
ar
X

iv
:1

61
1.

08
00

5v
1

 [c
s.

S
E

]
23

 N
ov

 2
01

6

On the Relationship of Inconsistent Software Clones
and Faults: An Empirical Study

Stefan Wagner, Asim Abdulkhaleq and Kamer Kaya
Institute of Software Technology,
University of Stuttgart, Germany

Alexander Paar
TWT GmbH Science & Innovation

Stuttgart, Germany

Abstract—Background: Code cloning – copying and reusing
pieces of source code – is a common phenomenon in software
development in practice. There have been several empirical
studies on the effects of cloning, but there are contradictory
results regarding the connection of cloning and faults.

Objective: Our aim is to clarify the relationship between code
clones and faults. In particular, we focus on inconsistent (or type-
3) clones in this work.

Method: We conducted a case study with TWT GmbH where
we detected the code clones in three Java systems, set them into
relation to information from issue tracking and version control
and interviewed three key developers.

Results: Of the type-3 clones, 17 % contain faults. Developers
modified most of the type-3 clones simultaneously and thereby
fixed half of the faults in type-3 clones consistently. Type-2 clones
with faults all evolved to fixed type-3 clones. Clone length is only
weakly correlated with faultiness.

Conclusion: There are indications that the developers in two
cases have been aware of clones. It might be a reason for the
weak relationship between type-3 clones and faults. Hence,it
seems important to keep developers aware of clones, potentially
with new tool support. Future studies need to investigate ifthe
rate of faults in type-3 clones justifies using them as cues indefect
detection.

I. I NTRODUCTION

Hunt and Thomas [1] introduced the DRY principle in
software engineering: Don’t repeat yourself. They wanted to
reduce repetition in software systems in all areas, especially
source code. The reason was that a modification of one
source code element should not cause further changes in other
elements. We commonly call the results of violating the DRY
principle clonesand the actions leading to itcloning.

The research community has, over time, come up with a
plethora of different techniques and tools to detect clonesin
source code [2], [3], [4], [5], [6], [7] but also other artefacts [8],
[9], [10]. It is now possible to reliably and precisely detect
most types of code clones automatically. We often see rates of
20 % to 30 % of a system to be clones in practice [11].

One specific area of interest in research have been clones
with inconsistencies between them. In particular, these clones
underwent changes that go beyond renaming and layout modi-
fications: Statements have been changed, added or deleted. We
call such clonesinconsistent, gappedor type-3clones. These
clones are especially interesting since their inconsistencies

could be the result of incomplete fixes, i.e. a bug report could
have led to a fix in one clone instance but not in the others.

A. Problem Statement

Yet, it is still not clear what effects (negative and positive)
cloning really has. There is an ongoing debate about the
harmfulness of cloning especially in source code. On the one
side, Kapser and Godfrey [12] claim that there are many
useful patterns of cloning in software systems. Rahman, Bird
and Devanbu [13] found that “the great majority of bugs are
not significantly associated with clones.” On the other side,
for example, Juergens et al. [5] found 107 faults associated
with the inconsistencies between clones in five professional
software systems. So what are the impacts of cloning?

B. Research Objectives

Our overall goal is to understand the effects and impli-
cations of cloning in software artefacts. In this paper, we
concentrate on the effects of type-3/inconsistent clones on
faults in software and the context in which these effects occur.

C. Contribution

We contribute an investigation of the relationship between
type-3 clones and faults in an industrial case study. We analyse
three closed-source software systems written in Java over their
whole life time. We make use of the history in the version
control and issue tracking systems to

• quantify the share of type-3 clones overall,
• quantify the share of faulty type-3 clones,
• analyse the awareness of developers of clones and
• quantify the correlation between clone length and faults.

Furthermore, we investigate the project lead of each investi-
gated system to triangulate the results on awareness with the
view of the developers in these projects.

D. Context

We performed the case study at the German company
TWT GmbH which offers engineering and IT services in the
sectors automotive, aerospace, healthcare and energy. TWThas
around 300 employees in six local offices. In this study, we
investigated projects and systems in the automotive domain
with an age of 4–5 years written in Java.

The reporting of this study follows largely Runeson and
Höst’s [14] guidelines.

http://arxiv.org/abs/1611.08005v1

II. T ERMINOLOGY

The clone detection community has established a common
terminology to talk about clone-related concepts. We follow
this terminology based on existing surveys and reviews [15],
[16] in our paper. We summarise the most relevant terms in
the following:

Code fragment: A code fragmentis a sequence of state-
ments including control statements such as loops. A code
fragment can be any contiguous sequence of lines in a file.

Code clone:One code fragment is acloneof another code
fragment if they are similar according to a given definition of
similarity. There are different such definitions forming different
clone types.

Clone group: A set of clones that are all similar to each
other is called aclone group(also calledclone class).

Clone instance:Sometimes it is useful to be able to talk
about an individual member of a clone group. We call this
member aclone instance.

Type-1 clone: A type-1 clone is a fully identical code
fragment “without modification (except for white space and
comments).” [17]

Type-2 clone:For type-2 clones, we allow more variations.
A type-2 clone is “a syntactically identical copy; only variable,
type, or function identifiers were changed.” [17]

Type-3 clone: A type-3 clone is a type-2 clone “with
further modifications; statements were changed, added, or
removed.” [17] Type-3 clones are also calledinconsistent
clones, near-miss clonesor gapped clones.

Furthermore, as we investigate the relation of type-3 clones
to faults, we need to define what a fault is exactly. We first
definefailure and use that to definefault.

Failure: “A failure is an incorrect output of a software
visible to the user.” [11]

Fault: “A fault is the cause of a potential failure inside the
code or other artefacts.” [11]

III. R ELATED WORK

We structure the related work into clone-based fault detec-
tion techniques, empirical studies of clone genealogies involv-
ing inconsistencies between clones and manual inspectionsof
type-3 clones.

A. Clone-Based Fault Detection

As cloning was considered harmful including a higher po-
tential for faults, in the mid-2000s, approaches to detect faults
based on clone analysis were proposed. Most notably, there
were two proposals of such approaches that the researchers
validated in empirical studies:

Li et al. [18] proposed to detect faults based on inconsistent
renaming in code clones. They tested their approach on Linux
and FreeBSD where they were able to find 49 and 31 faults,
respectively.

Jiang, Su and Chiu [19] developed an approach for fault
discovery using context-based inconsistencies between clones.

They validated their approach on the Linux kernel and Eclipse.
They also were able to detect a number of faults: 57 in the
Linux kernel and 38 in Eclipse.

Hence, there seem to be faults in real software systems
associated with inconsistencies between clones. Our approach,
however, focuses on documented faults instead of detecting
new faults.

B. Clone Genealogies

Kim et al. [20] introduced the notion ofclone genealogies:
“The genealogy of code clones describes how groups of code
clones change over multiple versions of a program.” This kind
of approach was used in several studies to investigate if type-3
clones are associated to faults.

Krinke [21] analysed five open-source systems and their
clone genealogies for inconsistencies between clones. He
found that half of the changes in the systems’ history were
inconsistent. Yet, inconsistent clones did evolve mostly inde-
pendently which is an indication that they did not represent
faults.

Bakota, Ferenc and Gyimothy [22] also followed the evolu-
tion of clones of the history of an open-source system: Firefox.
They found two faults that had been documented and fixed as
well as five further potential faults.

Thummalapenta et al. [23] investigated clone genealogies
in four open-source systems. They found that below 16 %
of clone groups undergo late propagation of changes. They
interpret their results such that these late propagation are likely
to be caused by bug fixes.

Rahman, Bird and Devanbu [13] analysed clone genealo-
gies in four open-source projects. They found that the majority
of reported defects in the projects were not associated with
clones. They also found that clones are less defect-prone and
faults in clones need a similar fix effort as in other code.

Barbour, Khomh and Zou [24] especially investigated
faulty clone genealogies and different patterns of inconsistent
clones. They found that certain types of late propagations
between clones are most risky to be faulty.

Mondal, Roy and Schneider [25] compared the fault prone-
ness of different types of clones in a set of open-source
projects. They found that type-3 clones are the most fault-
prone.

Type-3 clones seem to be a significant part of all clones,
and there are faults associated with these clones. They do not
seem to be a major source of faults overall, however.

C. Manual Inspection

Juergens et al. [5] is the only study known to us that
analysed closed-source systems so far. They investigated four
industrial systems from two companies and an academic open-
source system for type-3 clones. The researchers showed all
type-3 clones, which they considered to be true positives, to the
developers of the systems and let them annotate them whether
the inconsistency was intentional and it constitutes a fault.
They found that 28 % of type-3 clone groups had unintentional
inconsistencies and of these every second was a fault.

Göde and Koschke [26] investigated the clone genealo-
gies in three open-source systems for changes to clones and
unintentional inconsistent changes. They found that 57 %
of changes were consistent. They inspected the remaining
changes manually. They found that only 15 % of changes
seemed to be unintentionally inconsistent.

Bettenberg et al. [27] investigated clone evolution in three
open-source systems. They manually inspected all inconsistent
changes themselves and judged whether the change should
have been applied to all clone instances, i.e. introducing a
fault. They found that of these inconsistent changes 1 %–4 %
introduced faults.

D. Summary

Type-3 clones seem to be a significant phenomenon in real
software systems. Various studies found faults by investigating
these type-3 clones. There have also been indications that
type-3 clones often are not associated to faults. Overall, type-
3 clones do not seem to be more fault-prone than other
code. Several of the studies rely on manual inspections of
the developers or even the researchers. This is a validity risk.
Even in the case of developer inspection, it raises the question
whether these faults are interesting as they have not caused
issue reports so far. Hence, we concentrate on the relationship
of type-3 clones with documented faults.

Furthermore, an overall weakness of the empirical body
of knowledge on type-3 clones and faults is that almost all
studies done so far concentrate on open-source software. We
investigate the repositories of three industrial closed-source
software systems and have access to key developers of the
systems.

IV. CASE STUDY DESIGN

Our case study is descriptive as it describes the situation
of type-3 clones and faults in industrial closed-source software
as well as explanatory as we investigate factors influencingthe
relationship between type-3 clones and faults. But as we have
a post-ex-facto design, our results are mostly correlational.

A. Research Questions

The goal of this research is to investigate the relationship
between type-3 clones and software faults. We formulate three
main research questions to structure our analysis for this study
goal.

RQ 1: Do software systems contain type-3 clones?

Earlier studies (e.g. [5]) have shown that there is a con-
siderable share of type-3 clones in relation to all clones. If
type-3 clones were rare, it would not be interesting to further
investigate their relationship to faults. With this question, we
want to validate the earlier findings.

RQ 2: Do type-3 clones contain documented faults?

If we find a considerable number of type-3 clones in the
cases, we can answer a main aspect of our research goal by
checking the correspondence between documented faults in the
analysed systems and their occurrence in type-3 clones. We are
interested in whether there are documented faults at all and, if
so, the share of type-3 clones with such faults.

RQ 3: Are developers aware of type-3 clones?

From previous studies (e.g. [5], [23]), we expect that the
faultiness of type-3 clones is influenced by whether developers
introduce inconsistencies intentionally or unintentionally. In
other words: Are the developers aware that there are clones
and that they introduce an inconsistency to them? As we
could not observe the developers during the changes and had
access to only a subset of them directly, we use four sub-
research questions to investigate direct and indirect indications
of awareness.

RQ 3.1: Do developers maintain type-3 clones simultane-
ously?

Our first indication of the awareness of developers of clones
and especially type-3 clones is whether changes to these clones
are done simultaneously. If during a change involving one
instance of a type-3 clone group also the other instances are
changed, it is likely that the developers are aware of the clone
group.

RQ 3.2: Are faults in type-3 clones fixed consistently in all
instances of a clone group?

The second indication of awareness are consistent fixes of
faults in type-3 clones at all clone instances. The developers
then had to be aware of the clones and the need to fix the fault
in all of the instances.

RQ 3.3: To what degree do type-2 clones with a docu-
mented fault become type-3 clones without a documented
fault?

The third indication of developer awareness of clones is
whether type-3 clones could simply be the result of successful
fault fixes in type-1 or type-2 clones. A fault fix in a clone
instance may create a type-3 clone. Nevertheless, it is possible
that the fix is only necessary in one instance. Hence, we want
to understand whether this scenario happens in real systems.

RQ 3.4: How do the developers deal with clones?

The last part of the awareness question are statements
from key developers of the investigated projects. We want to
understand how the developers perceived how they dealt with
clones overall and during bug fixes and other changes. This
completes our overall view on the awareness of clones.

RQ 4: Are longer type-3 clones more likely to contain
faults?

Finally, we want to investigate another context factor: the
length of clones. Intuitively, longer clones should contain more
faults just because they also contain more statements that can
be faulty. We are interested in whether the clone length has an
influence on the faultiness of clones.

B. Case Selection

The main consideration for selecting cases in this case
study was availability: We selected cases to which we had
access via the collaboration with an industry partner to collect
the necessary data. Furthermore, we selected cases with a size
of at least 200,000 LOC and an age of at least four years. We
considered that to be necessary to have enough clone instances
for a reasonable analysis.

C. Data Collection Procedure

For the analysis, we needed data from version control,
clone detection, issue management tools and developers from
the three projects. We performed the collection of data in six
steps:

1) Extraction of Latest Source Code Version:As there is
considerable manual work in our further analysis procedures,
we refrained from running a full genealogy analysis. Instead,
we chose to detect clones in the latest versions of the source
code for each system. From the detected clones in these
versions, we will work backwards and analyse the history of
the files with clones.

The cases we investigated used the version control system
Mercurial [28]. It is a platform-independent, distributed ver-
sion control system. It handles small and large projects andis
widely used in practice.

In the cases, the developers used in addition the Web-based
systemKiln .1 It hosts source code with the version control
systems Git and Mercurial. When using Mercurial or Git, the
Kiln server is the central point of the version control system.
The data are stored centrally. In other words, Kiln has a dual
function. It serves as data storage and as a distribution node
for the source code as well as other project-related files. This
supports distributed software development teams.

From Kiln and Mercurial, we extracted the latest versions
of all the source files for each system.

2) Clone Detection:Next, we need the clones in these
latest source code versions. There are several tools available to
perform clone detection. We chose the toolConQATbecause
it allows us a type-3 clone detection, it is recommended in [29]
and we had previous experience with it. The Continuous Qual-
ity Assessment Toolkit (ConQAT) [30] is a general toolkit for
continuous software quality control and analysis. It supports
rapid development and execution of software quality analyses,
for example architecture conformance analysis. ConQAT has
been developed since 2007 at the Technische Universität
München and has now commercial support by CQSE GmbH.
It is still available as open-source software. ConQAT itself
is based on a pipes-and-filters architecture and offers a data-
flow language for the specification and parameterisation of the
clone detection pipeline. ConQAT has been used for clone
assessments in several studies [10], [5] and is also applied
in industry.

In particular, we used the ConQAT blockJavaGapped-
CloneAnalysis.cqrto detect type-3 clones. The algorithm for
detecting type-3 was developed by Juergens et. al. [5]. As
the parameter settings for the clone detection can have an
effect on the outcome, we ran the analysis with two different
settings. We performed the detection once with conservative
and once with liberal clone detection parameters. The liberal
parameter setting was a min-length of 10, max. of errors of
10 and ratio of gap of 0.25. For the conservative setting, we
used a min-length of 20, max. of errors of 10 and gap ratio
of 0.25. Finally, we used the conservative approach for the
further analysis. This gives us the lists of clone groups, clone
instances and files with clones. Wang et al. [31] proposed an

1http://www.fogcreek.com/kiln/features/team-up/

approach to systematically search the configuration space of
clone detection tools. We consider this extensive approachnot
necessary in a case study, however.

3) Extraction of all Revisions of Files with Clones:As
we aimed to investigate the entire revision history of the
investigated systems, we needed to extract for all files with
clones the corresponding earlier versions. We could again
use Mercurial for this job. We extracted the paths of files
containing clones from the ConQAT clone detection results
and stored them in a separate text file. We wrote a Python
script that created another text file for each entry of the
revision history from Mercurial for each file with clones. The
version history consists of change sets which are caused by
commits. For each change set, Mercurial creates a local and
a uniqueChangesetID. In addition, it contains the user who
has triggered the commit and thereby created the change set,
the date of the commit, its branch, its parent commit and
a description of the commit. For the further analysis, we
particularly needed theChangesetID, the user, the date and
the description of change sets. We executed the script on the
command line for each system.

The output of the script was exported into a Microsoft
Excel file and rewritten with Excel references and functions.
The output also lists each file that was recorded in the previous
text file and the change set with the above information. With
this information, we can check out any relevant version of the
files with clones.

4) Extraction of Issues for Files with Clones:We now have
all versions of files that contained clones in the latest version.
Next, we need to collect data to establish the connection to
faults. For that, we extract data from issue tracking. In our
cases, the developers usedFogBugzfor project management
and issue tracking.

FogBugz is a project-management and issue-tracking sys-
tem which offers broad functionality for development teams.
The issue tracking allows users to manage, filter, sort and
navigate a tree-structure of tasks that contain information, tags
and attached files related to a particular issue. FogBugz tracks
all events and tickets in one central location [32]. In particular,
these tickets can describe faults.

The history of the files with clones consists ofChange-
setIDs with additional information as explained above. To
match the faults, we first determined the type of clone, i.e.
whether it is an inconsistent or a consistent clone. Faults that
have occurred at some point in the development or usage
of the system are documented as issues in FogBugz and
categorised as faults. Each issue has a unique issue number.If a
source code modification resulted from an issue, the developers
include the issue number in the commit message as a reference.
In summary, this means we need to checkChangesetIDswhich
resulted from commits which reference faults. In the end, the
list of revision histories was extended with the referencedissue
numbers. Through this, all files with clones that have been
modified to fix a fault were identified.

5) Collection of Meta-Data in a Database:After perform-
ing the clone detection with ConQAT on the systems under
analysis and extracting the data from the systems’ repositories,
we established the structure of a Microsoft Access database

http://www.fogcreek.com/kiln/features/team-up/

to store all data. This simplified the analysis procedure. The
structure of the database contains the following items:

• A data table (“clonegroup”) that includes the clone groups
which are derived from the results of the inconsistent
clone detection with ConQAT.

• A data table (“clonefile”) that stores the clone file names
of clone groups which are derived from the ConQAT
results.

• A data table (“history”) that contains the extracted data
from FogBugz and Kiln which includes all clone files with
their entire version history. The version history consistsof
change sets with information such as user, date, summary
and clone file identification and the issues which describe
the faults.

• A relation data table (“relation”) that contains the rela-
tionships between the three other tables.

6) Interviews with Developers:The last step in the data
collection was to conduct interviews with developers of all
investigated systems. We needed at least one developer from
each case who has at least several months of experience in
developing the system. Ideally, they should be in a key role,
such as the project lead, who has a good overview of how the
projects are conducted.

We conducted semi-structured interviews over telephone by
one of the researchers. Each interview was digitally recorded
and then transcribed (directly in the toolMaxQDA) by the
same researcher. We took care to emphasise that we are
mostly interested in the experiences of the developers, not
their opinion. Only in the question of a potential IDE plugin
showing clones while developing, we asked for opinions in
case they do not already use one. The interviewer used the
following guiding questions:

1) For how long have you worked in software development?
With what programming languages and technologies?

2) How are you involved in which project?
3) Have you been aware of the concept of code clones in

general?
4) If you fixed a fault in the system, did you explicitly look

for clones?
5) How would you describe your (and your colleagues’)

awareness of clones in your project?
6) Have some sort of clone detection tools been used in the

project?
7) How useful is/would be an IDE plugin showing clones?

D. Analysis Procedure

To analyse the data which we stored in the database, we
created SQL queries for answering the research questions. We
performed the following steps to get the necessary data for
each research question.

1) Type-3 Clones (RQ 1):We first need to extract the
numbers of all clone groups and the numbers of type-3 clone
groups to set them into relation.

We run a query on our database which returns all type-3
clone groups. We determine the number of type-3 clone groups
CT3 by counting the first occurrence of each type-3 clone
group in the analysed versions from the repository. Setting

CT3 into relation with the number of all clone groupsC will
answer RQ 1.

2) Faulty Type-3 Clones (RQ 2):Second, we retrieve the
entire revision history of the file list from the database. Then,
we extract the clone groups which have a fault by using a
second SQL query. By this query, all clone groups (consistent
and inconsistent)CF are determined in which a fault has been
resolved. We will use all faulty clone groups in a later analysis.
With a similar query, we get only the faulty type-3 clone
groupsCT3

F . By setting the number of the faulty clone groups
into relation to all clone groups we can answer RQ 2.

3) Simultaneous Maintenance (RQ 3.1):For this analysis,
we extracted all instances of type-3 clonesI. We inspected
them and extracted the clone instances that have been modified
over the revision history. This gives usIM .

For all those modified instances, we manually checked if
they were simultaneously modified (in the same commit) with
the other clones in the same clone group. We call theseIMS .
When we set them into relation toIM , we can answer RQ 3.1.

4) Consistent Fixes (RQ 3.2):Furthermore, we inspected
each change to a type-3 clone related to a fault and checked
whether the same fix was applied consistently to all clone
instances. If that was the case, we count them underCX .
SettingCX into relation toCT3

F answers RQ 3.2.

5) Faulty Type-2 to Non-Faulty Type-3 (RQ 3.3):Moreover,
we extracted from our database also all faulty type-2 clone
groups (as described above). These clone groups are called
CT2

F . From each of these clone groups, we went forward in
the revision history and looked for fixes. If such a fix occurred,
we checked whether this resulted in a type-3 clone group and
if there is a further fix of this clone group in the future. We
describe the faulty type-2 clones that evolved into non-faulty
type-3 clones withCT2

F → C
T3

NF
. Setting them into relation to

all faulty type-2 clones answers RQ 3.3.

6) Developers’ View (RQ 3.4):We employed a light-weight
coding approach for the qualitative analysis of the interviews.
As we did not aim at establishing a broader, grounded theory
of cloning, we concentrated on creating codes (tags) that relate
directly to our research question on the developers’ awareness
of clones in their software system. Yet, we also added codes
if they seemed interesting to describe the context of the case
or the wishes for improvement by the developers.

Using the codes, we analyse the differences between the
projects, describe them and set them into relation to the results
of the quantitative analyses we performed for the RQs above.
The aim is to check if we can derive a consistent understanding
of how aware the developers were of clones in the development
of their systems.

7) Clone Length and Faultiness (RQ 4):We can extract
the length of a clone in units directly from the ConQAT
results. We use a correlation analysis using Spearman’s rho
for investigating the relationship between faultiness of clones
(0 or 1) and the length in statements of clone groups. We define
the following null hypothesis:

H0. There is no difference in the length of clones between
clone groups with a fault and clone groups without a fault.

and the corresponding alternative hypothesis:

H1. There is a difference in the length of clones between
clone groups with a fault and clone groups without a fault.

In case there is a statistical relationship, we investigate
this hypotheses with t-test. The results of the statisticaltests
determine RQ 4.

E. Validity Procedure

1) Construct validity: The development history of the
systems was analysed. A problem was that code fragments can
be inserted by copying and be modified in a single commit.
Therefore, we manually inspected the entire revision history of
the systems under consideration to check all changes of a code
fragment. Another threat to construct validity is that the issues
referenced in a commit might not fit to the actual change. To
counter this threat, we examined the code for each issue to see
whether the changes corresponded to it.

2) Internal validity: The clone detection process can yield
false positives and false negatives. As we used a tool to detect
inconsistent clones in the three systems, we manually inspected
all found clones for false positive results. Another internal
threat to validity is the configuration of ConQAT. We carried
out the clone detection with a liberal and conservative approach
in the configurations to check its influence.

The qualitative analysis by codes is inherently subjective
to some degree. We used a review of the codes produced
by one researcher by two of the other authors. Potential
misunderstandings can be discussed and resolved this way.

3) External Validity: A possible external threat to validity
is that the systems do not represent software systems and
software development at large. We chose our selection criteria
to reduce this threat.

V. RESULTS

A. Case Description

This study was carried out on systems of the German
companyTWT GmbH. The company offers engineering and
IT services in the sectors automotive, aerospace, healthcare
and energy. It has around 300 employees in six local offices.

According to our case selection criteria, we chose three
software systems which are in development and have a reason-
ably long development history. These systems are developed
in Java by different teams and offer different functionalities.
Moreover, the systems are already in live operation and are
continuously developed further and adapted. For privacy rea-
sons, the names of the systems are anonymised as A, B and C.
As detailed in Tab. I, the systems have been in development
for 4 to 5 years, have a size between 250 and 450 KLOC and
had 5 to 10 developers.

TABLE I. SUMMARY OF THE CASES

Size Age
System Domain Lang. (KLOC) Revisions (Years) Developers

A Automotive Java 253 2470 4 10
B Automotive Java 332 1622 5 5
C Automotive Java 454 2181 4 10

All three software systems are Java rich client applications
based on Eclipse RCP and an Oracle relational database

backend. All systems have been developed by similar devel-
oper teams concerning age, academic education and practical
experience. Also, all systems have a similarly sized user base.
The users of all three systems work in digital development
processes in the automobile industry.

System A facilitates the management of sensors, test cam-
paigns, measured data and simulation results in the area of
digital verification. In particular, the software comprises a
variety of interfaces for the import/export of data files. Test
campaigns to collect measured data are planned to complete
and to validate simulation data where necessary. For this
purpose, system A contains seven different Eclipse application
perspectives with different editors and views each.

Systems B and C are information systems for CO2 emission
data and related technological measures. System B provides
this functionality for individual car configurations. In system
C, type series are first class citizens. Due to their functional
similarity, during the initial development phase of systemB,
a significant portion of its code base was derived from system
C. In contrast to system A, systems B and C do only contain
one Eclipse application perspective that contains the complete
set of editors and views. Moreover, these controls are coupled
to facilitate, for example, facetted browsing.

All three systems make use of a TWT proprietary class
library (TFC) for model-driven software development. The
relational data model is therefore transformed by means of the
Hibernate tools into Java classes for domain objects, single-
and collection properties. Property classes allow for genericity
(e.g. one can iterate over all properties of an object without
knowing its properties by name). Additional metadata and Java
annotations facilitate generic controls such as, for example,
edit dialogs for master data objects. In the TFC and all three
systems, UI controls are implemented based on SWT and
JFace.

For all three systems, the TFC is referenced as a Mercurial
sub-repository. Thus, the library is developed further with
direct commits from the application specific software devel-
opment projects (i.e. there is no baseline configuration man-
agement for the TFC). Modifications of the TFC are synced
up in biweekly developer meetings. The initial development
of the TFC started when a predecessor of system A was then
ported from a previous code base to Eclipse RCP.

We were able to interview the project leads for all three
cases. All three of them have a university degree in computer
science, two of them even a PhD. All three have several years
of experience in Java and other programming languages.

B. Share of Type-3 Clones (RQ 1)

Table II contains the quantitative results for all research
questions in detail. We found a mean share of type-3 clones in
all clones and all three systems of 52 %. Yet, it varied strongly
from 23 % in system B to 79 % in system C. Nevertheless,
in all three systems, there is a considerable share of type-3
clones and, hence, it is useful to investigate their relationship
with faults.

The development of the TFC started tightly coupled with
the development of system A. Salient modules of the TFC were

TABLE II. SUMMARY OF RESULTS

Project A B C Total

Clone groups|C| 37 88 82 207
Type-3 clone groups|CT3 | 21 21 65 107
RQ 1: |CT3 |/|C| 0.56 0.23 0.79 0.52

Faulty clone groups|CF | 16 5 37 58
Faulty type-3 clone groups|CT3

F
| 7 1 2 10

RQ 2: |CT3

F
|/|CT3 | 0.33 0.05 0.03 0.17

Type-3 clones|I| 46 43 146 235
Modified type-3 clones|IM | 24 19 67 110
Simultaneously modified type-3 clones
|IMS |

14 17 62 93

RQ 3.1:|IMS |/|IM | 0.58 0.89 0.92 0.85

Consistently fixed type-3 clone groups|CX | 4 1 0 5
RQ 3.2:|CX |/|CT3

F
| 0.57 1.00 0 0.5

Faulty type-2 clone groups|CT2

F
| 9 4 35 48

Non-faulty type-3 clone groups|CT3

NF
| 14 20 63 97

|CT2

F
→ CT3

NF
| 9 4 35 48

RQ 3.3:|CT2

F
→ CT3

NF
|/|CT2

F
| 1 1 1 1

Mean length of type-3 clones (in units) 60 62 78
Mean length of faulty type-3 clones (in units) 50 39 83

implemented as immediate contributions to system A. The co-
existence of system A with a then immature TFC might have
fostered cloning and as a consequence the occurrence of type-
3 clones. This may be particularly true due to the missing
baseline configuration of the TFC.

Answer to RQ 1: On average, every second clone group
is a type-3 clone group. Therefore, type-3 clones are a
substantial part of all clones.

C. Type-3 Clones with Documented Faults (RQ 2)

We found documented faults in 58 clone groups overall.
Ten of these were type-3 clone groups. Interestingly, while
system C had the most faulty clone groups (37), system A
had the most faulty type-3 clone groups (7). Hence, in our
small sample the relationship from faulty clone groups to faulty
type-3 clone groups is not linear. This could be an indication
that some other factors, such as the developers’ awareness of
clones, play a role.

The ratio of faulty type-3 clone groups in relation to all
type-3 clone groups is on average 17 %. Because of the
discussed imbalance between faulty clone groups and faulty
type-3 clone groups, this ratio varies strongly from 3 % in
system C to 33 % in system A. Again, this could be an
indication that the developers of systems B and C were more
aware of the clones and, hence, introduced less inconsistencies
which represent faults.

Another explanation is that systems B and C, with low
ratios of faulty type-3 clones, were particularly quality-checked
because of their complex and computation-centric application
logic. Also, systems B and C shared release cycles of about
three months in contrast to system A with monthly releases.

Potentially, the ratio of faulty type-3 clone groups could
be higher, because we only analysed documented faults. There
still might be faults in the code that have not been detected
so far (as observed by Juergens et al. [5]). Yet, we wanted
to concentrate on faults that had an actual effect and led to
failures.

Answer to RQ 2: On average, 17 % of all type-3 clone
groups contained a documented fault. The range is from
3 % to 33 %. Therefore, type-3 clones do contain docu-
mented faults but not a high ratio of them. The differences
between the cases suggest that other factors play a role.

D. Developers’ Awareness of Type-3 Clones (RQ 3)

In RQ 1, we established that type-3 clones are interesting to
investigate. In RQ 2, we found that type-3 clones contain docu-
mented faults as well as that there are differences in how many
and what share of type-3 clone groups contain documented
faults. Previous research suggests that developer awareness
of these clones plays a role. Therefore, we investigate this
awareness more closely. We analysed four different indications
of this awareness which we discuss in the following.

1) Simultaneous Maintenance of Type-3 Clones (RQ 3.1):
For the analysis of simultaneous maintenance of type-3 clones,
we did not look at the clone groups but at the individual clones
(also calledclone instances) in relation to their clone groups.
Overall, we detected 235 type-3 clones in all three systems.
Systems A and B had roughly the same number of type-3
clones with 46 and 43, respectively. System C had the most
type-3 clone groups and, accordingly, the most type-3 clones:
146. Of these type-3 clones, 110 have been modified in the
timeline we investigated. In all three systems roughly halfof
the clones were modified.

Developers changed most of these modified clones simulta-
neously with the other clones in the same clone group. Overall,
85 % of the modifications in type-3 clones were simultaneous
modifications. There is again a large imbalance in this ratio.
While for system B and C it is around 90 % (89 % and 92 %),
for system A it is 58 %. Hence, the developers of system
A changed the type-3 clones much less often at the same
time. This supports our previous theory that the awareness of
developers of the existence of clones plays a role in the ratio
of faulty type-3 clone groups. Less simultaneous modification
indicate a lesser awareness. Yet, in general, the developers
modified clones often simultaneously and, hence, seem to have
been aware of the clones in their code.

Answer to RQ 3.1: Overall, 85 % of the modifications to
type-3 clones were done simultaneously. Hence, developers
seem to be highly aware of the clones. There are differences
between systems, however, which suggest differences in the
clone awareness of developers.

2) Consistent Fixes (RQ 3.2):The second indication for
clone awareness we investigated was whether documented
faults in type-3 clones were fixed consistently by the devel-
opers. We found few faulty type-3 clone groups in general.
Therefore, the numbers are not particularly insightful. Yet, of
the few faulty type-3 clone groups, 50 % were fixed overall
over time. The one faulty group in system B was fixed. The
developers did not remove the faults in the groups in system
C. Of the 7 faulty groups in system A, the developers fixed 4.

A clear general conclusion is difficult. The 57 % fix ratio
for system A supports the hypothesis that its developers were
not highly aware of the clones. Yet, in system C none were
fixed, while it had the highest ratio of simultaneously modified

type-3 clones. We believe that the low number of faults distorts
the results.

An explanation could be that system A with a partic-
ularly high ratio of faulty type-3 clones and a low ratio
of synchronously fixed type-3 clones makes extensive use
of Eclipse application perspectives. An Eclipse application
perspective describes a certain configuration of views and
editors. In system A, 7 different perspectives are defined
for complementary user tasks. In particular, the perspectives
contain very different editors and views from auser per-
spective. They do share, however, a very similar code base
for standardprogrammingtasks such as, for example, tabular
presentations of TFC domain objects. The development of
independent application perspectives requires little interaction
by the different developers in charge. Code reuse by means of
type-3 clones, however, seems to be particularly fault-prone
due to this lack of developer communication and the resulting
delayed fault fixes. This may indicate the usefulness of a
recommender system that notifies developers of the remaining
faulty clone instances.

Answer to RQ 3.2: The developers fixed consistently
overall 57 % of all faulty type-3 clone groups. The low
number of documented faults in clone groups prohibits
clear conclusions.

3) Faulty Type-2 Clone Evolution (RQ 3.3):The third
indication for developer awareness of clones we investigated
was whether the inconsistencies in type-3 clones resulted from
fault fixes in type-2 clones. We detected 48 type-2 clone groups
with documented faults. This ranges from only 4 groups in
system B to 35 groups in system C.

By going from the fault detection forward in time, we found
that all of the type-2 clone groups with a documented fault
evolved to type-3 clone groups without documented faults.
Therefore, the ratio of such an evolution is 1 for all systems. In
other words, almost half of the type-3 clone groups came into
existence by fault fixes in type-2 clone groups but for none of
these does another documented fault exist. This indicates that
there is an awareness for clones by the developers of all three
systems. Otherwise, there should be occurrences of incomplete
fixes, i.e. that a fix was not made to all clone instances where
it was needed.

Answer to RQ 3.3: All type-2 clone groups with docu-
mented faults evolved to type-3 clone groups with not fur-
ther documented faults. This indicates that the developers
were aware of the clones and made the fixes to all necessary
instances.

4) Developers’ View (RQ 3.4):The central codes we
have derived from the interview transcripts areGeneral clone
awareness/No general clone awareness, No specific clone
awareness, No clone check while bug fixing, Clone warning
while developing, Common code ownershipand Discussion
about co-changes. They allow us to describe the differences
in clone awareness in the three cases. Table III shows which
of these codes describe which cases.

The codes describe the three distinct profiles of the three
cases. In case A, we did not find general awareness of the
concept of code clones and also in the project, there was no

TABLE III. A SSIGNMENT OF CENTRAL CODES TO CASES

Code A B C
General clone awareness x
No general clone awareness x x
No specific clone awareness x x
No clone check while bug fixing x x
Clone warning while developing x
Common code ownership x
Discussion about co-changes x

specific handling of code clones. During bug fixes, there was
no explicit analysis whether there are copies that would need to
be changed as well. Simultaneous changes are probably caused
by other means of impact analysis in the project.

Case B is quite the opposite: There is a general awareness
of the concept and potential problems of code clones. Yet,
during the project, code clones have not been discussed in
detail. But there was a check for clones during bug fixes
with the duplicate codewarning by the static analysis tool
Checkstyle.2

In case C, we did not find general clone awareness either.
Also there was no specific awareness and means for analysis
during bug fixes in the project. Yet, in the project, there
is an emphasis on common code ownership and intensive
discussions on the code. In particular, there are discussions
before a change about its consequences and what needs to be
changed as well. The developers seem to identify clones which
need to be changed in this way.

Finally, we also defined the codeWish for clone warning
while developingcapturing that in the two cases that did
not have clone warnings during development (A and C), the
developers expressed the wish to have this functionality. Both
cases had duplication analysis withSonarQube3 automatically
performed with the build of the system. Those were described
as too late. The information is needed before or while per-
forming a change.

Answer to RQ 3.4: In case A, there was neither general
nor specific awareness of clones during changes. In case B,
there was general clone awareness and the tool Checkstyle
showed warnings of similar code in the IDE. In case C,
there was neither general nor specific clone awareness.
Yet, through common code ownership and intensive com-
munication before changes, other code location that need
to be changed are identified. In all cases, the developers
preferred warnings during development to clone results
together with an automated build.

5) Summary:In summary, we found that the overwhelming
majority of modifications to type-3 clones was done simulta-
neously in the corresponding clone group. There were clear
differences between the systems, however. The developers
fixed the majority of faulty type-3 clone groups in all systems,
and all fixed type-2 clone groups evolved to type-3 clone
groups with no further documented faults.

Overall, we interpret these results such that developers
took care to check the effects of changes and were able to
identify all locations where changes are necessary. Otherwise,

2http://checkstyle.sourceforge.net
3http://www.sonarqube.org

http://checkstyle.sourceforge.net
http://www.sonarqube.org

we would see more faults from incomplete fixes. Yet, there was
a difference in the awareness of the clones. In the simultaneous
modifications, we observe a difference between system A on
the one side and systems B and C on the other. This could
be an indication for a difference in the level of awareness
which, in turn, could explain the difference in the number of
faulty clone groups in the results for RQ 2. The developer
interviews support this conjecture: While C could find similar
code locations by communication between the developers and
B by general awareness and usage of a tool, A was not that
aware of clones. This is consistent with the quantitative results.

Answer to RQ 3: Developers of all three systems per-
formed simultaneous updates to clones. Yet, the level of
awareness seems to be differing. A lower level of awareness
could be an explanation for more faulty type-3 clone
groups.

E. Length of Clones and Faults (RQ 4)

Finally, we wanted to investigate the influence of the length
of clones on the faultiness. We first analysed the correlation
between the length of clones (in units) and whether they
contain a fault or not. Tab. IV shows the results of an analysis
with Spearman’s correlation coefficient. The correlation (and
effect size) is weak and not statistically significant.

TABLE IV. T HE RESULTS OFCORRELATIONSBETWEEN LENGTH OF

CLONES AND FAULTS

Clone Length Faults

Clone Length

Spearman’s rho Correlation 1.000 0.268
Sig. (2-tailed) 0.120
N 35 35

Therefore, we have no empirical support for the assumption
that longer clones are more likely to contain faults. Hence,
we do not further investigate the hypotheses but accept our
null hypothesis:There is no difference in the length of clones
between clone groups with a fault and clone groups without a
fault.

Answer to RQ 4: The length of clones do not influence
their faultiness.

F. Evaluation of Validity

1) Construct validity:The manual analysis, we performed
here, could have introduced problems. We only double-
checked random samples. Because we start from the latest
versions of the source files, we inevitably miss clones created
somewhere in the history and which are removed later on. We
do not have data to quantify this threat.

2) Internal validity: Our manual false-positive removal
could be wrong. We double-checked only random clone
groups. Regarding the configuration of ConQAT, the results
of clone detection with conservative parameter settings (to
increase precision) are shown in Tab. VI and with liberal
settings (to increase recall) in Tab. V. We found that the
liberal approach delivers far higher numbers of clones. Yet,
in our manual analyses, they contained a lot of false positives.
Therefore, we chose the conservative approach for the further
analysis and found no further false positives.

A further threat to validity is that the three systems have
been developed with a new issue-tracking system. Therefore,
earlier issues could not be analysed. Accordingly, the amount
of change sets does not fully represent the revision history.
Nevertheless, we believe the analysed history gives a good
insight into the evolution of the clones and faults.

3) External Validity: The study was only carried out on
three relatively young industry systems that have thus also
smaller version histories. Although all systems are written
in Java and perform different functions, the results are fairly
consistent over the various projects. As the variety in software
development processes, programming languages and applica-
tion domains is huge, it is possible that in other contexts, the
numbers can vary considerably. Yet, we believe that the results
should be comparable to other medium-sized software systems
written in languages similar to Java.

VI. CONCLUSIONS ANDFUTURE WORK

A. Summary of Conclusions

In the three investigated industrial closed-source software
systems, we found that on average, half of all clone groups
are type-3 clones. Hence, they are a common phenomenon
interesting for further analysis. Of all type-3 clone groups,
only 17 % contain documented faults. This is not negligible
but type-3 clones are not a major source of faults in these
systems. Nonetheless, the faultiness was differing over the
three systems.

We found a potential reason for this difference in faultiness
is the awareness of the developers of these clones. We found
that most of the type-3 clones are modified simultaneously.
Half of the faults in type-3 clones were fixed consistently.
This suggests that overall the developers in our cases have been
successful in changing clones together when needed which led
to the small number of faults in type-3 clones.

The system with the highest rate of faulty type-3 clone
groups, however, had also the lowest share of simultaneously
changed clone groups. This was supported by the qualitative
analysis that showed that the developers of this system also
had the least awareness of clones. This can be an explanation
for the higher number of faults.

Furthermore, all type-2 clones with documented faults in
our systems evolved into fixed type-3 clones. This suggests
that often type-3 clones are created to fix faults and do not
introduce new faults or miss to fix faults.

Finally, there is only a weak correlation, which is not
statistically significant, between clone length and faultiness.
Therefore, clone length does not to be an important factor for
future studies.

B. Relation to Existing Evidence

We found exactly the same rate of type-3 clones as Juergens
et al. [5] (based on the same detection technique). Hence, it
seems that consistently about half of all clone groups are type-
3 clones. Also the rate of faulty type-3 clones is consistent.
Juergens et al. found with 0.15 an only slightly smaller rate.
Hence, it seems that analysing documented faults or asking
developers directly does not change the result. The result

TABLE V. CLONE DETECTION WITH THE LIBERAL APPROACH

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clo ne Count
A 10 10 0.25 58s 253 25.443 981
B 10 10 0.25 58s 332 49.2 1.545
C 10 10 0.25 112s 454 47.8 2.244

TABLE VI. C LONE DETECTION WITH THE CONSERVATIVE APPROACH

Project Minlength Error Gap Ratio Runtime kLOC Clone LOC Clo ne Count
A 20 10 0.25 52s 253 7.6 143
B 20 10 0.25 42s 332 17.7 352
C 20 10 0.25 97s 454 15.6 382

from Bettenberg et al. [27] for faulty inconsistencies is with a
maximum of 4 % considerably lower but they only looked at
faults at the release level. Hence, it could still be in harmony
with our results.

We cannot directly compare the results for unintentional
type-3 clones as Juergens et al. calculated that for the clone
groups and this study analysed the individual clones. Yet,
Juergens et al. found that 28 % of the clone groups were
unintentionally inconsistent while we found that 85 % of the
clones were changed simultaneously. Hence, the tendency is
in both cases that developers seem to be aware of the majority
of type-3 clones.

Göde and Koschke [26] concluded that “only 14.8% of
all changes to clones are unintentionally inconsistent.” Thum-
malapenta et al. [23] found that more than 70 % of clone
groups in their analysed systems “were either consistently
changed or they underwent an independent evolution”. We can
support these findings as we found that 85 % of type-3 clones
were simultaneously modified.

Rahman, Bird and Devanbu [13] investigated the relation-
ship between faults and clones in general. They found that
cloned code does contributelessto faults than non-cloned code
and that clones are not a major source of faults. We focused
on type-3 clones and found that they often occur as a result
from fixing faults in type-2 clones. Hence, we can support the
claim that clones are not a major source of faults.

In the end, there does not seem to be such a large contra-
diction between the different studies but in the interpretation.
There are faults related to inconsistent changes in type-3
clones. Such faults are usually not the majority of all faults
in a system. Yet, the awareness of developers of these clones
seems to play a role.

C. Impact/Implications

As long as developers are aware of clones and type-3 clones
in particular, clones do not seem to be a strong source of faults.
We see three implications from this:

1) Although it is a small number, type-3 clones do contain
faults. It might still be interesting to use the inconsisten-
cies between type-3 clones as a hint for finding faults
(similar as in [5] or [18]). The efficiency of such an ap-
proach in comparison to other fault detection approaches
needs to be investigated.

2) As several studies confirmed now that faultiness is not
a strong argument for considering cloning to be a bad
smell, researchers need to concentrate more on the effects
of the size increase caused by cloning. There are some

first analyses (e.g. fix effort in [13]) but no comprehensive
investigations.

3) Awareness of clones to handle them consistently seems to
be a prerequisite for the low effect on faultiness of clones.
Keeping track of these change dependencies in form
of clones causes cognitive load on the developers. This
suggests that clone detection and management tools that
support developers in being aware of these dependencies
can be helpful [23]. Yet, the effect of cloning on cognitive
load needs to be investigated.

D. Limitations

This study covers an underrepresented area in studies so
far: industrial closed-source software systems. Nevertheless,
we only investigated three systems from one company. Al-
though our results fit well to most existing studies, replica-
tions with other systems and companies in other domains are
necessary to better establish the findings.

Furthermore, as we only looked at documented faults and
not the individual inconsistencies, we could not find faults
not discovered otherwise so far. In that sense, we complement
especially [5]. This could distort the findings, but our intuition
was that faults not discovered after years of usage might not
be so interesting after all.

E. Future Work

As mentioned above, replications of this study in other
contexts would help to increase confidence in the findings. We
plan to approach more industrial partners to conduct similar
studies on their code bases. To be fully explanatory, however,
we will need a controlled experimental design.

Furthermore, in all three cases, the developers mentioned
that the most useful way to present clones to them would
be directly in the IDE. We work on extensions to IDEs
that support the awareness of developers of clones in code
fragments they are working on without putting unnecessary
cognitive load and distractions on them.

ACKNOWLEDGMENT

We would like to thank the developers at TWT who allowed
us to investigate their projects and in particular the threeproject
leads who took the time for the interviews.

REFERENCES

[1] A. Hunt and D. Thomas,The Pragmatic Programmer. From Journeyman
to Master. Addison Wesley, 1999.

[2] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proc. Eighth Working Conference on Reverse Engineering (WCRE).
IEEE, 2001, pp. 301–309.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–
670, 2002.

[4] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” inProc. 29th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2007, pp.
96–105.

[5] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” inProc. 31st International Conference on Software
Engineering. IEEE, 2009, pp. 485–495.

[6] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” inProc. 8th International Symposium on Static Analysis
(SAS’01). Springer, 2001, pp. 40–56.

[7] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: Memory comparison-
based clone detector,” inProc. 33rd International Conference on
Software Engineering (ICSE ’11). ACM, 2011, pp. 301–310.

[8] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and
T. N. Nguyen, “Complete and accurate clone detection in graph-
based models,” inProc. 31st International Conference on Software
Engineering. IEEE, 2009, pp. 276–286.

[9] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-
F. Girard, and S. Teuchert, “Clone detection in automotive model-
based development,” inProc. 30th International Conference on Software
Engineering (ICSE ’08). ACM, 2008.

[10] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B.Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” inProc. 32nd
ACM/IEEE International Conference on Software Engineering. ACM,
2010, pp. 79–88.

[11] S. Wagner,Software product quality control. Springer, 2013.

[12] C. Kapser and M. W. Godfrey, “”Cloning considered harmful” con-
sidered harmful: patterns of cloning in software.”Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[13] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is thatsmell?”
Empirical Software Engineering, vol. 17, pp. 503–530, 2012.

[14] P. Runeson and M. Höst, “Guidelines for conducting andreporting case
study research in software engineering,”Empirical software engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[15] R. Koschke, “Survey of research on software clones,” inDagstuhl
Seminar Proc. Duplication, Redundancy, and Similarity in Software,
2007.

[16] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,”Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[17] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,”IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, Sept 2007.

[18] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Findingcopy-paste
and related bugs in large-scale software code,”IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[19] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” inProc. 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundationsof
Software Engineering (ESEC/FSE). ACM, 2007, pp. 55–64.

[20] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of
code clone genealogies,” inProc. 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE-13). ACM,
2005, pp. 187–196.

[21] J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in Proc. 14th Working Conference on Reverse Engineering
(WCRE 2007). IEEE, 2007, pp. 170–178.

[22] T. Bakota, R. Ferenc, and T. Gyimóthy, “Clone Smells inSoftware
Evolution,” in 2007 IEEE International Conference on Software Main-
tenance (ICSM’07). IEEE, 2007, pp. 24–33.

[23] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,”Empirical
Software Engineering, vol. 15, no. 1, pp. 1–34, Feb. 2010.

[24] L. Barbour, F. Khomh, and Y. Zou, “An empirical study of faults in
late propagation clone genealogies,”Journal of Software: Evolution and
Process, vol. 25, no. 11, pp. 1139–1165, 2013.

[25] M. Mondal, C. K. Roy, and K. A. Schneider, “A comparativestudy on
the bug-proneness of different types of code clones,” inProc. Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2015, pp. 91–100.

[26] N. Göde and R. Koschke, “Frequency and risks of changesto clones,”
in Proc. 33rd International Conference on Software Engineering
(ICSE’11). ACM, 2011, pp. 311–320.

[27] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou,and A. E.
Hassan, “An empirical study on inconsistent changes to codeclones at
the release level,”Science of Computer Programming, vol. 77, no. 6,
pp. 760–776, 2012.

[28] B. O’Sullivan, Mercurial: The Definitive Guide: The Definitive Guide,
ser. Animal Guide. O’Reilly Media, 2009.

[29] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in Proc. 30th International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2014, pp. 321–330.

[30] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas y
Parareda, and M. Pizka, “Tool support for continuous quality control,”
IEEE Software, vol. 25, no. 5, pp. 60–67, 2008.

[31] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching forbetter
configurations: a rigorous approach to clone evaluation,” in Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’13). ACM, 2013, pp. 455–465.

[32] FogBugz. Documentation for Fogbugz.
Fog Creek Software. [Online]. Available:
http://www.fogcreek.com/fogbugz/documentation/FogbugzDocumentation.pdf

http://www.fogcreek.com/fogbugz/documentation/FogbugzDocumentation.pdf

	I Introduction
	I-A Problem Statement
	I-B Research Objectives
	I-C Contribution
	I-D Context

	II Terminology
	III Related Work
	III-A Clone-Based Fault Detection
	III-B Clone Genealogies
	III-C Manual Inspection
	III-D Summary

	IV Case Study Design
	IV-A Research Questions
	IV-B Case Selection
	IV-C Data Collection Procedure
	IV-C1 Extraction of Latest Source Code Version
	IV-C2 Clone Detection
	IV-C3 Extraction of all Revisions of Files with Clones
	IV-C4 Extraction of Issues for Files with Clones
	IV-C5 Collection of Meta-Data in a Database
	IV-C6 Interviews with Developers

	IV-D Analysis Procedure
	IV-D1 Type-3 Clones (RQ 1)
	IV-D2 Faulty Type-3 Clones (RQ 2)
	IV-D3 Simultaneous Maintenance (RQ 3.1)
	IV-D4 Consistent Fixes (RQ 3.2)
	IV-D5 Faulty Type-2 to Non-Faulty Type-3 (RQ 3.3)
	IV-D6 Developers' View (RQ 3.4)
	IV-D7 Clone Length and Faultiness (RQ 4)

	IV-E Validity Procedure
	IV-E1 Construct validity
	IV-E2 Internal validity
	IV-E3 External Validity

	V Results
	V-A Case Description
	V-B Share of Type-3 Clones (RQ 1)
	V-C Type-3 Clones with Documented Faults (RQ 2)
	V-D Developers' Awareness of Type-3 Clones (RQ 3)
	V-D1 Simultaneous Maintenance of Type-3 Clones (RQ 3.1)
	V-D2 Consistent Fixes (RQ 3.2)
	V-D3 Faulty Type-2 Clone Evolution (RQ 3.3)
	V-D4 Developers' View (RQ 3.4)
	V-D5 Summary

	V-E Length of Clones and Faults (RQ 4)
	V-F Evaluation of Validity
	V-F1 Construct validity
	V-F2 Internal validity
	V-F3 External Validity

	VI Conclusions and Future Work
	VI-A Summary of Conclusions
	VI-B Relation to Existing Evidence
	VI-C Impact/Implications
	VI-D Limitations
	VI-E Future Work

	References

