
The University of Manchester Research

Maintaining Behaviour Driven Development Specifications:
Challenges and Opportunities
DOI:
10.1109/SANER.2018.8330207

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Binamungu, L. P., Embury, S., & Konstantinou, N. (2018). Maintaining Behaviour Driven Development
Specifications: Challenges and Opportunities. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER) (pp. 175-184). IEEE. https://doi.org/10.1109/SANER.2018.8330207

Published in:
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:23. Apr. 2024

https://doi.org/10.1109/SANER.2018.8330207
https://research.manchester.ac.uk/en/publications/fba07c61-159c-45a3-8377-bde341a4ee3c
https://doi.org/10.1109/SANER.2018.8330207


Maintaining Behaviour Driven Development
Specifications: Challenges and Opportunities

Abstract—In Behaviour-Driven Development (BDD) the
behaviour of a software system is specified as a set of
example interactions with the system using a “Given-When-
Then” structure. These examples are expressed in high level
domain-specific terms, and are executable. They thus act
both as a specification of the requirements and as tests
that can verify whether the current system implementation
provides the desired behaviour or not. This approach has
many advantages but also presents some problems. When
the number of examples grows, BDD specifications can
become costly to maintain and extend. Some teams find
that parts of the system are effectively frozen due to the
challenges of finding and modifying the examples associated
with them. We surveyed 75 BDD practitioners from 26
countries to understand the extent of BDD use, its benefits
and challenges, and specifically the challenges of maintain-
ing BDD specifications in practice. We found that BDD is
in active use in industry, and that the use of domain specific
terms, improving communication among stakeholders, the
executable nature of BDD specifications, and facilitating
comprehension of code intentions are the main benefits
of BDD. The results also showed that BDD specifications
suffer the same maintenance challenges found in automated
test suites generally. We mapped the survey results to the
literature, and propose 10 research opportunities in this
area.

I. INTRODUCTION

In Behaviour-Driven Development (BDD), the be-
haviour of the required software is given as a collec-
tion of example interactions with the system, expressed
using natural language sentences organised around a
“Given-When-Then” structure [1], [2], [3]. This gives a
specification that is expressed in non-technical, domain-
specific terms, that should be readable and comprehen-
sible by end-users. Importantly, the specification is also
executable, thanks to “glue code” that links the natural
language sentences to the code that is being built. Thus,
the set of examples acts both as a high-level specification
of the requirements for the software and as a suite
of acceptance tests that can verify whether the current
implementation meets the specification or not.

Like many other agile practices, the adoption and
continued use of BDD is affected by organizational,
people, process and technical factors, discussed in [4],
[5], [6], [7]. As the technique enters its second decade of

use, a considerable body of experience has been built up
by practitioners, and lessons have been learnt about both
the strengths and the challenges involved in its practical
application on real projects. Anecdotal evidence from
software engineers we have worked with suggest that
the maintenance challenges, in particular, can be severe,
and are leading some teams to drop the technique and
to return to technology-facing automated testing to play
the role of their BDD specifications. However, to the
best of our knowledge, no empirical studies have been
undertaken by the academic community to capture these
lessons and to understand how research might be able to
address some of the problems encountered by users of
large BDD specifications over the long term.

To make a start in filling this gap, we surveyed 75
BDD practitioners from 26 countries across the world
on their experiences of using BDD. We collected both
quantitative and qualitative data that gave us answers to
the following research questions (RQs):

• RQ1: Is BDD in a considerable active use in
industry at the moment?

• RQ2: What are the perceived benefits and chal-
lenges involved in using BDD?

• RQ3: To what extent are maintenance challenges
prominent amongst the issues raised by users (and
former users) of BDD, and what form do they take?

In addition to these more general questions, we wanted
to test our hypothesis that duplication in BDD specifi-
cations is hard to detect and a cause of many of the
maintenance challenges we have heard reported anec-
dotally by software teams. We therefore added a fourth
research question to guide the design of the survey:

• RQ4: To what extent is the discovery and manage-
ment1 of duplicates within BDD specifications seen
as an unsolved problem by practitioners, and what

1Depending on the context, after discovery of a duplicate test case,
a team can decide to remove it through refactoring, use some test suite
optimization strategies such as reduction, selection and prioritization
[8], or others. Additionally, since some form of duplication may be
introduced deliberately as part of the design strategy, we use the term
“management” to accommodate all of these possible cases [9].



techniques are being employed to deal with it at
present?

From the survey results, we found that BDD is in active
use in industry. Some organizations use it on all projects,
while the majority use it on only some of the projects.
Also, while a few previous practitioners are not currently
using it due to various challenges, some of which are
maintenance related, the majority of currently active
and non-active practitioners plan to use BDD in the
future as either a key tool on all projects or as an
optional tool on some projects. Respondents gave the
main benefits of BDD as the use of domain specific
terms, improving communication among stakeholders,
the executable nature of BDD specifications and facilitat-
ing comprehension of code intention. While practitioners
cited changing the way teams used to approach software
development as the main downside of BDD, we also
found that BDD specifications suffer from almost all the
maintenance challenges found in automated test suites.

Despite the reported maintenance challenges, we are
aware of only the work of Suan [10] that attempted
to detect textual similarity in BDD specifications. We
conclude that there is a scarcity of research in this area
to inform the development of better tools to support the
maintenance and evolution of BDD specifications, and
propose 10 open research opportunities in this area.

The paper is structured as follows: section II presents
the current state-of-the-art in general adoption, and use
of agile methods and BDD in particular; section III
details the survey design and gives the details of partici-
pants; section IV presents the results of the study and the
open research opportunities, while section V discusses
the significance of the results. Section VI concludes.

II. RELATED WORK

Senpathi et al. used the Agile Usage Model to identify
the factors that affect the effective use of agile methods
after they have been adopted by organizations, and the
impact of the adoption [4]. In other work, Vijaysarathy
et al. investigated reasons why people and organizations
adopt and use agile practices, and the benefits and
challenges that face development teams at early stages
of adoption of particular agile practices [5]. Various
summaries of the organizational, people, process and
technical factors that affect the adoption of agile methods
can be found in the literature [6], [7], [11]. However, to
the best of our knowledge, no study has attempted to
study these factors in the context of BDD.

The characteristics of BDD, the associated tool sup-
port, and the strengths and limitations of the existing tool
support have been summarized by Solis and Wang [12]

and by Okolnychyi and Fögen [13]. Mishra discusses
the general pros and cons of BDD [3] and Rahman
and Gao highlight some of the maintenance challenges
that teams might face when adapting BDD tests to
changing environments [14]. The feasibility of the BDD
approach in practice and the ease with which people
can learn and understand Gherkin, the most commonly
used BDD language [13], was investigated by Rai [15].
Suan investigated techniques for detecting duplicates
in BDD specifications through text similarity [10]. We
found no published study that has attempted to establish
the maintenance challenges involved in using BDD on
projects in the long term.

III. RESEARCH METHOD

This section presents the survey design, the details of
the participants, and the data analysis approach.

A. Survey Design

To attract more responses and yet ensure that aspects
of interest are well captured, we designed a short web
survey with 18 questions. Of the 18 questions, 6 were
single choice, 7 were multiple choice, and 5 required
open-ended free-form text responses. All single and
multiple choice questions had an “other(s)” option to
allow respondents to report other important information
that might not have been well covered in the choices
we gave. More specifically, 7 questions were on the
the extent of BDD use; 5 questions sought to establish
the sizes of typical BDD specifications in industry, the
challenges presented by the presence of duplication in
BDD specifications, and how industry teams detect and
manage duplication in BDD specifications; 1 question
sought to reveal any other noteworthy issues about
BDD from practitioners; and 5 questions were on the
demographics of the respondents. For brevity, we refer
readers to section IV where the specific survey questions
and the choice answers are discussed2.

The survey was reviewed by a senior academic from
our school who has experience in doing survey research.
It was designed and deployed using SelectSurvey.NET3,
an instance of which is available for use in our university
servers. Our respondents took 5-10 minutes to complete
the survey, and we received responses over the period of
more than 2 and a half months from July 2017.

2A link to the full survey can be provided after the review process.
We now hide it because the survey contains identifying information

3http://selectsurvey.net/

2



B. Respondents

Developers of BDD projects and other members of
industry agile teams who had ever used BDD, or were
using BDD at the time of our survey, were the targets
of our study. The survey was distributed through a
convenience sample of online agile discussion groups
and personal emails. Though it reduces generalizability
of findings, convenience sampling is appropriate when
random sampling is practically impossible [16]. Respon-
dents completed and submitted an online survey which
was reachable through the link shared with them. We
also provided room for respondents we contacted to
invite others, and so some of our respondents might have
been recruited through snowballing. A similar method of
recruiting survey respondents was used in [17], [18].

We began by posting the survey on on-line commu-
nities where BDD topics are discussed. The following
Google groups were targetted: Behaviour Driven De-
velopment Google group, Cucumber Google group, and
BDD Security Google group. After learning about the
survey through one of these groups, the Editor in Chief
of BDD Addict4, a monthly newsletter about BDD,
included the survey in the July 2017 issue, in order to
reach more members of the BDD community. The survey
was also shared with the following twitter communities:
Agile Alliance, Agile Connection, Agile For All, Scrum
Alliance, Master Scrum, RSpec—BDD for Ruby, and the
twitter accounts for two of the authors.

We further identified email addresses of contribu-
tors to BDD projects on GitHub.com, and sent them
personalized requests to complete our survey. Relevant
projects were identified using the keywords “Behaviour
Driven Development”, “Behavior Driven Development”,
and “BDD”; we extracted the public email addresses of
contributors to the resulting projects, up to and including
the 5th page (10 results per page). (We selected this limit
after manual examination of the usefulness of email ad-
dresses on later pages for a sample of projects). We also
searched for projects with keywords based on the names
of the tools mentioned in the survey: namely, Cucum-
ber, FitNesse, JBehave, Concordion, Spock, easyb, and
Specflow. In total, 716 email addresses were identified
and contacted about the survey.

Of the 566 people who viewed the survey, 82 began
to complete it, of whom 75 submitted usable responses
to the main questions. 11 out of the 13 (84.6%) main
questions (questions not focusing on respondents’ de-
mographics) were completed by all the 75 respondents.

4https://www.specsolutions.eu/news/bddaddict/

Fig. 1. Distribution of respondents by continent

We used IP Address Geographical Location Finder5 to
identify the geographical locations of respondents, and
Fig. 1 shows the distribution of respondents by continent.

The organizations of respondents were distributed as
follows: 35% public, 63% private, 1% sole trader, and
1% did not say. 44 participants gave the role they held
in their organization, and most were in senior positions.
However, the remaining 38 preferred not to state their
roles, probably because we explicitly stated that identi-
fying information was optional. Table I shows the dis-
tribution of job roles for the respondents. Additionally,
though not everyone stated their organization because it
was optional, we noted that some respondents came from
large, well known multinational organizations.

Role No. %

Software Engineers/Architects 20 24.4
Quality Assurance Engineers/Business Analysts 4 4.9
Team Lead/DevOps Tech Lead 10 12.2
Consultant 3 3.7
Chief Executive Officer (CEO) 2 2.4
Chief Technology Officer (CTO) 4 4.9
Researcher 1 1.2
Did not say 38 46.3

Total 82 100.0
TABLE I

DISTRIBUTION OF JOB ROLES OF SURVEY RESPONDENTS

C. Data Analysis

We received a total of 82 responses. We removed
7 responses in which respondents had completed only
demographics data, leaving 75 valid responses.

IV. RESULTS

In this section, we present the information we discov-
ered from the survey regarding the extent of use of BDD
amongst the BDD centric communities we surveyed, and
the challenges faced by BDD use in practice.

5http://www.ipfingerprints.com/geolocation.php

3



Fig. 2. Extent of BDD use by type of organization

Fig. 3. Extent to which use of BDD is mandated by organisations

A. Extent of Active Use of BDD
1) Extent of BDD Use in Various Types of Organi-

zations: From the survey, we found that BDD is used
more in private organizations than in other types of
organization. Fig. 2 summarizes the extent by which
BDD is used by different types of organizations. Fig. 3
summarises responses as to whether BDD is a mandatory
or optional tool for organizations.

2) Tools Used by Industry Teams to Support BDD and
ATDD: Fig. 4 summarizes the different BDD tools used
by respondents6.

3) Plans to Use BDD in the Future: Almost half
of the respondents said that their organizations will use
BDD as an optional tool on some projects in the future,
while more than a quarter of the respondents said that
it will be used as a key tool on all projects. Fig. 5

6Strictly speaking, some of these are more properly termed Accep-
tance Test Driven Development tools.

Fig. 4. BDD Tools used by respondents

Fig. 5. Plans by organizations to use BDD in the future

Fig. 6. Perceived importance of BDD use

summarizes the planned future use of BDD tools by
respondents’ organisations.

B. Perceived Benefits and Challenges
1) Perceived Importance and Benefits of BDD: Fig. 6

presents the perceived importance of BDD use by the
respondents. The views given under “other” were:

• “Personally I find it very important, my clients
though have different opinions. Usually it requires a
certain collaboration within the organization which
is hard to establish. It is not the tool that is hard to
use, but more the people to get into this work flow.”

• ”BDD enables teams to write standard tests that
are more expressive.”

Respondents’ opinions on the benefits of BDD are
presented in Table II. As the results show, respondents
value the communication aspects of BDD, but also the
benefits to developers in gaining early warning signals
of problems.

Under “other”, respondents listed the following addi-
tional benefits:

• BDD offers an improved way of documenting the
software and the associated code:
– “Living documentation that evolves with the sys-

tem over time”
– “Documentation is a working code”

4



Benefits of BDD Rate (%)

Software specifications are expressed in domain-
specific terms, and thus can be easily understood
by end users

67

Improves communication between various project
stakeholders

61

Specifications can be executed to confirm correct-
ness or reveal problematic software behaviour(s)

52

Code intention can be easily understood by main-
tenance developers

50

Attention is paid to validation and proper handling
of data

24

Could produce better APIs since it emphasizes
writing testable code

28

Other 7

Challenges of BDD

Its use changes the team’s traditional approach to
software development, and that can be challenging

51

Its benefits are hard to quantify 35
It involves a steep learning curve 28
Other 21
It can lower team productivity 20

TABLE II
BENEFITS AND CHALLENGES OF USING BDD

• Simplifies and enriches software testing activities:
– “Helps QA team to write tests without code

implementation details”
– “Make possible fullstack tests, differently from

unit tests.”
– “Reusable, finite set of steps used by test devel-

opers”
• Improves software designs by facilitating domain

knowledge capture:
– “primarily a design tool → it enables us to gain

clarity about the domains at hand, especially at
the seams”

2) Challenges Faced by BDD Practitioners: The
challenges faced by BDD practitioners, according to the
respondents, are given in Table II. Respondents thought
that the most challenging part of BDD is that it changes
the usual approach to team software development. Under
“other”, the following challenges were mentioned:

• The emphasis on collaboration, an inherent part of
a correct BDD workflow, can be difficult and even
ignored, leading to later problems:
– “Needing to involve Business and final users”
– “It’s a simple concept but can be hard to get

right. Many people make the assumption it’s
about test automation and try to use like a
scripting tool and the project ends in failure”

– “it does not succeed at being legible to col-
leagues outside of software engineering depart-
ments.”

– “Make other non-developers read tests. So far
I have used BDD for couple of years and even
though idea behind it [is] good, people who are
not involved in testing are also not interested in
test cases no matter how easy-to-read they are.”

• Lack of BDD coaching and improper application of
the BDD workflow:
– “As with other kinds of testing, the best way to

learn is from somebody who has experience. Thus
just by downloading a framework, reading a bit
and trying, one can produce tests which value is
disputable.”

– “Danger of confusing the mechanics (automa-
tion, written specifications) with the intention
(knowledge sharing, structured conversations,
discovery of edge cases), focusing too much on
the former.”

– “Once the Gherkin syntax is well known, stake-
holders tend to skip ahead, reducing the benefits
of the specification workshop.”

– “Its hard to find someone who really understand
what should be tested by BDD therefore a bunch
of developers have negative experience about it.
Probably there is no a comprehensive material
on the internet that can explain every aspect of
BDD.”

– “requires design skills often absent or not val-
ued”

– “Main issue when applying BDD is to find time
to do the Three Amigos workshop, it is not a tool
issue but more a people one.”

• Ensuring that BDD specifications are easy to com-
prehend, execute and maintain:
– “All the usual challenges in getting automated

testing running and maintained”.
– “...Textual specs are too expensive to maintain

long-term”
– “BDD add unnecessary layer of maintaining

specification and make them still readable with
clean code.”

– “BDD is often associated with slow suites. The
difficulty of managing duplication is proportional
to that slowness. Therefore, as BDD scales, in
my opinion it is crucial to find ways to run slow
scenarios fast, either by reducing their scope, or
by running them against multiple configurations
of the system covered by the scenarios.”

5



Fig. 7. Number of scenarios in industry BDD projects

– “...the complexity of the test software needed to
support BDD is often as high as the software
under test...”

– “Some developers don’t like the duplication that
can be created with having BDD separate to unit
tests. BDD can also get out of hand and become
far too technical and indecipherable by users”

– “...tests were very brittle and manual QA types
had limited ability to investigate.”

C. Challenges of Maintaining BDD Specifications

1) Size of BDD Suites: In order to provide context
for the maintenance challenges reported, we asked for
information about the typical sizes of the BDD suites
used and managed by the respondents. Clearly, the
maintenance challenges reported are likely to be of
less significance if typical suites contain numbers of
scenarios (i.e., examples) that can be managed by hand.
Fig. 7 shows the typical size of the BDD suites the
respondents work with. It can be noted that, while the
majority are relatively small, a significant minority are
large enough to make manual individual inspection of
all scenarios a costly task.

2) Maintenance Challenges: As it can be noted from
the responses describing the general challenges of BDD,
respondents admitted that BDD suffers from the same
kinds of maintenance challenge associated with any
current form of automated testing. Specifically, the main-
tenance challenges as presented earlier from the survey
can be summarised as:

• Specifications can be hard to comprehend.
• It can be hard to locate sources of faults, especially

in large BDD suites.
• It can be difficult to change specifications for the

purpose or fault correction, accommodating new
requirements, or adapting them to new environment.

• Making slow suites run faster.
• The need to maintain BDD tests in addition to unit

tests.

• Coping up with the possible complexity of BDD
tools.

• Duplication detection in BDD specifications.
• Duplication management in BDD specifications.

D. Duplication in BDD Suites
We now present the maintenance challenges presented

by duplication in BDD suites, the extent at which dupli-
cation is present in industry projects, and the current
state of practice in the detection and management of
duplication in BDD specifications, as identified by the
survey respondents.

1) Problems of Duplication: 61% of the respondents
held the view that the presence of duplication in BDD
specifications can cause them to become difficult to
extend and change (leading potentially to frozen func-
tionality). As well, while nearly half of the respondents
(49%) said that the presence of duplication in BDD
specifications can cause execution of BDD suites to take
longer to complete than necessary, 43% thought that
duplication can make it difficult to comprehend speci-
fications. Some respondents (7%) took the opportunity
to expand on the problems of duplication in BDD suites:

• If duplication creeps into a BDD suite, the process
of its detection and management can change the
desired software behaviour.
– “Over refactoring features and scenarios to

avoid duplication causes the requirements and
their understanding to change from what the
Product Owner wants.”

• It can become difficult to fully comprehend and
execute specifications.
– “Contradicting specifications, if the duplication

is not a result of the same team/individual work-
ing on it.”

– “Duplication in specs is usually a sign of incom-
pletely or badly ‘factored’ behaviours, which can
lead to overly complicated specs and difficult to
set up system state.”

• Duplication requires changes in several places in
the suite during maintenance and evolution, and that
can be challenging.
– “Changes required to be done in more than one

place. I miss some ‘include’ keyword.”
• It is hard to use existing duplicate detection and

management tools to detect and manage duplicates
in specifications expressed in a natural language.
– “if the statements are in English prose basic

refactoring tools / copy paste detection / renam-
ing are difficult to catch and maintain.”

6



Fig. 8. Presence of duplication in the BDD specifications of industry
teams

• BDD tests are end-to-end tests that are usually
strongly connected to their unit tests, and that
makes the process of detecting duplicate BDD tests
difficult.
– “It’s hard to detect duplication between BDD

specs and unit-tests.”
• Duplication can make it difficult to model how the

scenarios are executed, and the scenarios can be
very slow and brittle.
– “...criteria can hold at one level and cascade

down - difficult to model *how* the scenarios
are executed can be very slow and brittle (e.g.
web tests) - hexagonal architecture please”

2) Presence of duplication: Fig. 8 summarizes re-
sponses on the extent of the presence of duplication in
the BDD specifications in their organizations.

3) Detection and Management of Duplication in BDD
Specifications: We now present the current state of
practice in detecting and managing duplication in BDD
specifications.

Fig. 9 relates the extent of duplication, suite size, and
method of duplication detection reported by the survey.
The pie chart in the same figure summarizes the different
methods that are used to detect and manage duplication.

Some respondents had the following additional
thoughts on how they approach duplication detection and
management:

• “We are looking at ways to automate at least part
of the process of finding duplicates”

• “Treat the test code much like the production code.
Refactor frequently to control duplication and make
test intentions clear”

• “Pay attention to SRP during or after collaborative
specification.”

Fig. 9. Extent of duplication, size of BDD specs, and duplication
detection method

• “We organise the specifications specifically to pre-
vent this. It would be one of the worst things to
happen.”

• “Using jbehave with ‘givenScenario’, we are able
to reduce duplication by reusing steps.”

Fig. 10 shows the distribution of duplication detection
methods among active and non-active BDD practitioners.
An active practitioner in this regard is the one who
uses BDD in either all projects, or some projects, or a
few pilot projects. Almost 60% of the respondents were
active BDD practitioners who either: perform manual
inspection to detect duplication in their BDD specifi-
cations and thereafter decide on how to manage the
duplicates they detect, or have decided to live with the
duplication given the complexity of the detection and
management process, or are currently looking for an
automated solution to detect and manage duplication in
their BDD specifications.

7



Fig. 10. Duplication detection methods among active and non-active
BDD practitioners

E. Opportunities

Table III presents the research opportunities we de-
rived from the identified challenges, and maps the re-
spective opportunities to the existing literature.

V. DISCUSSION AND THREATS TO VALIDITY

We now discuss the significance of the results, pro-
viding answers to the research questions mentioned in
section I. We also present the threats to validity of our
results, and discuss the mitigation strategies.

RQ1: On whether BDD is in active use: To explain
the extent of active use of BDD use in industry, we
use the theory of vertical (or explicit) and horizontal
(or implicit) use by Iivari et al. [42], [43]. Vertical use
expresses the degree of rigour with which a particular
method is followed, eg., strict adherence to the method’s
documentation or partial adherence. Horizontal use, on
the other hand, refers to the use of a method across mul-
tiple teams and projects in an organization after initial
adoption, learning, and internalization. With respect to
horizontal use, for a range of organization types, we
pay attention to: whether it is used on all projects, some
projects, a few pilot projects, or not used at all; whether
it is used as a mandatory or optional tool; and plans by
organizations to use it in the future. As well, we use
vertical use to discuss issues reported by practitioners
that are related to conformity or non-conformity with
the BDD workflow.

We note from the survey results that BDD is in
active use in the industry. We learn from Fig. 2 and
Fig. 3 that there is a substantial level of horizontal

use, with some organizations using it on all projects,
while others use it on some projects. Additionally, while
there are organizations (20%) that have made BDD a
mandatory tool, a significant proportion (61%) use it
as an optional tool. This is to be expected as most
organisations would use different software development
techniques, for various reasons, including the dictates
of a particular project. We can also expect that some
organizations might use selected agile techniques, but
not be committed users of every agile practice. We note,
however, that there are vertical use concerns whereby
some practitioners do not observe BDD best practice,
notably by avoiding or downplaying the collaboration
aspects, resulting in future costs. That said, we argue
that the observed extent of use, and the plans to continue
using BDD (Fig. 5) are sufficient to attract the attention
of the research community in uncovering better ways to
support BDD practitioners.

RQ2: Perceived benefits and challenges of using
BDD: We use the following factors from the Agile Usage
Model (AUM) [44], [6], [4] to explain the perceived
importance, overall benefits and challenges of BDD. In
the AUM, the following terms are used:

• Relative advantage: “the degree to which the inno-
vation is perceived to be better than its precursor”
[44]. This can be reflected in the ability of an agile
method to offer benefits like improved productiv-
ity and quality, reduced cost and time, producing
maintainable and evolvable code, improved morale,
collaboration and customer satisfaction–as posited
by Vijayasarathy and Turky [5].

• Compatibility: “the degree to which agile practices
are perceived as being consistent with the existing
practices, values, and past experiences” [44].

• Agile Mindset: A mindset that perceives challenges
as learning opportunities, building on optimism to
grow over time, with effort in place [4].

• Agile Coach: An individual with both technical and
domain knowledge who can point an agile team in
right directions without imposing matters [4].

BDD is generally better rated, with more that 50%
(Fig. 6) of the respondents affirming its importance. The
use of domain specific terms, improving communica-
tion among stakeholders, the executable nature of BDD
specifications, and facilitating comprehension of code
intention are revealed as the main benefits of BDD (Ta-
ble II). These all can be linked to the relative advantage
factor in the AUM that BDD has over its precursor agile
practices like Test-Driven Development [45]. Actually,
it was the TDD’s limitations in enabling teams to focus

8



ID Challenge Opportunity Link to Related Literature

O1 Hard to comprehend BDD specifications Investigate BDD test smells, technical debt, and the adoption
of test suite comprehension techniques to BDD specifications

[19], [20], [21], [22], [23],
[24], [25]

O2 Difficulty of locating faults in large BDD suites Investigate test fault localization techniques in the context of
BDD specifications

[26], [27], [28]

O3 Hard to change BDD suites Investigate automated test repair for BDD specifications [29], [30], [31], [32], [33]
O4 Slow BDD suites Investigate test minimization, selection and prioritization in

the context of BDD
[8], [34], [35], [36]

O5 The need to maintain BDD tests in addition to unit tests Investigate integrated functional and unit test maintenance for
BDD tests

[37], [33]

O6 Complexity of BDD tools Investigate BDD tools selection guides and possible tool
improvements

[38], [39]

O7 Duplication Detection in BDD specifications Investigate duplication detection in the context of BDD [40], [41]
O8 Duplication management in BDD specifications Investigate duplication management in the context of BDD [9]
O9 Non-adherence to the BDD workflow Investigate the incorporation of maintenance concerns at the

core of BDD workflow and tools
[38], [39]

O10 Scarcity of coaching and material guidelines on BDD Investigate the impact of coaching and guidelines on produc-
ing maintainable specifications

[4], [21]

TABLE III
CHALLENGES AND RESEARCH OPPORTUNITIES FOR MAINTENANCE AND EVOLUTION OF BDD SPECIFICATIONS

on implementing correct software behaviours that led
to the birth of BDD [1]. However, a comparative study
would shed more light on whether that foreseen BDD’s
potential has become practically evident.

The downside of BDD agreed to by most respondents
has to do with changing the way teams used to approach
software development. This is in line with the compat-
ibility factor in the AUM: new innovations are likely
to face resistance by some adopters, especially when the
adopters are slow at embracing changes. We posit that an
agile mindset is important in addressing this challenge.
Teams’ willingness to learn and adopt new techniques
is important in the adoption of BDD. Imprecise under-
standing of the BDD workflow, non-adherence to it, the
scarcity of coaching services and material guidelines also
hinder the adoption and continued use of BDD. An agile
coach with good understanding of the BDD workflow
would help teams to navigate these challenges.

RQ3: Extent and form of maintenance challenges
in BDD specifications: We learned that BDD tests suffer
from the same kinds of maintenance challenges that test
suites in automated testing face. They include, among
others, hard to comprehend tests, long execution times,
hard to locate test bugs, and duplication detection and
management. Refer to section IV-C for an extended list.
Also, specifically on duplication, practitioners admitted
that the presence of duplication in BDD specification
causes, among others, test execution, maintenance and
evolution problems. To be of desirable quality, like the
code under test, test suites must be maintainable [21],
[24], [46], [19], [47]. As such, we argue that it is
important to investigate test maintainability aspects such
as ease of change, bug detectability (for the bugs in both

test and production code) as well as test comprehensi-
bility [24], [21], and others, in the context of BDD, to
support the work of practitioners.

RQ4: Problem of duplication in BDD specifi-
cations, and its detection and management: Most
respondents think that, though present, duplication in
their BDD specifications remains a manageable problem.
However, duplication is still among the maintenance
challenges of concern to some BDD practitioners. In fact,
in some instances, it has scared away some practitioners
from using BDD: “We decided to not use BDD any more
because it was hard to maintain it. In the beginning we
were checking for duplication, but at one point it has
become very hard to manage them. Even though our tests
were very much readable, our code underneath became
less and less readable.”

Referring to Fig. 9, for the most part, duplication
detection and management is done manually (40% of
respondents). Nevertheless, there is a significant pro-
portion (17%) of respondents who have given up the
duplication detection and management process, because
of its complexity. Combining these, more than a half
(57%) of the respondents are concerned with dupli-
cation detection and management, except for those in
the “other” category, who either explicitly expressed
their need for an automated solution or mentioned their
specific current manual approach to duplication detection
and management. We thus specifically identified O7

and O8 in Table III as opportunities for the research
community to investigate innovative ways to help those
who either use the manual process, or have given up, or
are likely to experience serious duplication concerns in
the future.

9



Opportunities: Based on the identified challenges, we
summarise, in Table III, the available research opportu-
nities and link them to the relevant existing literature
that covers similar problems in other areas, apart from
BDD. Specifically, O1 to O8 are directly related to
maintenance, while O9 and O10 focus on improving the
process that is likely to result into specifications with
significant maintenance problems. Inter alia, we argue
that a body of scientific evidences is required to inform
the following questions:

1) How could the BDD workflow be enhanced to facil-
itate the production of maintainable specifications?
Specifically, it might be worthy investigating on
whether there are specific bits of the BDD work-
flow that are prone to producing hard-to-maintain
specifications, and how that could be redressed.

2) Better ways to adapt existing unit test maintenance
techniques to the context of BDD tests. Or how
could better techniques and tools specifically for the
maintenance of BDD tests be developed?

3) Better ways to apply the existing regression test
suite reduction, selection and prioritization tech-
niques [8] to address problems of slow suites due
to the presence of duplication, and other concerns,
in BDD specifications.

4) Characterization of duplication in the context of
BDD specifications, and development of appropri-
ate duplication detection techniques and tools.

5) How could the existing techniques and tools for
duplication detection and management [40], [9] be
applied to the problem of duplication detection and
management in BDD specifications?

The threats to the validity of our results and the
respective mitigation strategies we used are as follows:

• We mainly depended on practitioners with online
presence, either through github.com or other online
forums where BDD and other agile topics are
discussed. Thus, we might have missed some in-
house practitioners that are not easily reachable
through any of those means. To mitigate the effects
of this, we requested those we could reach, or
those who came across the survey, to refer it to
others. Also, we sent survey completion requests to
some practitioners who were known in person to
the authors. These were also requested to share the
survey to others. We thus might have gotten some
respondents through a snowballing mechanism.

• Some institutional laws and regulations might have
determined whether or not participants responded
in full. To mitigate the effects of this, we kept any

identifying information optional, and clearly stated
this at the beginning of the survey, and in all survey
completion invitations.

• Most of the respondents might have been using a
particular BDD tool. To mitigate the effects of this,
we included, in the survey, seven tools from which
respondents could choose several tools they use, and
provided an option for respondents to mention any
other tools they use which were not in the list. Also,
when identifying email addresses in github.com
to which survey completion requests were sent,
we followed the objective criteria mentioned in
section III-B. Additionally, we posted the survey
in general BDD and agile forums, in anticipation
that respondents from those forums might be using
different tools.

VI. CONCLUSIONS

BDD is now used by many software teams to allow
them to capture the requirements for software systems
in a form that is both readable by their customer and
detailed enough to allow the requirements to be executed
to check whether the production code implements the
requirements successfully or not. The resulting feature
descriptions, as sets of concrete scenarios describing
units of required behaviour, provides a form of living
documentation for the system under construction (as
compared to the passive documentation and models
familiar from other approaches to requirements engineer-
ing [2]. Unfortunately, management of BDD specifica-
tions over the long term can be challenging, particularly
when they grow beyond a handful of features and when
multiple development team members are involved with
writing and updating them over time. Redundancy can
creep into the specification, leading to bloated BDD
specifications that are more costly to maintain and use.

Using quantitative and qualitative data collected
through the web survey, we have identified the extent
of BDD use by industry teams, its benefits, general and
specific maintenance challenges, particularly duplication.
By reviewing the literature related to the identified
challenges, we propose 10 opportunities for researchers
to support maintenance and evolution activities in BDD
specifications.

REFERENCES

[1] D. North, “Introducing BDD,” Better Software Magazine, 2006.
[2] M. Wynne and A. Hellesoy, The Cucumber Book. Pragmatic

Programmers, LLC, 2012.
[3] A. Mishra, “Introduction to behavior-driven development,” in iOS

Code Testing. Springer, 2017, pp. 317–327.

10

https://github.com/
https://github.com/


[4] M. Senapathi and A. Srinivasan, “An empirical investigation
of the factors affecting agile usage,” in Proceedings of the
18th international conference on evaluation and assessment in
software engineering. ACM, 2014, p. 10.

[5] L. Vijayasarathy and D. Turk, “Agile software development: A
survey of early adopters,” Journal of Information Technology
Management, vol. 19, no. 2, pp. 1–8, 2008.

[6] M. Senapathi and M. L. Drury-Grogan, “Refining a model for
sustained usage of agile methodologies,” Journal of Systems and
Software, vol. 132, pp. 298–316, 2017.

[7] S. Abdalhamid and A. Mishra, “Factors in agile methods adop-
tion,” 2017.

[8] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: a survey,” Software Testing, Verification
and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[9] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software
clone management: Past, present, and future (keynote paper),” in
Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference
on. IEEE, 2014, pp. 18–33.

[10] S. W. Suan, “An Automated Assistant for Reducing Duplication
in Living Documentation,” Masters Thesis, School of Computer
Science, University of Manchester, Manchester, United Kingdom,
2015.

[11] T. Chow and D.-B. Cao, “A survey study of critical success fac-
tors in agile software projects,” Journal of systems and software,
vol. 81, no. 6, pp. 961–971, 2008.

[12] C. Solis and X. Wang, “A study of the characteristics of behaviour
driven development,” in Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference on.
IEEE, 2011, pp. 383–387.

[13] A. Okolnychyi and K. Fögen, “A study of tools for behavior-
driven development,” Full-scale Software Engineering/Current
Trends in Release Engineering, p. 7, 2016.

[14] M. Rahman and J. Gao, “A reusable automated acceptance testing
architecture for microservices in behavior-driven development,”
in Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on. IEEE, 2015, pp. 321–325.

[15] P. Rai, “Extending automated testing to high-level software
requirements: A study on the feasibility of automated acceptance-
testing,” 2016.

[16] R. D. Fricker Jr, “Sampling Methods for Online Surveys,” The
SAGE Handbook of Online Research Methods, p. 162, 2016.

[17] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expec-
tations on automated fault localization,” in Proceedings of the
25th International Symposium on Software Testing and Analysis.
ACM, 2016, pp. 165–176.

[18] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. May-
horn, and T. Zimmermann, “Quantifying developers’ adoption of
security tools,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 260–271.

[19] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok,
“Refactoring test code,” in Proceedings of the 2nd international
conference on extreme programming and flexible processes in
software engineering (XP2001), 2001, pp. 92–95.

[20] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[21] D. Bowes, T. Hall, J. Petrić, T. Shippey, and B. Turhan, “How
good are my tests?” in Proceedings of the 8th Workshop on
Emerging Trends in Software Metrics. IEEE Press, 2017, pp.
9–14.

[22] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understand-
ing test debt,” in Trends in Software Testing. Springer, 2017,
pp. 1–17.

[23] M. S. Greiler, “Test suite comprehension for modular and dy-
namic systems,” 2013.

[24] D. Gonzalez, J. Santos, A. Popovich, M. Mirakhorli, and M. Na-
gappan, “A large-scale study on the usage of testing patterns
that address maintainability attributes: patterns for ease of mod-
ification, diagnoses, and comprehension,” in Proceedings of the
14th International Conference on Mining Software Repositories.
IEEE Press, 2017, pp. 391–401.

[25] M. Greiler, A. Zaidman, A. v. Deursen, and M.-A. Storey, “Strate-
gies for avoiding text fixture smells during software evolution,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 387–396.

[26] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study
of bugs in test code,” in Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference on. IEEE, 2015,
pp. 101–110.

[27] R. Ramler, M. Moser, and J. Pichler, “Automated static analysis
of unit test code,” in Software Analysis, Evolution, and Reengi-
neering (SANER), 2016 IEEE 23rd International Conference on,
vol. 2. IEEE, 2016, pp. 25–28.

[28] M. Waterloo, S. Person, and S. Elbaum, “Test analysis: Searching
for faults in tests (n),” in Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 2015,
pp. 149–154.

[29] B. Daniel, T. Gvero, and D. Marinov, “On test repair using
symbolic execution,” in Proceedings of the 19th international
symposium on Software testing and analysis. ACM, 2010, pp.
207–218.

[30] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert:
Suggesting repairs for broken unit tests,” in Proceedings of
the 2009 IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2009, pp. 433–
444.

[31] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web
application test repair,” in Proceedings of the First International
Workshop on End-to-End Test Script Engineering. ACM, 2011,
pp. 24–29.

[32] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An
incremental approach for repairing record-replay tests of web
applications,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing. ACM, 2016, pp. 751–762.

[33] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and
realities of test-suite evolution,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. ACM, 2012, p. 33.

[34] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani, “Effective
regression test case selection: A systematic literature review,”
ACM Computing Surveys (CSUR), vol. 50, no. 2, p. 29, 2017.

[35] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and
V. Chang, “A survey on test suite reduction frameworks and
tools,” International Journal of Information Management, vol. 36,
no. 6, pp. 963–975, 2016.

[36] C. Catal and D. Mishra, “Test case prioritization: a systematic
mapping study,” Software Quality Journal, vol. 21, no. 3, pp.
445–478, 2013.

[37] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production
& test code,” in Software Testing, Verification, and Validation,
2008 1st International Conference on. IEEE, 2008, pp. 220–
229.

[38] A. Rodrigues and A. Dias-Neto, “Relevance and impact of
critical factors of success in software test automation lifecycle:
A survey,” in Proceedings of the 1st Brazilian Symposium on
Systematic and Automated Software Testing. ACM, 2016, p. 6.

[39] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors limiting
industrial adoption of test driven development: A systematic
review,” in Software Testing, Verification and Validation (ICST),

11



2011 IEEE Fourth International Conference on. IEEE, 2011,
pp. 337–346.

[40] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection:
A systematic review,” Information and Software Technology,
vol. 55, no. 7, pp. 1165–1199, 2013.

[41] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queens School of Computing TR, vol. 541, no. 115,
pp. 64–68, 2007.

[42] J. Iivari and M. Huisman, “The relationship between organi-
zational culture and the deployment of systems development
methodologies,” MIS Quarterly, pp. 35–58, 2007.

[43] J. Iivari and J. Maansaari, “The usage of systems development
methods: are we stuck to old practices?” Information and soft-
ware technology, vol. 40, no. 9, pp. 501–510, 1998.

[44] M. Senapathi, M. Drury, and A. Srinivasan, “Agile usage: Refin-
ing a theoretical model.” in PACIS, 2013, p. 43.

[45] K. Beck, Test-Driven Development: by Example. Addison-
Wesley Professional, 2003.

[46] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen, and
J. Grabowski, “Applying the iso 9126 quality model to test
specifications,” Software Engineering, vol. 15, no. 6, pp. 231–
242, 2007.

[47] M. Greiler, A. Van Deursen, and A. Zaidman, “Measuring test
case similarity to support test suite understanding,” Objects,
Models, Components, Patterns, pp. 91–107, 2012.

12


	Introduction
	Related Work
	Research Method
	Survey Design
	Respondents
	Data Analysis

	Results
	Extent of Active Use of BDD
	Extent of BDD Use in Various Types of Organizations
	Tools Used by Industry Teams to Support BDD and ATDD
	Plans to Use BDD in the Future

	Perceived Benefits and Challenges
	Perceived Importance and Benefits of BDD
	Challenges Faced by BDD Practitioners

	Challenges of Maintaining BDD Specifications
	Size of BDD Suites
	Maintenance Challenges

	Duplication in BDD Suites
	Problems of Duplication
	Presence of duplication
	Detection and Management of Duplication in BDD Specifications

	Opportunities

	Discussion and Threats to Validity
	Conclusions
	References

