle.com/

[52] S. Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig, Is it dangerous
to use version control histories to study source code evolution?, ser.
ECOOP 2012–Object-Oriented Programming. Springer, 2012, pp. 79–
103.

[53] R. Kumar and A. Nori, “The economics of static analysis tools,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013, Conference Proceedings, pp. 707–710.

[54] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in Proceedings of the International Conference on Software
Engineering (ICSE). IEEE, 2015, pp. 358–368.

[55] Travis CI GmbH, “Travis continuous integration,” 2015, accessed on:
November 14th, 2015. [Online]. Available: https://travis-ci.com

[56] Coverity Inc., “Coverity scan - github integration,” 2015, accessed on:
October 21st, 2015. [Online]. Available: https://scan.coverity.com/github

[57] ——, “Coverity scan - travis ci integration,” 2015, accessed on:
November 13th, 2015. [Online]. Available: https://scan.coverity.com/
travis ci

[58] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in IEEE
22nd International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 2015, Conference Proceedings, pp. 161–170.

[59] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software quality
control in real-time,” in Proceedings of the 36th ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE’14), 2014.

[60] G. Campbell and P. P. Papapetrou, SonarQube in Action. Manning
Publications Co., 2013.

http://jscs.info/
http://jshint.com/
http://www.javascriptlint.com/
http://pylint.org/
http://batsov.com/rubocop/
http://jshint.com/docs/options/
http://www.krugle.com/
https://travis-ci.com
https://scan.coverity.com/github
https://scan.coverity.com/travis_ci
https://scan.coverity.com/travis_ci

