

Delft University of Technology

UAV
Warnings From Multiple Automated Static Analysis Tools At A Glance
Buckers, Tim; Cao, Clinton; Doesburg, Michiel; Gong, Boning; Wang, Sunwei; Beller, Moritz; Zaidman, Andy

DOI
10.1109/SANER.2017.7884656
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings - 24th International Conference on Software Analysis, Evolution and Reengineering, SANER
2017

Citation (APA)
Buckers, T., Cao, C., Doesburg, M., Gong, B., Wang, S., Beller, M., & Zaidman, A. (2017). UAV: Warnings
From Multiple Automated Static Analysis Tools At A Glance. In M. Pinzger, G. Bavota, & A. Marcus (Eds.),
Proceedings - 24th International Conference on Software Analysis, Evolution and Reengineering, SANER
2017 (pp. 472-476). IEEE. https://doi.org/10.1109/SANER.2017.7884656
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SANER.2017.7884656
https://doi.org/10.1109/SANER.2017.7884656

UAV: Warnings from Multiple Automated Static
Analysis Tools at a Glance

Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang, Moritz Beller, Andy Zaidman
Delft University of Technology, The Netherlands

{t.b.buckers,c.s.cao,m.s.doesburg,b.gong,s.wang-11}@student.tudelft.nl {m.m.beller,a.e.zaidman}@tudelft.nl

Abstract—Automated Static Analysis Tools (ASATs) are an
integral part of today’s software quality assurance practices. At
present, a plethora of ASATs exist, each with different strengths.
However, there is little guidance for developers on which of these
ASATs to choose and combine for a project. As a result, many
projects still only employ one ASAT with practically no cus-
tomization. With UAV, the Unified ASAT Visualizer, we created
an intuitive visualization that enables developers, researchers,
and tool creators to compare the complementary strengths and
overlaps of different Java ASATs. UAV’s enriched treemap and
source code views provide its users with a seamless exploration
of the warning distribution from a high-level overview down to
the source code. We have evaluated our UAV prototype in a user
study with ten second-year Computer Science (CS) students, a
visualization expert and tested it on large Java repositories with
several thousands of PMD, FindBugs, and Checkstyle warnings.
Project Website: https://clintoncao.github.io/uav/

I. INTRODUCTION

Automated Static Analysis Tools (ASATs) analyze source
or binary code without observing its run time behavior [1].
ASATs have become an integral part of today’s software
quality assurance practices, reflected by the increased uptake
of new ASATs such as Google’s Error Prone1 or Facebook’s
Infer.2 In addition to the well-known standalone ASATs like
FindBugs, Checkstyle, or PMD [1], recently, new cloud ser-
vices like CodeClimate3 have emerged. They try to provide
a better integration of ASATs into the development process.
As a result, at present, a plethora of ASATs exist, each with
different strengths and many different warning typologies.

However, developers have little guidance which ASATs to
choose and combine for a project. Developers lack a tool that
allows them to explore which warnings a certain ASAT emits
where in the project, and whether there are overlaps with
existing ASATs. Currently, developers and researchers can
only run ASATs individually and then compare their output,
which is both tedious and leaves many features to be desired.
As a result, many projects still only employ one ASAT with
practically no customization and never explore the possibility
of combining multiple ASATs to their benefit [1].

To address this issue, we have created UAV, the Unified
ASAT visualizer. UAV can run multiple ASATs and facilitates
comparing them by unifying their different warning typolo-
gies and representing all warnings in one interactive treemap

1http://errorprone.info/
2http://fbinfer.com/
3https://codeclimate.com/

visualization. For researchers, UAV offers a flexible means to
analyze the different types of warnings generated by multiple
ASATs. For software developers, our tool gives insight into
the warning distribution in their Java projects. After locating
a specific class full of warnings, developers can seamlessly
navigate to the source code view where the relevant warnings
will be highlighted. UAV can also support ASAT tool creators
themselves by helping them sharpen the focus of their tools:
They can compare the warning types their tool detects to its
competition and thus differentiate themselves better. In the
remainder of this paper, we describe UAV from an end-user
as well as a technical perspective.

II. USER STORY

Bob and his team of software engineers at XYZ Inc. are de-
veloping a revolutionary new search website. They decided to
use multiple ASATs to ensure a basic level of code quality, in-
cluding Checkstyle and FindBugs. After a few weeks of devel-
opment, Bob checks all warnings. To his surprise, the ASATs
report a list of over a thousand warnings on the relatively
new project. Bob wants to address the warnings in an efficient
manner, but has no idea where to start. He is discouraged by
the fact that he cannot get an overview of how the warnings
are distributed across the system’s components. For example,
warnings related to the search subsystem would take prece-
dence over warnings in the user interface (UI) components of
the new search website. Bob knows that working through the
lengthy list of warnings one at a time will be extremely time-
consuming, but sees no other option. Working through the
list Bob repeatedly notices overlaps between warnings from
different ASATs, albeit under slightly different names. For
example, for the method AdvanceState, Checkstyle and
FindBugs emit the overlapping warnings MethodName and
NM_METHOD_NAMING_CONVENTION. Bob realizes that he
is losing significant time on similar issues. Moreover, he has
no way to exclude warnings which are irrelevant to his team.
Bob wonders: Isn’t there a tool which provides me with . . .
• an overview of where in the system warnings are con-

centrated?
• an overview of warnings which have the highest priority?
• a way to filter irrelevant warnings?
• a way to filter overlaps in the warnings from multiple

ASATs?

https://web.archive.org/web/20170102162839/https://clintoncao.github.io/uav/
https://web.archive.org/web/20161201141333/http://errorprone.info/
https://web.archive.org/web/20161203124204/http://fbinfer.com/
https://web.archive.org/web/20161201142624/https://codeclimate.com/

Fig. 1. Workflow of UAV.

III. RELATED WORK

In this section, we give an overview of literature and tools
that are related to UAV.

A. Literature

In recent work on the state of the art of ASATs [1], we
introduced the General Defect Classification (GDC). The GDC
is a topology that allows the categorization of warnings from
different ASATs into a set of mutually shared categories. It
forms the basis of UAV’s visualization.

Many ASATs differ in the type of defects they detect. How-
ever, even when tools focus on uncovering the same category
of defect type, the variance in the concrete warnings they emit
and their naming is still very large [1]. This indicates that using
several ASATs has benefits over using a single ASAT. Using
multiple ASATs can be time consuming, however, arbitraging
a single warning can take up to eight minutes on average [2].
Moreover, ASATs generate about 40 warnings per 1,000 lines
of code [3]. With UAV, developers and researchers can visually
assess this rich and plentiful torrent of warnings for the
potential benefits of combining multiple ASATs. It enables
developers to make an informed decision on whether the
added findings and their type justify the inclusion of another
ASAT into their tool chain. Researchers have long performed
comparative studies with multiple ASATs and other quality
assurance techniques like code review, for example Wagner
et al. in 2005 [4] and Panichella et al. in 2015 [5]. However,
they lacked a tool that allows them to visually compare the
location and defect types of different ASATs on concrete real-
world projects. UAV closes this gap.

ASATCollector

GUI

Parsers

JavaFx

jsoup
Writers

Groupers

Summarizers

Gson

ASATVisualizer

Bootstrap

CodeMirror

D3.js

1 2

3

4

5

Fig. 2. Architecture of UAV.

B. User Workflow

UAV offers a visual way of exploring which packages
or classes are particularly affected by ASAT warnings. By
contrast, existing research has tackled the problem of how to
deal with a flood of warnings mainly by prioritizing them.
Muske and Serebrenik give a comprehensive overview of the
approaches that have been suggested so far [6].

To visualize data in a structured way, UAV uses treemaps on
its package and class level views and an enriched source code
view on individual files. Treemaps are a space-filling visual-
ization method that can display large hierarchical collections
of quantitative data intuitively [7]. This makes it ideally suited
to present the nested structure of a typical Java project. UAV
uses a modified treemap view to provide an intuitive high-level
visualization of which warnings lie where in a project and a
seamless switch to a source-level view to track warnings down
to individual source code lines.

C. Tools

Apart from the plethora of individual ASATs available
today, tools such as Teamscale [8], SonarQube [9] and Cover-
ityScan [10] can collect and display the warnings of multiple
ASATs, the first step of UAV. UAV goes further in that it
also categorizes the warnings from the multiple tools into
one mutual topology, GDC, and visualizes them. Alternatively,
UAV displays the ASAT warnings originate from, down to the
source code level. Existing tools lack these two capabilities.

IV. IMPLEMENTATION

In this section, we first give an overview of the workflow for
a user, then describe UAV’s architecture and inner workings,
and conclude with a series of technical challenges.

A. Workflow

Figure 1 depicts the typical workflow of UAV. It begins
with the user running maven site to produce the warning
files of the ASATs 1©. The user then indicates, in UAV’s
UI 2©, the source folder of the project to analyze. UAV
gathers context data on the project and parses the generated
ASAT warnings 3©. Subsequently, it classifies and groups
warnings 4© by applying the GDC 5© on them. Next, it writes
out the result files for the visualizer 6©. Finally, UAV opens
the user’s web browser and runs the visualizer 7©.

B. Architecture

Figure 2 depicts the two components UAV comprises. The
ASATCollector 1© gathers and interprets the output generated
by running the supported ASATs via Maven. Because of its
static and computation-intense nature, we have implemented
the ASATCollector in Java 1.8. The ASATVisualizer 2©,
allows a user-interactive exploration of these warnings trans-
ferred from the ASATCollector 3©. To emphasize platform
independence, speed, and user interaction capabilities, we have
implemented the visualizer in JavaScript to run in the user’s
browser.

The ASATCollector first finds all warnings, along with their
specific location in the project, and groups them together.
Second, it determines the structure of a project. When one
runs UAV, the ASATCollector will open up a JavaFX UI
where the user can select the source folder of the project. Once
selected, the parsers of the ASATCollector read the warning
files generated by maven site for Checkstyle, FindBugs
and PMD. We use jsoup to parse GDC’s ASAT mapping, spec-
ifying which ASAT warning to map to which common GDC
category. The groupers summarize these warnings according to
the read-in GDC. Simultaneously, the ASATCollector gathers
information on the structure of the project by looking up all
classes within each package, the path to each Java class file
and the number of lines of code for each class and package.
The last step is to write the collected warnings and data
to a JavaScript file where it is stored in JSON format and
transferred to the ASATVisualizer. The Gson library is used
for the creation of JSON objects.

After it creates the output file, UAV opens the user’s
default browser and shows the visualization. Moreover, users
can share its light-weight output file and without having to
distribute the visualization code. This also means that multiple
users can analyze the produced warnings of the project without
having to run the independent ASATs multiple times. The
visualization itself is a ready-made template based on the
Bootstrap framework using HTML, CSS, and JavaScript. It
only requires a JSON output file from the ASATCollector to
display its information. In the ASATVisualizer, the treemap in
the center of the visualization is implemented using D3.js, a
popular JavaScript library for manipulating documents based
on data. We have chosen D3.js because of its interactive
features and freedom of customization. This enabled us to
implement the different filter options of the treemap in pure
JavaScript. If the user clicks on a class in the treemap, UAV
will seamlessly swap the treemap with the source code viewer.
The source code viewer is built using the JavaScript library
CodeMirror; we modified the syntax highlighting to show the
warnings at the source code level with color-coding.

C. ASATVisualizer User Interface

In this section, we describe the two main UI components of
UAV: Its treemap high-level package view depicted in Figure 3
and its source code-level view in Figure 4.

UAV’s visualization provides users with a large treemap
showing the structure of the project (1© in Figure 3). The

treemap can be navigated through by clicking on the de-
sired block. Currently, the package ’dagger.internal.codegen’ is
highlighted 2©. Next to the mouse cursor, UAV displays a pop-
up with descriptive statistics about the highlighted package,
such as its number of warnings per ASAT 3©. The user could
click on this package to zoom in on it. In the menu on
the left 4©, users can select which ASATs to include in the
visualization. They can adjust which metric the color of the
classes are based on:
• ‘Normal’ shows the amount of warnings relative to other

classes.
• ‘ASAT’ shows the distribution of which ASAT the warn-

ings originate from.
• ‘Category’ shows the distribution of warnings according

to which of the GDC categories (functional defects,
maintainability defects, or other) they belong to.

When in ‘Normal’ color scale, users can also choose to base
the intensity of the colors on the relative amount of warnings
in each class or on an absolute scale (where pure green means
no warnings and pure red means one warning per line). In the
GDC panel on the right-hand side 5©, the user can see the
warning categories and toggle them on or off.

The user can navigate down from package level into class
level view, and finally view a single class on code level,
shown in Figure 4. UAV color-codes each line with a warning,
see line 16. According to the setting of 4© in Figure 3, the
color can indicate which ASAT the warnings originate from or
which category they belong to. In lines with multiple warnings,
colors alternate, see line 5. It contains a warning about code
structure, namely the import ‘java.io.IOException’ is not used.
Both PMD and Checkstyle have reported this warning.

D. Challenges

We have encountered three major challenges during the
development of UAV. Our first challenge was to find a way
for UAV to run the ASATs. The initial solution was to use
processbuilder from Java; it is possible to run commands via
processbuilder to execute the ASATs. However, this solution
required an executable of each ASAT, which restricts our users
to one version of an ASAT and makes it difficult to update. Our
alternate solution is to use Maven to produce the output files
of the ASATs. For this solution there is no need to package
third-party executables of ASATs together with UAV.

The solution for the first challenge, however, is a cause of
the remaining two challenges: we had to find a way for UAV
to run Maven and to gather all the output files of the ASATs.
As Maven can be run as a standalone application, installed
in the system, or incorporated in an integrated development
environment (IDE), it is difficult to determine and support
all three possible installation scenarios through UAV. Instead,
we have therefore decided to let the user run Maven on their
project before they use UAV.

Finding the warning files of ASATs is a straight-forward
task as long as a project only contains one Maven configura-
tion file. However, in many larger projects, each package has
its own pom configuration file, which produces its own ASAT

1

2

3

4
5

Fig. 3. High-level package view of UAV on the Dagger project.

Fig. 4. Code-level view of UAV with Checkstyle and PMD warnings.

outputs. Hence, before UAV can work on these, it must unify
them into a single warning file per ASAT.

V. EVALUATION

In this section we report on initial evaluations of UAV on
three real-world systems and a usability study with ten CS
students.

A. Project Case Study

To evaluate whether UAV can be used on larger real-world
projects, we tested it on two popular Java projects from
GitHub, google/dagger (5,292 stars)4 and apache/curator (486
stars),5 and on itself (the Java part of UAV, ASATCollector

4https://github.com/google/dagger
5https://github.com/apache/curator

TABLE I
DESCRIPTIVE STATISTICS OF UAV ON THREE EXAMPLE PROJECTS.

Name #LOC #Checkstyle warnings #PMD warnings #FindBugs warnings Run time

google/dagger 59,864 7,521 86 0 73s
Netflix/curator 122,094 16,691 53 0 156s

UAV 4,796 5 20 14 1s

in Figure 2). For each project, we ran the tool ten times and
calculated the average run time. We measured the run time
from when the tool starts to gather all information of the user’s
project to the point where the analyzer writes the output files
for the ASATVisualizer. Table I shows descriptive statistics
and the run time of our tool on each project.

An interesting result from comparing the tree projects was
that the amount of warnings per tool depended on the proj-
ect, their specific ASAT configuration. For example if many
Checkstyle rules are removed or FindBugs is set to a lower
rigidity, then the amount of warnings is visibly reduced in
UAV. We could compare and observe the effect of modifying
the project’s configurations via UAV’s “absolute” color scheme
(see Section IV-C). Thus, UAV also provides insights in the
development stage of software.

B. User Study

We invited ten second year computer science students and
later a visualization expert (both with no prior knowledge
of UAV) to participate in our usability testing. We placed
them in front of a computer with UAV, accompanied by a
list of questions, and a short explanation of the purpose of the
tool. The testers could interact with the tool while answering
questions related to its use. Questions like “Which package has
the most warnings?” and “How many warnings in the project
are about Code Structure?” helped us assess how intuitive to

https://web.archive.org/web/20161130152522/https://github.com/google/dagger
https://web.archive.org/web/20161130222702/https://github.com/apache/curator

use UAV was by measuring how many students delivered a
correct answer. The last question was an open question where
the testers were asked for further feedback. We replicate the
list of all questions and the in-depth results of the usability
evaluation in an online appendix [11].

Our results indicate that most testers understood the goal of
the tool. At least 70% of respondents answered each question
correctly. Based on incorrect answers and the feedback given
in the evaluation, we could improve the tool in several ways.
One such improvement is the backwards navigation bar. One
of the testers said: “The back button on the top looks like you
can go back to a specific folder instead of the previous folder.”
This feature was initially designed to allow users to go one
level up in the visualization of their project. After discussions
within the team, we replaced the navigation feature with the
current path to the file which the user is viewing. Moreover,
we made each component of the path itself clickable. We could
implement several more improvements in the UI and UAV’s
usability. Later feedback from the visualization expert showed
us that this made the navigation of the tool more intuitive [11].

VI. FUTURE WORK

In this section, we will describe possible improvements and
extensions of UAV for future work.

Due to compatibility issues with the treemap visualization
and the gradient color representation of D3.js, Chrome and
Safari are the only supported browsers at this time. We plan
to resolve the cosmetic problems with Firefox.

UAV’s visualization of nested packages could be improved.
It currently does not show the nested relationship of sub-
packages, but rather includes them on the top-level of the
treemap. Implementing this feature would allow UAV to
handle more hierarchically complex projects.

The current UAV prototype supports three Java ASATs. A
natural improvement would be adding more ASATs to broaden
the selection of tools that can be compared by including tools
such as Google’s Error Prone. The ASATCollector facilitates
adding new ASATs thanks to its modular structure. We would
only need to change the UI of the ASATVisualizer to handle
the visualization of additional tools. Supporting more tools
and programming languages would also lift UAV’s status of a
prototype.

A promising avenue of future work would be the integration
of UAV with GitHub and Travis CI, a cloud service that
automatically builds GitHub projects. Similar to CodeClimate,
a new commit on GitHub could trigger the execution of Maven
on Travis CI, store the ASAT warnings as build artifacts, and
UAV in the cloud would collect these artifacts and generate
a JSON file for the visualization. The existing visualization
implementation of UAV lends itself toward such hosting in
the cloud, since it is based on a web-stack and would only
require the relatively light-weight visualization file.

VII. CONCLUSION

In this paper, we present UAV, a tool that provides an
intuitive way to compare multiple ASATs. UAV makes the
following key contributions:

• A novel structured, interactive visualization that allows
for comparison between multiple ASATs.

• Configuration options to switch the visualization between
the amount of warnings per ASAT, package, class and
GDC defect type.

• A basic framework that can be expanded to include more
ASATs and comparison methods as well as additional
features.

• A clear overview of warnings from different ASATs in
large real-world software projects.

In our first evaluation, our UAV prototype has demonstrated
its capability of visualizing warnings by clearly representing
multiple Java projects of different project sizes and ASAT
warning densities. Users of our tool have a more coherent view
of the types and locations of warnings as indicated by different
ASATs. Our vision is that one day, anyone who uses code
analysis can input their preferences, and UAV will combine
different ASATs to output a result that best suits their needs.

ACKNOWLEDGMENTS

We thank Bastiaan Reijm for the help that he provided
throughout the development of UAV, Fabian Beck for useful
suggestions on the first release candidate, and all students who
participated in our usability evaluation.

REFERENCES

[1] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2016, pp. 470–481.

[2] J. Ruthruff, J. Penix, D. Morgenthaler, S. Elbaum, and G. Rothermel,
“Predicting accurate and actionable static analysis warnings: an exper-
imental approach,” in Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 2008, pp. 341–350.

[3] S. Heckman and L. Williams, “On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). ACM, 2008, pp. 41–50.

[4] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, Comparing Bug
Finding Tools with Reviews and Tests, ser. LNCS. Springer, 2005, vol.
3502, pp. 40–55.

[5] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in Proc. Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 161–170.

[6] T. Muske and A. Serebrenik, “Survey of approaches for handling static
analysis alarms,” in Proc. International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 2016, pp. 157–166.

[7] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proc. of
the 2nd Conference on Visualization (VIS). IEEE, 1991, pp. 284–291.

[8] L. Heinemann, B. Hummel, and D. Steidl, “Teamscale: Software quality
control in real-time,” in Companion Proceedings of the Int’l Conference
on Software Engineering (ICSE). ACM, 2014, pp. 592–595.

[9] G. Campbell and P. P. Papapetrou, SonarQube in Action. Manning
Publications Co., 2013.

[10] “Coverity Scan Static Analysis,” https://web.archive.org/web/
20161124164054/https://scan.coverity.com/.

[11] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller,
and A. Zaidman, “Online Appendix for UAV: Warnings From Mul-
tiple Automated Static Tools At A Glance,” https://figshare.com/s/
05658ac8ff03d57a8d60.

https://web.archive.org/web/20161124164054/https://scan.coverity.com/
https://web.archive.org/web/20161124164054/https://scan.coverity.com/
https://figshare.com/s/05658ac8ff03d57a8d60
https://figshare.com/s/05658ac8ff03d57a8d60

