

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title Towards Building API Usage Example Metrics

Author(s) Radevski, Stevche; Hata, Hideaki; Matsumoto, Kenichi

Citation

SANER 2016 : 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering, 14-18 March 2016, Suita,

Japan

Issue Date 2016

Resource Version author

Rights

© 2016 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SANER.2016.79

URL http://hdl.handle.net/10061/12733

Towards Building API Usage Example Metrics
Stevche Radevski∗, Hideaki Hata∗, Kenichi Matsumoto∗

∗Graduate School of Information Science
Nara Institute of Science and Technology, Nara, Japan 630-0101

Email: [stevche.radevski.sl1, hata, matumoto]@is.naist.jp

Abstract—It is not unreasonable to say that examples are one
of the most commonly used knowledge sources when learning the
usage and best practices of a new API. That being said, in many
cases the examples provided on the APIs’ website are lacking
in quantity or quality, so developers have to resort to other
information sources, namely blogs and coding forums. Moreover,
there is no good way for API developers to measure anything
concerning the examples they are creating.

In order to resolve the problem of lacking examples infor-
mation and feedback in their creation, our goal is to develop
metrics for empirical measurement of examples and to offer
support during the APIs example creation steps, and this paper
represents the starting point towards that aim.

We have analyzed the source code examples provided on the
API’s website or GitHub directory for 7 popular API libraries
written in Java and measured certain metrics, such as example
coverage, example code to source code ratio, class coverage
percentage, and problems that occur with the compilation and
execution of existing examples. The purpose of this paper is
to investigate the current situation of examples and provide a
starting knowledge base for building an automatic tool for source
code example metrics analysis.

I. INTRODUCTION

As the software engineering field matures, so does the de-
velopment of new libraries, allowing for higher reuse of source
code. In many of the cases there exists a library fit for most of
the problems faced by the majority of software developers, so
the need for learning new APIs occurs frequently and imposes
a lot of learning difficulties. The large number of APIs used
in projects does not allow for learning of a single API in
details, therefore the importance of using examples as a quick
reference or learning material increases even more. As a matter
of fact, one study found that inadequate resources are a big
obstacle in learning an API, where the lack of examples was
rated as having the highest importance [1]. In their follow up
study they validated their hypothesis of documentation being
the biggest obstacle in learning an API [2]. Examples being a
very important learning resource has also been mentioned in
some previous studies [3], [4], among many others.

Ideally, sufficient and good quality examples would be
located in one centralized source, such as on the APIs’
websites or GitHub wiki pages. In such a case, the need for
asking questions on coding forums and writing blogs about
how a certain API should be used will certainly decline.
Moreover, in such a condition, searching for examples and
code snippets will be much more efficient, having only one
place the developer needs to search at. It is not easy to argue
what the reason for not providing sufficient examples is, but

not knowing how good or how many examples are enough can
be mentioned as one reason. It is certainly not important what
method is used to create the examples, yet what is provided
to the users of an API is the important part. There has been
some very promising research in automatic generation and
retrieval of examples from various sources [5], [6], [7], and
also different recommendation systems and search engines
have been proposed [8], [9]. The question that is imposed
from this is, how can we say whether the examples that were
created either by developers or tools are sufficient and of good
quality or not?

Even after using tools and systems such as the ones men-
tioned before, to our knowledge, there is no way of evaluating
the created examples and retrieving metrics concerning exam-
ples. There is a need to be able to measure and evaluate the
result of such tools in a more empirical manner, and this is one
of the motivations to develop metrics for examples. Moreover,
if API developers have access to example metrics, they can get
feedback on the information they provide to the potential users
of the API they develop. After all, the end result of months of
work on an API should be rewarded with full utilization of the
abilities the API provides by other developers with minimal
effort. This is especially true for new APIs that do not have any
supporting information on coding forums and blogs, so they
depend fully on the documentation and examples provided
by the API developers. Example metrics can also point at
code that will be called frequently and is of higher risk, how
potential users would use the API, and what part of the API is
less likely to be used. Finally, making such metrics public for
an API can even show the ease of learning and usability of
the API at hand. That being said, some of the possible metrics
are example coverage, example quality, repeated calls to same
methods (recurring coverage), usefulness, and example age,
among many other plausible metrics.

In order to investigate some example metrics and several
characteristics of the examples on the web, we have examined
7 popular API libraries written in Java. We examined the
examples they have provided on either their website/GitHub
page, or within the source code in a package names “samples”
or “ examples”. We manually extracted all the examples,
analyzed them by utilizing already existing tools for test
coverage, and measured coverage and other derived metrics.
We found that examples provided in the mentioned resources
have around 30% coverage on average, where even a small
amount (2.8% example lines of code to non-comment lines
of code ratio) of example code can achieve such coverage,

and in some cases even the first example provided reaches up
to 26% of coverage. Also, we found that using non-existent
dummy code, thrown exceptions, and inconsistent naming of
same variable in the same example were the most common
problems during the compilation and execution of examples.

II. METHODOLOGY

Based on our goals to examine the current situation of
examples and their potential metrics, we have derived three
research questions:

• Research Question 1: What is the example coverage by
the examples provided only by the API developers?

• Research Question 2: How well are individual classes
covered by examples?

• Research Question 3: What kind of problems exist when
trying to compile and execute example source code?

In order to measure example coverage and derive other
metrics, we used the IntelliJ IDEA integrated development
environment (IDE), along with Atlassian Clover tool for tests
code coverage. In order to use the tool for measuring the
coverage of examples, we simply used examples as if they
were unit tests, and ran them using the tool. The study was ex-
ecuted in 3 stages: library selection and source code retrieval,
examples extraction, and example characteristics analysis and
report generation. Stage 2 and 3 were done in parallel in
order to avoid repetition in processing. In the next sections
the Clover tool and each of the stages are explained in details.

A. Atlassian Clover
Atlassian Clover1 is a Java code coverage tool by Atlassian.

It is a commercial product that is free to use for open-source
projects. In this research the Clover-for-IDEA tool was used,
Clover tool for IntelliJ IDEA. Some details about how the code
coverage is calculated will be described further in this section.
The source of the information on how the code coverage is
calculated originates from Atlassian Clover website2 and it is
described as it appeared at the time of the writing of this paper.

By definition, code coverage is the percentage of code that
is covered by tests. Clover has 3 types of coverage analysis:

• Statement - statement coverage measures whether each
statement is executed.

• Branch - Branch coverage measures which possible
branches in flow control structures are followed.

• Method - Method coverage measures if a method was
entered at all during execution.

The total coverage calculated by Clover is done using the
following equation:

TPC =
(BT +BF + SC +MC)

(2 ∗B + S +M)
∗ 100%

BT = branches that evaluated to “true” at least once
BF = branches that evaluated to “false” at least once

1https://www.atlassian.com/software/clover/overview
2https://confluence.atlassian.com/display/CLOVER/About+Code+Coverage

SC = statements covered
MC = methods entered

B = total number of branches
S = total number of statements
M = total number of methods

Even though using the equation above and Clover as a tool
may not have been the ideal way of calculating coverage in
terms of example coverage, it seemed a good starting point
for our purpose and research aim.

B. Study Structure

1) Selecting Libraries: In order to investigate the present
situation of example metrics, we selected 7 API libraries
written in Java as our data source. There were several criteria
that were important in the selection of the libraries, namely:
the library had to be written in Java, and meant to be used in
Java. By doing this, the execution of examples as tests was
simplified, having both examples and development language
being Java. The library had to be open-source. The library
had to be smaller than 40,000 LOC in order to make manual
extraction of examples and execution plausible. Another crite-
rion was choosing well-established libraries, with established
testing and building environment, and mature wikis/websites.
Even though this implies a bias in the data source, it made
sure that certain documentation exists and the measurement
of example metrics is possible with the existing tools for test
coverage. Finally, we made sure to include libraries having
varying purposes.

The libraries were chosen from the top 100 Java libraries
based on their usage as found on Takipi blog3. Using the list,
we selected 7 libraries that matched our criteria, deeming it
enough for the purposes of this study. The chosen libraries are
shown in Table I.

2) Example Source Code Extraction: During this stage, the
examples source code was extracted from one or more of the
following locations: the website of the library, the GitHub
page, and from inside the source code directory in a folder
named “samples”, “examples”, or the equivalent. Example
sources aside from these were not considered for this study. All
locations that contained example source code were retrieved
and documented separately for each library.

After locating all the examples, the next step was extracting
the example source code and running it as a test. For this
purpose, all the projects were individually loaded in IntelliJ
IDEA, the original tests were run to check if the coverage
works, and then all tests and calculated coverage were erased.
One or more test files and test methods for holding the example
source code were created depending on how the examples were
structured at the source of each project.

3Alex Zhitnitsky, ’We Analyzed 60,678 Libraries on GitHub Here are
the Top 100’, The Takipi Blog [web blog], 14 April 2015, http://blog.
takipi.com/we-analyzed-60678-libraries-on-github-here-are-the-top-100 (ac-
cessed 27 November 2015)

TABLE I
COVERAGE OF LIBRARIES

Library Name Coverage % First Example
Coverage % LOC NCLOC Examples NCLOC

(ENCLOC)
ENCLOC/NCLOC

Ratio %

cglib 46.7 26.3 13,991 9,140 213 2.33
guice 35.5 25.7 23,295 12,230 125 1.02

easymock 35.0 17.6 10,291 4,511 432 9.58
xstream 31.5 21.6 34,889 20,468 545 2.66

gson 29.6 14.3 13,649 7,392 208 2.81
commons-logging 21.5 13.2 6,436 2,604 24 0.92

commons-io 4.6 0.9 27,723 9,681 37 0.38

The example source code was clearly shown in all of the
libraries’ source location by providing it in a distinguishable
section from the natural language explanation. These sections
will further on be referred to as example blocks. The example
blocks that had a successor example block built on top of
the original one (a superset of the original example block) as
a consequence of explanation flow in natural language were
removed, and the successor was added.

The example blocks were copied one by one, and executed
every time a new example block was added. In case there was
a problem with compilation and execution, the cause and type
of error was noted, assisting in the analysis for stage 3 of this
research. After that, the problem was resolved without adding
any source code related to the library being analyzed. For
example, if there was a dummy class missing, it was created
in a way to just satisfy the compilation errors. In case there
was unhandled exception, it was again handled just so it passes
compilation and execution. For more details on the problems
that occurred, please refer to Table II.

3) Examples Characteristics Analysis and Report Gener-
ation: During the third stage several characteristics of the
example source code were observed, all “tests” were run
again, and the Clover reports were generated. We wanted to
investigate what problems would occur if the code was to be
mined using a tool and executed. The problems that occurred
during execution and compilation of the examples can be
found in Table II. Other metrics that were either generated
by Clover or derived from the example source code and the
report can be found in Table I and Figure 1.

In order to document all the compilation and execution
problems, notes were taken after each unsuccessful execution
of an example block during stage 2 of this research. After
the entire example source code was executed for a particular
library, all the different problems that occurred were compiled
in a table. The same procedure was done for every library,
and the results were compiled as shown in Table II. Since our
goal was not to measure how many times a certain problem
occurs in a single library, but what kind of problems occur in
how many libraries, the problems are documented on a library
granularity. It is important to note that the explanation of the
examples using natural language was not considered unless it
pointed out to the solution of the problem that occurred while
executing the example block, or it stated that the example
block will have that problem and gave the solution for it.

	

Fig. 1. Classes coverage

The last analysis that was done is calculating what is the
coverage percentage for each class. Using some already gener-
ated results concerning class coverage by Clover, we compiled
all the information for each library, and then calculated the
percentage of classes that had coverage within a certain range.
The results from the analysis can be found in Figure 1.

III. RESULTS

Once the three stages of the study process were finished,
we obtained results to answer our 3 research questions.

A. Research Question 1

The results for the research question 1 are summarized in
Table I. What we can see is that, on average, the coverage of
examples provided by the library developers is around 30%.
Whether that is sufficient or not cannot be discussed at this
point, since further research on the topic is needed. We can
also see that the Apache Commons libraries, commons-io in
particular, have very low coverage and a very small number of
examples. Arguably, the low coverage would result in higher

percentage of questions on coding forums and a larger number
of blog posts for these libraries.

Another interesting result is concerning the easymock li-
brary. Even though they have provided a relatively large
amount of examples (almost 10% example to source code
ratio), their coverage is not any higher compared with the rest
of the libraries that have much smaller ratio. What this may
mean is there has been a lot of repetition in their examples,
yet many other functionalities were ignored. This is a good
example of how example metrics can be useful to library
developers.

Furthermore, we can notice that even one fourth of the code
was covered only by the first example. The first example refers
to the very first example provided on the website, synonymous
to “Hello World” application in many cases. Once again, it is
still early to discuss what the implications of that are and how
this information can be used, requiring further research.

B. Research Question 2

The results for the research question 2 are summarized in
Figure 1. Note that the y-axis range is relative to the library,
so it would be more reasonable to look at the ratio between
different coverage percentages. Our reason for calculating this
was to see if there are classes that do not appear at all in the
examples or on their execution path. A very surprising result is
that more than half of the classes on average have no coverage
at all. Moreover, only less than 20% of the classes have more
than 60% of coverage.

What this means is that there are large number of classes for
which the users cannot learn anything about just by looking
at the examples. Furthermore, these results may imply which
classes are the true core of the library, and which classes
may never be used, or used very infrequently. The coverage
percentage is certainly alarming, even if we consider that there
may be classes that are not necessary to be covered by an
example. Once again, being at this early stage in the research,
it is still not clear what a good coverage percentage is and
what is the best way to calculate it, but these results certainly
give an insight about it.

C. Research Question 3

The results for the research question 3 are summarized in
Table II. It is important to state that some of the problems
occurred more than once in a single library, but since our aim
was to investigate what kind of problems occur when running
examples and how common it is among different projects, we
did not count the number of occurrences.

Even though using dummy data that does not exist comes
to no surprise, the other problems such as exceptions, syntax
errors, and a single variable named differently in the same
example were not expected. The very frequent occurrences
of these problems show that many of the examples have
not been run or compiled by the developers or they are just
outdated, which complicates things for the users of the library.
Moreover, since examples are expected to reflect the “best
practices” of a library [2], problems like these should not exist

TABLE II
PROBLEMS DURING COMPILATION AND EXECUTION

Problems that occurred Num. of Libraries

Using data/methods that do not
exist in dummy data/classes 5

Exception thrown 5

Same variable with different name
in same example 4

Syntax error (different from variable naming) 3

Unhandled exception preventing
from compilation 3

Ellipsis used 2

No imports included and were not
automatically detected 1

Methods used in example depricated 1

and are not acceptable. However, it is not necessarily the fault
of developers, it may just be that developers are not aware
of the state of their examples and have no efficient way of
checking it, further emphasizing the importance of example
metrics and support tools.

IV. RELATED WORK

Although we did not find any studies that directly research
the topic of example metrics, we did find several studies that
are related to some measurement of examples. One study
examined some of the characteristics for what a good example
is based on their analysis on StackOverflow4 [10]. Even though
this study is not related to coverage measurement, it does
provide good information in building other example metrics
for quality of examples.

Another study investigated the API documentation on the
internet, that is, where it occurs, how well it is covered, and
how blogs are involved in the software development process,
through the jQuery library [11]. In order to calculate the
coverage, they checked whether the name of the method they
searched for appears on the site, and made a judgment based
on that. A study by two of the same authors of the previous
paper explored the coverage of the Android API, GWT API,
and Java language API with the aim of measuring APIs
coverage on StackOverflow [12]. Once again, they measured
coverage of classes by whether the name appeared in a post
or not, which can be quite imprecise. A third study that did
some kind of example coverage calculation is they calculated
the number of times a method appears in different examples
in their database for the Android API [13].

There may have been more studies that have used some
kind of example coverage calculation, but we did not find
any study that directly researches the topic. The coverage
calculation in the previously mentioned studies was done as
a side effect, means to achieving their research goal. These
studies implicitly show the need for example metrics and

4http://stackoverflow.com

some of the ways the metrics can be applied in academia.
Should there have existed example metrics, it would have been
relatively easier to do the studies in this section and to do more
detailed measurement.

V. FUTURE WORK

Being at the early stages of our research, there is a lot more
to be done. Further in this section, the short-term and long-
term research goals will be described.

The short-term goal followed by this research is building
example metrics and tools to automatically mine for examples
and calculate the built metrics. These metrics can be very
simple for a start, and can be extended further on as the
research matures. We believe that these metrics by themselves
will be a very valuable asset to both library developers and to
anyone else writing coding examples, blogs, and similar. Since
there is no research related to correlations between example
metrics and library success, usage, and library design, among
other potential correlations, it is difficult to discuss about other
indirect benefits from example metrics at this stage.

The long-term goal is creating an example database site,
containing full examples for most of the libraries that exist.
Borrowing concepts from open-source software development,
this service should be community-based, where the community
contributes working examples and the main developers do the
review. This is especially important for new libraries that will
not have any source code snippets anywhere on the Internet,
so the community contributing in creating those examples can
be crucial for the success of the library. Of course, any of the
example generation tools mentioned in the introduction can be
used whenever applicable. This database of examples can also
be used in less-obvious ways, such as creating tests from the
examples [7].

This system will be based and it will revolve around the
example metrics we have discussed earlier. Although similar to
existing websites such as StackOverflow, there are key differ-
ences such as the purpose, and the shift in the involvement of
the community from answering asked questions to giving fully
working answers (examples) for potential, future questions.

VI. CONCLUSION

Several studies have shown the importance of examples in
the process of learning and using an API, for some being a
quick way to get things done, where for others they represent
best practices of using an API. We need more information on
examples, where knowing how useful the provided examples
are, how well they cover a certain API, and what is the quality
of the examples are some of the questions that need answering.
Our research goal is to develop metrics for examples to answer
some of those questions. Throughout this paper a number of
applications were shown, such as how the metrics can be used
for example generation tools evaluation and how metrics can
be used in assisting API developers in providing better and
more examples.

In order to investigate some of the potential metrics, we
analyzed 7 API libraries written in Java in order to investigate

the current situation of examples, test the applicability of
example metrics, and find out what problems can happen if
examples are to be mined by a tool, so the problems can
be mitigated. We found that the coverage provided by API
developers on their websites is relatively low. Moreover, over
half of the classes on average had no coverage whatsoever.
Finally, we found that there are many problems that occur
while compiling and running examples, such as exceptions,
inconsistent naming, and using inexistent methods and data,
which makes the usage of those examples more difficult and
time consuming. Finally, we talked about some of our future
goals and where our research is headed.

ACKNOWLEDGMENT

This work has been supported by JSPS KAKENHI Grant
Number 26540029, and Program for Advancing Strategic In-
ternational Networks to Accelerate the Circulation of Talented
Researchers: Interdisciplinary Global Networks for Accelerat-
ing Theory and Practice in Software Ecosystem.

We would also like to thank Professor Daniel M. German for
the fruitful discussion and suggestions we received concerning
this research.

REFERENCES

[1] M. P. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 27–34, 2009.

[2] M. P. Robillard and R. Deline, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[3] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R. Klemmer, and
S. Francisco, “Two Studies of Opportunistic Programming : Interleaving
Web Foraging , Learning , and Writing Code,” ACM Conference on
Human Factors in Computing Systems, pp. 1589–1598, 2009.

[4] F. Shull, L. Filippo, and V. R. Basili, “Investigating reading techniques
for object-oriented framework learning,” IEEE Transactions on Software
Engineering, vol. 26, no. 11, pp. 1101–1118, 2000.

[5] R. P. L. Buse and W. Weimer, “Synthesizing API usage examples,”
Proceedings - International Conference on Software Engineering, pp.
782–792, 2012.

[6] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,”
Software Maintenance (ICSM), 2010 IEEE International Conference on,
pp. 1–10, 2010.

[7] M. Gaelli, R. Wampfler, and O. Nierstrasz, “Composing tests from
examples,” Journal of Object Technology, vol. 6, no. 9, pp. 71–86, 2007.

[8] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang, “APIExample:
An effective web search based usage example recommendation system
for Java APIs,” 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2011, Proceedings, no. 60803010,
pp. 592–595, 2011.

[9] J. Stylos and B. a. Myers, “Mica: A web-search tool for finding API
components and examples,” Proceedings - IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2006, pp. 195–202,
2006.

[10] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” 2012
28th IEEE International Conference on Software Maintenance (ICSM),
pp. 25–34, 2012.

[11] C. Parnin and C. Treude, “Measuring API documentation on the web,”
Proceeding of the 2nd international workshop on Web 2.0 for software
engineering - Web2SE ’11, pp. 25–30, 2011.

[12] C. Parnin, C. Treude, L. Grammel, and M. Storey, “Crowd documenta-
tion: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Tech Technical Report, 2012.

[13] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
APIs with examples: Lessons learned with the APIMiner platform,” 2013
20th Working Conference on Reverse Engineering (WCRE), no. Section
V, pp. 401–408, 2013.

	matsumoto20181031_Part13
	42_SANER2016

