arXiv:1906.07535v1 [cs.SE] 18 Jun 2019

Migrating to GraphQL: A Practical Assessment

Gleison Brito, Thais Mombach, Marco Tulio Valente
ASERG Group, Department of Computer Science, Federal University of Minas Gerais, Brazil
{gleison.brito, thaismombach, mtov} @dcc.ufmg.br

Abstract—GraphQL is a novel query language proposed by
Facebook to implement Web-based APIs. In this paper, we
present a practical study on migrating API clients to this new
technology. First, we conduct a grey literature review to gain an
in-depth understanding on the benefits and key characteristics
normally associated to GraphQL by practitioners. After that, we
assess such benefits in practice, by migrating seven systems to
use GraphQL, instead of standard REST-based APIs. As our key
result, we show that GraphQL can reduce the size of the JSON
documents returned by REST APIs in 94% (in number of fields)
and in 99% (in number of bytes), both median results.

Index Terms—GraphQL, REST, APIs, Migration Study

I. INTRODUCTION

GraphQL is a novel query language for implementing Web-
based APIs [1]]. Proposed by Facebook in 2016, the language
represents an alternative to popular REST-based APIs [2]-[4],
shifting from servers to clients the decision on the precise data
returned by API calls. To illustrate the usage of the language,
suppose the REST API currently implemented by arXiv, the
popular preprint service maintained by Cornell University.
This API includes a search endpoint that allows clients to
retrieve metadata about preprints with a given title. The result
is a complex and large JSON document, with at least 33 fields.
However, clients might need only a few ones (e.g., only the
paper’s URL). Despite that, the mentioned endpoint returns
all fields in a JSON document, which should be parsed by the
clients. After that, the unneeded fields are discarded, although
they have consumed server, client, and network resources. By
contrast, suppose arXiv decides to support GraphQL. Using
the language, clients formulate a simple call like this one:

1 search (title: "A Solution of the P versus NP Problem") {

2 pdfUrl
30

By means of this query, the client request a single field
(pdfUrl) of a preprint entitled “A Solution of the P versus
NP Problem”. The result is a JSON file with just this URL.
Therefore, instead of receiving a full document, with 33 fields,
the client receives exactly the single field it needs to process.

GraphQL is gaining momentum and it is now supported by
important web services, as the ones provided by GitHub and
Pinterest [5]]. Despite that, we have few studies investigating
the real benefits of using GraphQL for implementing Web-
based APIs. Therefore, in this paper we ask the following
research questions: (RQI) What are the key characteristics
and benefits of GraphQL? (RQ2) What are the main disad-
vantages of GraphQL? (RQ3) When using GraphQL, what
is the reduction in the number of API calls performed by
clients? (RQ4) When using GraphQL, what is the reduction

in the number of fields of the documents returned by servers?
(RQS5) When using GraphQL, what is the reduction in the size
of the documents returned by servers? To answer RQI and
RQ2, we conduct a grey literature review, covering 28 popular
Web articles (mostly blog posts) about GraphQL. Since the
query language has just two years, we focus on grey literature,
instead of analysing scientific papers, as usually recommended
for emerging technologies [6]-[8]. As a result, we confirmed
two key characteristics of GraphQL: (a) support to an hierar-
chical data model, which can contribute to reduce the number
of endpoints accessed by clients; (b) support to client-specific
queries, i.e., queries where clients only ask for the precise
data they need to perform a given task. Motivated by these
findings, we also assess the benefits achieved by GraphQL in
terms of a reduction in the number of API calls (RQ3) and in
the number of fields returned by service providers (RQ4). To
answer these questions, we manually migrated five clients of
the GitHub REST API to use the new GraphQL API provided
by GitHub. We also implemented a GraphQL wrapper for
two endpoints of arXiv’s REST API and migrated two open
source clients to use this wrapper. Finally, to answer RQ5, we
reimplemented in GraphQL 14 queries used in seven recent
empirical software engineering papers, published at two major
software engineering conferences (ICSE and MSR).

Our contributions are twofold: (1) we reveal that GraphQL
does not lead to a reduction in the number of queries per-
formed by API clients in order to perform a given task, when
compared to the number of required REST endpoints. For
example, in our migration study, we migrated 29 API calls that
access REST endpoints (distributed over seven clients) to 24
GraphQL queries, which therefore does not represent a major
reduction; (2) we reveal that client-specific queries can lead to
a drastic reduction in the size of JSON responses returned by
API providers. On the median, in our study, JSON responses
have 93.5 fields, against only 5.5 fields after migration to
GraphQL, which represents a reduction of 94%. In terms of
bytes, we also measure an impressive reduction: from 9.8 MB
(REST) to 86 KB (GraphQL). Altogether, our findings suggest
that API providers should seriously consider the adoption of
GraphQL. We also see space for tool builders and researchers,
with interest on providing support and improving the state-of-
the-practice on GraphQL-based API development.

The rest of this paper has seven sections. Section [[] provides
a brief introduction to GraphQL. Section describes a
grey literature review, covering popular Web articles about
GraphQL. Section [[V| presents the migration study conducted
to answer RQ3 and RQ4. Section |V|describes a study to eval-

uate the runtime gains achieved by GraphQL (and therefore
answer RQ5). Threats to validity are discussed in Section
and related work is discussed in Section [VIII Section [VIII
concludes the paper and summarizes lessons learned.

II. GRAPHQL IN A NUTSHELL

This section introduces the key concepts of GraphQL. The
goal is to make this paper self-contained; for a detailed and
throughout presentation of the language we refer the reader
to its documentation [[1]]. Essentially, GraphQL allows clients
to query a database represented by a schema. Therefore, this
design represents a major shift from REST APIs: in REST,
server applications implement a list of endpoints (operations)
that can be called by clients; by contrast, in GraphQL servers
export a database, which can be queried by clients. A GraphQL
database is defined by a schema, which is a multi-graph [9].
In this multi-graph, nodes are objects, which define a type
and include a list of fields; each field has a name and also
a type. Edges appear when objects define fields whose types
are other object types GraphQL proposes a simple DSL for
defining schemas. To illustrate the usage of this language,
we use a simple blogging system, with two object types:
Post and Author. As presented in Listing |1} object types
are defined using the keyword type. In this example, Post
has four fields: id, author, title, and body. The first field is a
non-null String (the ! after the type discards null values).
The second field (author) references another object type in
the schema, called Author (lines 8-12). The remaining two
fields in Post have a String type. Finally, schemas usually
include a predefined type, called Query, which represents the
entry point of GraphQL APIs (lines 14-16). A Query object
exposes the object types that can be queried by clients and the
arguments that must be provided by them. For example, post
(line 15) is a query that accepts a non-null string as argument
and returns the Post object having this string as id.

1 type Post {

2 id: String!

3 author: Author
4 title: String
5 body: String

6 '}

7

8

type Author {
9 id: String!
10 name: String
11 email: String
12 }
13
14 type Query ({
15 post (id: String!):
16 }

Post

Listing 1. Schema with two types (Post and Author) and a Query end-point

GraphQL also defines a query language, used by clients.
Listing [2] shows three examples of queries in this language. In
the first query (PostByTitle), the client asks for the Post
object with id equals to 1000; specifically, the client only
requests the title field of this object. The second query
(PostByTitleAndBody) is similar, but in this case the client

ISince an object T} can have multiple fields of type 7%, multiple edges
can connect 77 to 73, leading to a multi-graph.

asks for two fields, title and body. Finally, the last query
(PostByTitleAndAuthor) asks for the title and author of
the same Post. Since author is another object, we have to
specify its queried fields, in this case only name. The result of
this third query is presented in Listing [3] As we can see, the
result is a JSON object, which should be parsed and possibly
deserialized by clients.

query PostByTitle({

1

2 post (id:"1000") {

3 title

4 }

50}

6 query PostByTitleAndBody {
7 post (id:"1000") {

8 title

9 body

10 }
11 }
12 query PostByTitleAndAuthor({

13 post (1d:"1000") {
14 title

15 author ({

16 name

17 }
18 }

Listing 2. Querying distinct data from a given Post object

{ "data": {
"post":{
"title": "GraphQL: A data
"author": {
"name" :

}

query language"
"Lee Byron"

}
}

R - NV SRS TC R

9 1}

Listing 3. JSON object returned by PostByTitleAndAuthor query

To respond to queries, the developer of a GraphQL server
must implement a resolver function for each query declared
in the Query type. These functions are called each time
the GraphQL server engine needs to retrieve an object type
specified in a query. Typically, these functions retrieve these
objects from an underlying data structure, which can be any
kind of database (relational, non-relational, in-memory, etc).
Finally, it is also possible to define another predefined type in
schemas, called Mutation, which is used to insert new objects
on the server’s database or modify existing ones. Listing [
shows an example that defines an addPost mutation, which
receives a Post object (and returns the object, just to confirm
the operation has been successfully executed). Each endpoint
(operation) in a Mutation type must have a resolver function,
which implements the operation. In our running example, this
function must insert the Post object received as argument in

the underlying database.
1 type Mutation {

2 addPost (post:
30

Post) : Post

Listing 4. Mutation operation for Post objects

III. GREY LITERATURE REVIEW

This section reports the results of a systematic analysis
of the grey literature about GraphQL, covering documents
and discussions on blogs, tutorials, and similar Web articles.

Our goal is to better understand the key characteristics,
benefits, and shortcomings appointed by practitioners who
had a real experience with the language. Since it is a new
technology, papers about GraphQL are not common in the
scientific literature. Therefore, for such emerging technologies,
a grey literature tends to provide a better coverage of relevant
documents than a traditional literature review [7]], [10]E|

A. Study Design

To retrieve an initial list of Web articles considered in this
review, we used Hacker NewsE| which is a news aggregator
site widely used by practitioners [11]. Recently, other similar
reviews have used Hacker News as data source, e.g., a grey
literature review on clouding computing services [12]]. To
retrieve Hacker News documents, we used the Algolia search
engineﬂ querying for posts containing graphgl in their titles,
as in September, 2018. We found 1,242 articles. We then
sequentially removed articles that do not include a valid URL
(286 articles), that do not contain comments (760 articles), or
that are just promoting a tool or project (168 articles). After
this filtering step, we selected 28 articles for analysis (1,242
- 286 - 760 - 168), which we refer as Al to A28[| Figure
shows the year when these articles appeared on Hacker News.
We can see an increase in the interest on GraphQL in the last
four years. Interestingly, we found four articles in 2015, i.e;
before GraphQL official release. Figure [2] shows violion plots
with the distribution of the number of comments and upvotes
of the 28 articles. The median number of comments is 9.5; and
the median number of upvotes is 53 (which is usually enough
to put the article in the front page of Hacker News).

2018

2017

2016 [5
2015 [
0 2 4) 8 10
Articles
Fig. 1. Grey literature articles by year of appearance on Hacker News
0 30 60 90 0

0
Comments Upvotes
Fig. 2. Number of comments and upvotes on Hacker News (for the articles
included in the grey literature review)

2Nevertheless, peer-reviewed articles are also discussed in this paper, but
in Section [VTI] (Related Work).

3https:/news.ycombinator.com

4https://hn.algolia.com

SDetailed information at https://github.com/gleisonbt/migrating-to-graphql

After collecting the articles, the first author of this paper
carefully read them and followed an open coding protocol to
provide answers to the first two research questions:

RQI: What are the characteristics and benefits of GraphQL?
RQ2: What are the main disadvantages of GraphQL?

B. Results
RQI: Key Characteristics and Benefits

GraphQL is strongly typed, since all objects and fields have
types (as mentioned in Al, A2, A5, A6, A10, and A28). This
contributes to better tooling support, as reported in this article:

GraphQL is strongly-typed. Given a query, tooling can ensure
that the query is syntactically correct and valid within the
GraphQL type system before execution. (A5)

A related benefit is the possibility of having better error
messages, e.g., [types] allow GraphQL to provide descriptive
error messages before executing a query (A28).

GraphQL enables client-specified queries, as mentioned by
almost half of the articles (Al, A2, A5, A6, A10, Al4, Al7,
Al19, A21, A25, A26, and A27). The following article nicely
describes this characteristic:

In GraphQL, the specification for queries are encoded in the
client rather than the server. These queries are specified at field-
level granularity. In the vast majority of applications written
without GraphQL, the server determines the data returned in
its various scripted endpoints. A GraphQL query, on the other
hand, returns exactly what a client asks for and no more. (A5)

This characteristic makes GraphQL particularly interesting
for mobile applications, which often face limited bandwidth
and speed (A4, A5, Al4, and A26). It also moves the focus of
development to client apps, where designers and developers
spend their time and attention (Al). Finally, client-specific
queries allow servers to better understand the needs of clients
(A9, A12) and therefore improve the quality of their service:

It’s great for service operators too, because its explicitness
allows them to get a better understanding of exactly what their
users are trying to do. (A9)

GraphQL data model is hierarchical, as mentioned in five
articles (A1, A2, A3, A5, and A8) and defined as:

As its name would suggest, GraphQL models objects as a graph.
Technically, the graph starts with a root node that branches into
query and mutation nodes, which then descend into API-specific
resources. (A2).

This characteristic allows clients to retrieve data from multi-
ple sources (or endpoints) in a single request, therefore acting
as gateways for different APIs (A3, A4, Al4, and A20):

https://news.ycombinator.com
https://hn.algolia.com
https://github.com/gleisonbt/migrating-to-graphql

GraphQL makes it easy to combine multiple APIs into one, so
you can implement different parts of your schema as indepen-
dent services. (A20)

Introspection, which allows clients to inspect the types and
fields defined in a schema, at runtime (Al, A3, A9, Al6,
and A28). Combined with a static type system, introspection
allows clients to learn and explore an API quickly without
grepping the codebase or wrangling with cURL. (A28).
It also frees servers to support an interface description
language, which are usually not available for REST; and
when available they are often not completely accurate because
the description is not tied directly to the implementation (A28).

Deprecation: As common in mainstream programming
languages, it is possible to deprecate fields, using a
@deprecated annotation (Al, A2 and A19). However, in
GraphQL, new fields added to a type do not lead to breaking
changes (as in standard APIs [13], [14]); and deprecations
can be restricted to deleted fields. As a result, the pressure for
versioning is less frequent, as mentioned in this article:

This process removes the need for incrementing version num-
bers. We still support three years of released Facebook appli-
cations on the same version of our GraphQL API. (Al)

RQ?2: Disadvantages

GraphQL does not support information hiding. GraphQL does
not support private fields, i.e., all fields are visible to client
applications (A8, All, A18, A20 and A24). Furthermore,
according to A18, GraphQL queries tend to be more complex
to implement, since they require a detailed understanding of
the data schema, which can be a time-consumming task in
large APIs:

By design, a developer who integrates against GraphQL needs
to know the names of the fields to access, their relation to other
objects and when to retrieve them. (A18)

Complex caching: In GraphQL, each query can be different,
even though operating on the same type. This demands more
sophisticated server-side caching, as mentioned in this article:

GraphQL does not follow the HTTP specification for caching
and instead uses a single endpoint. Thus, it’s up to the developer
to ensure caching is implemented correctly ...(A20)

Performance: GraphQL servers can have to process complex
queries (e.g., queries with deep nesting) that can consume
server resources (A8, Al1, A20, A23, and A25), as mentioned
in the following article:

Great care has to be taken to ensure GraphQL queries don’t
result in expensive join queries that can bring down server
performance or even DDoS the server. (A20)

Figure 3 summarizes the grey literature review results, by
presenting the key characteristics, benefits, and disadvantages
of GraphQL, and the number of articles mentioning them.

Key Characteristics

Client-specified
queries

storer - I
typed
o I -
data model
itrospection - | N
Deprecation - [N :
Articles
Benefits
e I
mobile applications
lovioviiney 1
a single request
Tooling
support .
Less preassure
to versioning -1
Better error
messages .
Articles
Disadvantages
Nt N
hiding
Complex
caching -1
0 2 4 6 8 10 12

Articles

Fig. 3. Summary of grey literature findings

IV. MIGRATION STUDY

With this second study, we aim to quantitatively evaluate
two key characteristics associated to GraphQL in the grey
literature: (1) clients can precisely request the data they need
from servers (due to the support to client-specific queries) (2)
clients rely on a single endpoint to retrieve the data they need
(due to a hierarchical data model). In the study, we migrate
seven client applications based on REST APIs to GraphQL.
Then, we assess the gains achieved by the GraphQL version.
Specifically, we answer two research questions:

RQ3: When using GraphQL, what is the reduction in the
number of API calls performed by clients? GraphQL clients
normally implement a single query to retrieve all data they
need to perform a given task; by contrast, when using
REST, clients frequently have to access multiple endpoints.
Therefore, in this RQ, we compare the number of endpoints
accessed by REST clients with the number of endpoints
accessed by the same clients after refactored to use GraphQL.

RQ4: When using GraphQL, what is the reduction in the
number of fields of the JSON documents returned by servers?
In GraphQL, client-specific queries allow developers to inform
precisely the fields they need from servers. Therefore, in
this RQ, we compare the number of fields in the following
JSON documents: (a) returned by servers when responding to
requests performed by REST clients; (b) returned by servers
when responding to queries performed by the same clients but
after being migrated to use GraphQL.

A. Study Design

Selected APIs: First, to answer the proposed research
questions, we selected the APIs provided by two widely
popular services: GitHub and arXivE] GitHub is an interesting
case study because the system provides both REST and
GraphQL APIs (the latter since 2016). Moreover, GitHub’s
GraphQL API is quite complete and large, including 120
object types, 21 queries, and 62 mutations. By contrast, arXiv
only provides a REST APIL Therefore, we implemented
ourselves a small GraphQL API for the system, in the form
of a wrapper for the original API. This wrapper supports
two queries (getPreprint and search), as presented in
Listing [5] The first query (getPreprint) returns metadata
about a preprint, given its ID. This metadata includes the
paper’s title, authors, DOI, summary, URL, etc (see Listing @
The second query searches for preprints whose title match a
given string; it is also possible to define the maximal number
of results the query should return, the first result that should
be returned and the sort order. The implemented GraphQL
wrapper was installed in a private server, in our research lab.

1 type Query {

2 getPreprint (id: ID!): Preprint

3 search (query: String!, maxResults: Int!,
4 start: Int!, sortBy: String,
5
6

sortOrder: String): [Preprint]

Listing 5. arXiv Query

type Preprint {
id: ID
pdfUrl: String
published: String
arxivComment: String
title: String
authors: [String]
arxivUrl: String

9 doi: String

10 tags: [Tag]

11 arxivPrimaryCategory: ArxivPrimaryCategory

12 updated: String

13 summary: String

14 }

RS NIV N ST S,

Listing 6. Preprint type

Selected Clients: When searching for GitHub API clients, we
first found that they usually have the tag (or topic) GitHub.
Therefore, we selected five projects with this tag and that
have at least 100 stars, as described in Table [Il In the case
of arXiv, we selected two clients mentioned in the project’s
page[] and that have their source code publicly available on
GitHub (see also their names in Table [[). Table [[] shows
information about the programming language, number of
stars, size (in lines of code), and contributors of the selected
systems. The smallest project is BIBCURE/ARXIVCHECK (131
LOC, one contributor, and five stars); the largest projects are
VDAUBRY/GITHUB-AWARDS (35,153 LOC, 15 contributors,
and 1,296 stars) and DONNEMARTIN/GITSOME (17,273 LOC,
24 contributors and 5,913 stars).

Shttps://arxiv.org
Thttps://arxiv.org/help/api/index

TABLE I
SELECTED PROJECTS

Project Description
DONNEMARTIN/VIZ Visualization of GitHub repositories
DONNEMARTIN/GITSOME ~ Command line interface for GitHub

CSURFER/GITSUGGEST A tool to suggest GitHub repositories
GUYZMO/GIT-REPO Command line interface to manage Git services
VDAUBRY/GITHUB-AWARDS Ranking of GitHub repositories
BIBCURE/ARXIVCHECK A tool to generate BIBTEX of arXiv preprints
KARPATHY/

ARXIV-SANITY-PRESERVER Web interface for searching arXiv submissions

TABLE 11
STATS OF SELECTED PROJECTS

Project Lang. Stars LOC Contrib
DONNEMARTIN/VIZ Python 627 9,556 1
DONNEMARTIN/GITSOME Python 5913 17,273 24
CSURFER/GITSUGGEST Python 613 389 2
GUYZMO/GIT-REPO Python 764 5,602 17
VDAUBRY/GITHUB-AWARDS Ruby 1,296 35,153 15
BIBCURE/ARXIVCHECK Python 5 131 1
KARPATHY/ Python 2322 2431 19

ARXIV-SANITY-PRESERVER

Migration Step: After selecting the APIs and client projects,
the paper’s first author exhaustively searched the code of each
client looking for REST calls. He then migrated each one
to use GraphQL. Just to show one example of migration, in
CSURFER/GITSUGGEST the following REST endpoint is used
to search GitHub for repositories matching a given string:

I GET /search/repositories

This endpoint requires three parameters: q (a string with
the search keywords), sort (the sort field, e.g., stars), and the
order (asc or desc) The request returns a JSON document
with 94 fields, containing data about a repository. How-
ever, only three fields are used by CSURFER/GITSUGGEST:
owner’s login, description, and stargazers_count. Therefore,
we changed the function that implements the search call to
use the following GraphQL query, which retrieves exactly the
three fields used by CSURFER/GITSUGGEST:

query searchRepos{
search (query:$query,
nodes {
. on Repository{

1

2 first:
3

4

5 nameWithOwner

6

7

8

9

type:REPOSITORY, 100) {

description
stargazers{
totalCount

}

10 }

11 }

12 }

13 }

Listing 7. Example of GraphQL query (CSURFER/GITSUGGEST)
In Listing the search query returns an union type,
which might be either a Repository, User, or an Issue

type, depending on the type argument. We use a feature of
GraphQL called inline fragments to access only the fields

8https://developer.github.com/v3/search/

https://arxiv.org
https://arxiv.org/help/api/index
https://developer.github.com/v3/search/

TABLE III
REST CALLS
Project Func REST endpoints
GET /users/:user
FI GET /users/:user/starred
CSURFER/GITSUGGEST GET /users/:user/following
GET /users/:user/starred
F2 GET /search/repositories
F3 GET /users/:user/followers
F4 GET /users/:user/following
F5 GET /repos/:owner/:repo/issues
DONNEMARTIN/GITSOME E6 GET /users/:user/repos

GET /repos/:owner/:repo/pulls

F7 GET /users/:user/repos

F8 GET /search/issues

F9 GET /search/repositories

F10 GET /users/:user/starred

GET /users/:user

Fll GET /users/:user/repos

F12 GET /users/:user/repos

F13 GET /users/:user/gists

GUYZMO/GIT-REPO
GET /repos/:owner/:repo

Fl4 GET /repos/:owner/:repo/pulls

F15 GET /repos/:owner/:repo

F16 GET /repos/:owner/:repo

F1 ET :
DONNEMARTIN/VIZ 76 /users/:user

F18 GET /search/repositories

F19 GET /repos/:owner/:repo

VDAUBRY/GITHUB-AWARDS
GET /users/:user

F20 GET /users/:user/repos

BIBCURE/ARXIVCHECK F21 GET /query/:search_query

KARPATHY/

ARXIV-SANITY-PRESERVER F22 GET /query/:search_query

of the Repository variant type. This variant is labeled as
...onRepository (line 4). Therefore, in this case one REST
endpoint is replaced by one GraphQL query (RQ3’s answer)
and 91 fields (= 94— 3) are retrieved but not used by the REST
code (RQ4’s answer).

In total, the first author migrated 29 REST endpoint
calls—distributed over the seven projects (see Table [III)—to
use GraphQL queries. For the sake of legibility, we use labels
F1 to F22 to refer to the functions including these REST calls
(instead of the functions’ original names). This migration
effort consumed around 60 working hours (of the paper’s
first author), including the time to understand the clients code.

Number of JSON fields: To answer RQ4, we have to com-
pute the number of fields returned by the original API calls
(performed using REST) and by the migrated calls (using
GraphQL). First, it is important to highlight that we only count
root nodes, i.e., the ones that have a primitive value associated
to them, instead of referring to another JSON entry. Second,
when the returned fields are lists, we only consider a single
list element. For example, Listing [8| shows a JSON object

that contains a list of users followed by a given GitHub user.
The list contains three nodes elements, delimited by square
brackets (lines 5-7). Each node contains only one root field
called name. Therefore, we consider that the JSON document
in Listing [8] has only one field (which appears three times).
Essentially, we followed this strategy to allow computing the
number of fields in each document without having to define
a synthetic load for executing the systems, which is not a
simple task. Instead, we executed the systems with a trivial
load and input, which is sufficient for counting the number
of unique root nodes, without considering their number. We
leave a more detailed evaluation of the runtime gains achieved
with GraphQL to Section

{ "data": {

1
2 "user": {
3 "following": {
4 "nodes": [
5 { "name": "user_1", 1},
6 { "name": "user_2", },
7 { "name": "user_3", }
8]
9 }
10 }
11 }
2}
Listing 8. JSON document with a single root field (name)
B. Results

RQ3: What is the reduction in the number of API calls?

The 29 REST calls migrated in the study are implemented
in 22 functions (see Table [I). For each function (identified
by F1 to F22), Figure 4| shows the number of REST calls
performed in the original code and the number of GraphQL
queries implemented in the migrated code. As we can see,
in 17 functions (77%), there is a single REST call, which
was therefore migrated to a single GraphQL query. In another
function (F20), the two existing REST calls were migrated to
two GraphQL calls. In only four functions (F1, F6, F11 and
F14), there is a reduction in the number of REST calls. The
highest reduction was observed in F1, where four REST calls
were replaced by a single GraphQL query. In this case, the
REST calls retrieve the repositories starred by a user and by
the users he/she follows; they were replaced by the following
semantically equivalent GraphQL query:

query interestingRepos ($username: String!) {

user (login: S$username) {

starredRepositories{

nodes { ... }

following (first: 100) {

nodes {
starredRepositories({

9 nodes{ ...}

10 }

11 }

12 }

13 }

4}

Listing 9. Query that returns the repositories starred by an user (lines
3-5) and by the users he/she follows (lines 6-12)

1
2
3
4
5 }
6
7
8

Interestingly, in a single function (F17), there is an increase
in the number of API calls after migrating to GraphQL. This

B REST

2-

Calls

F

11

GraphQL

0-

Fi2

Functions

Fig. 4. RQ3 results: number of API calls (REST vs GraphQL) per function

B REST

Fields

49
8 .9

F4 F5

3 el

F3

93
41
8 3 9
FI F2 F7

I16 I12 - 2

Fi1

GraphQL

419

I I1-3 I I8- -10

F12

Functions

Fig. 5. RQ4: Number of fields returned by API calls (REST vs GraphQL) per function

function retrieves data about GitHub users; however, the
required data depends on whether the user has an individual
or an organizational account. In the REST API, there is a
single endpoint that returns the whole set of fields about
GitHub users, despite their account type. By contrast, in the
GraphQL API, data about users is spread over three types:
User, Organization, and Actor. The migrated code first
queries Actor to retrieve the user’s category. Depending on
the result, a second query targets User or Organization.

RQ3’s summary: The support to an hierarchical data model
is a key characteristic of GraphQL, since it allows clients
to retrieve data from multiple endpoints in a single request.
However, in our migration study, we found very few op-
portunities to implement such queries. The reason is that
most client functions access a single REST endpoint; the
straightforward migration strategy is therefore to replace
such calls by a single GraphQL query. Typically, client
functions perform simple tasks, which reduces the demand
for queries returning complex and nested data structures.

RQ4: What is the reduction in the number of JSON fields?

Figure [5] shows the number of unique root fields in the
JSON documents returned by the original REST calls and by
the same calls migrated to GraphQL. As we can see, in almost

all calls there is a major decrease in the number of returned
fields when using GraphQL (and therefore client-specific
queries). This reduction ranges from 17 fields (F3 and F4) to
416 fields (F14). Particularly, F14 is a function that returns
data about the pull requests of a given repository. In the
original code, the function relies on two REST endpoints to
perform this task. The first endpoint returns all fields about
the repository of interest. However, F14 consumes only the
pulls_url field. Then, for each pull request returned by
the second endpoint, F14 uses only three fields (number,
title, and html_url); these are precisely the fields returned
by the GraphQL query. Figure [6] shows violin plots with the
distribution of the number JSON fields returned by REST and
GraphQL. The REST calls return 93.5 fields (median values),
against only 5.5 after migration to GraphQL. The 1st quartile
measures are 41 (REST) and 3 (GraphQL); the 3rd quartiles
are 113 (REST) and 9 (GraphQL).

RQ4’s summary: When using REST, clients need to process
large JSON documents to consume just a few fields, which
is often called over-fetch (A8 and AS). By contrast, when
using GraphQL, clients specify exactly the fields they need
from servers. In our study, there is a reduction from 93.5
to 5.5 in the number of JSON fields returned by REST
endpoints when compared to equivalent GraphQL queries.

E 93.5

REST-
—
GraphQL- E 55
|

10 100
Fields (log10)

Fig. 6. Number of fields returned by REST and GraphQL calls

V. RUNTIME EVALUATION

In the previous section, we evaluated the number of
unique fields returned by GraphQL-based APIs. However,
the results were based on executing the systems with trivial
input data. A more realistic execution requires the definition
of a representative sample of users, repositories, preprints,
etc; which is not trivial. For example, some systems retrieve
the list of followers of a given user. The size of this list
depends on the selected users (most GitHub users have few
followers, but others have thousands of followers). Therefore,
we postponed an evaluation of the runtime gains achieved by
GraphQL to this section, where we ask this research question:

RQS5: When using GraphQL, what is the reduction in the size
(in bytes) of the JSON documents returned by servers?

A. Study Design

To answer RQS5, we abandoned the idea of defining a
realistic sample of input data for the migrated systems. Instead,
we rely on real and precisely defined queries used on recent
empirical software engineering papers. Typically, these papers
depend on a dataset to evaluate their object of study. Therefore,
we first retrieve a list of papers published in two recent
and relevant software engineering conferences: International
Conference on Software Engineering (ICSE, 2017 edition)
and Mining Software Repositories Conference (MSR, 2017
edition). Then, we selected three papers from ICSE and four
papers from MSR that rely on GitHub to create a dataset
with data about open source projects. The advantage is that
these papers carefully describe the criteria they use to select
the projects and the data (fields) they collect for each one.
For example, a paper by Floyd et. al [15] selects the top
100 projects whose main language is C. For each project,
they collect the full name and the 1,000 most recent pull
requests. For each pull request, they retrieve the number of
edited files and the comments (we considered the pull requests
... with at most two edited files ... [and] non-empty developer
comments [15]). In other words, the paper precisely specifies
the amount of data retrieved from GitHub (100 C projects,
1,000 PRs per project, etc).

After selecting the papers, we carefully implemented queries
to collect the datasets, first using GitHub’s REST API and
then using the GraphQL API. The GraphQL queries retrieve

TABLE IV
PAPERS AND QUERIES

Paper Query Data

Q1 Name of the top-100 C projects by stars

Q2 For each project: total number and body of
the 1K most recent PRs

Q3 For each PR: body of comments

Floyd et al. [15]

Name and URL of the top-5 projects by

Xiong et al. [16] Q4 stars (in any programming language)
For seven projects: number of commits,
Q3 branches, bugs, releases and contributors
Ma et al. [17] ? §

Q6 For each project: title, body of closed bugs
Q7 For each closed bug: body of comments

Name and URL of Java projects created
before Jan, 2012, with 10+ stars, and 1+
commits

Osman et al. [18] Q8

Zampetti et al. [19] Q9 Number of stars of specific projects

Q10 Name of repositories with at least 1K stars

Macho et al. [20] Q11 Number of commits in a repository
Q12 For eight projects: number of releases,

Wan et al. [21] stars, and language
an et al. QI3 Title, body, date and project name of open
issues tagged with a bug tag
14 For each issue: body of comments
'y

only the data used in the papers. In total, we reimplemented
14 queries (denoted by QI to Q14, see Table [IV), which are
used by seven papers. Finally, we executed the queries and
computed the size in bytes of the returned JSON documents.

B. Results

Figure [/] shows the size of the JSON documents returned
by the selected queries, when implemented in REST and
GraphQL. In almost all queries, there is a drastic difference
after migrating to GraphQL. For example, when using REST,
Q11 returns JSON documents that add up to almost 400
MB; when running the same query in GraphQL the size of
the answer drops to 77 KB. This query counts the number
of commits in a repository. In GraphQL, lists have a field
called totalCount that returns their size (this field is similar
to a COUNT function in SQL, for example). Therefore, it
is straightforward to recover the total number of commits in
the master branch of a given repository, using GraphQL, as
presented in the following listing:

query totalCountCommits ($owner:String!, $name:String!) {

1

2 repository (owner:$owner, name:$name) {
3 ref (qualifiedName: "master") {

4 target {

5 ... on Commit{

6 history{

7 totalCount

8 }

9 }
10 }

11 }

12 }

13 }

By contrast, using the REST API, the client needs to
receive data about all commits and then locally compute the
number of commits. The fotalCount field also explains the

B REST

517361.1 542941.4

712.3
4626.4
I B I

Quenes

GraphQL

402692.1

27083
14302.3

I205 2 .

Q14

5370.8

Fig. 7. RQS5: Size of JSON documents returned by API calls (REST vs GraphQL) per query

97609.5
3S10°- 49660.2
b=
5’ 794.4 5449.5 8009
=
m10°- so18 s
<
0]
N
1.

010 39

Q1 Q6

REST-

==-] |5
e

10t 10° 10°
Size (KB) (log10)

86.35

GraphQL- E

Fig. 8. Size of JSON documents returned by REST and GraphQL calls

reduction in the size of the JSON responses in queries QS5
(from 5.4 MB to 1.7 KB), Q12 (from 62.2 to 1.1 KB), and
Q13 (from 14 MB to 205 KB). In the remaining queries, the
papers only need a small subset of the fields in the returned
documents. For example, in Q1 only the repositories’ names
are needed; the remaining fields are discarded. Figure 8] shows
violin plots with the distribution of the size of the JSON
documents returned by REST and GraphQL. The REST
responses have around 9.8 MB (median values), against only
86 KB after moving to GraphQL. The 1st quartile measures
are 1.5 MB (REST) and 2.2 KB (GraphQL); the 3rd quartiles
are 85 MB (REST) and 699 KB (GraphQL)

RQ5’s summary: When comparing the size of the JSON
documents returned by REST and GraphQL calls—
implemented to reproduce queries performed in recent em-
pirical software engineering papers—we observed a major
difference, from 9.8 MB (REST) to 86 KB (GraphQL),
on the median; which represents a reduction of 99%. As
in RQ4, this difference happens due to the over-fetching
problem typical of REST clients, which receive several
fields they do not need at all. This problem is amplified in
queries that only need to compute the number of elements
in lists of commits, releases, and branches.

VI. THREATS TO VALIDITY

In this section, we present threats to validity, separated by
the three studies conducted in this paper.

Grey Literature Review: In this first study, we only review
articles discussed on Hacker News. Although it is a popular
technology news aggregator, we might have missed interesting
articles that did not appear on this site. Further, the open
coding protocol to identify key characteristics, advantages,
and disadvantages of GraphQL was performed by a single
paper’s author. Therefore, he might have missed important
codes or incorrectly classified some of the articles discussions.
However, this threat is minimized by two facts. First, because
the number of reviewed articles is not high (28 articles).
Second, because the classification was partially reviewed and
checked by the paper’s third author.

Migration Study: First, the study is based on seven clients,
of two APIs, which therefore should be considered before
generalizing the presented results. Second, the GraphQL
wrapper for arXiv’s API cover only two endpoints. Finally,
the migration from REST to GraphQL was manually
performed by one of the paper’s author and it is therefore
error-prone. To minimize this threat, we performed functional
tests in all systems, after migration to guarantee their behavior.
We are also making the source code publicly available, to
allow inspection, replication, and testing by other researchers
and by practitioners.

Runtime Evaluation: In this study, we consider two software
engineering conferences: a general conference (ICSE) and
a topic-specific conference (MSR), whose papers normally
depend on large datasets. Furthermore, the queries documented
in these papers might not be representative of real data
retrieved by software applications. In fact, since the studied
papers depend on large datasets, the amount of data consumed
by them would probably compare with the data retrieved by
an application over days or weeks. Finally, we reimplemented
(and not reused the code) of the queries, which is an error-
prone task. Particularly, in the case of the GraphQL queries,
we had to define exactly the data (fields) used in the papers,
which is also subjected to errors and (in some cases) subjective
interpretation. To reduce this threat, this task was performed
by two authors, who read the papers independently and them
discussed together the data effectively consumed by them.

VII. RELATED WORK

Research on simple and easy-to-use programmatic inter-
faces to computer systems dates from the 70s. For example,
Query by Example (QBE) [22] was proposed in mid-1970s
to facilitate writing queries to database systems. QBE allows
users to specify the fields they want to recover from a
relational database, by filling a template form and therefore
without having to write SQL code. To some extent, GraphQL
shares the same goals of QBE, but putting less emphasis
on the presence of a graphical interface to formulate the
queries. Tuple spaces—as proposed by Linda [23], [24], in
the 80s—is another data structure to facilitate the access
to a computer system by distributed and parallel clients.
When using Linda, clients communicate by inserting (out),
reading (rd), or removing (in) ordered sequences of data,
called tuples, from a centralized data structured (the tuple
space). Clients perform queries (in or rd) by means of a
template, where wild cards designate any value. However,
unlike supported by GraphQL, all fields are returned when
a matching tuple is found in the server. In the early 2000s,
REST (REpresentational State Transfer) [2]-[4] was proposed
as a set of principles and architectural styles for implementing
APIs based on Web standards and protocols, such as HTTP and
URIs. For example, in REST-based architectures, all resources
have URIs and communication is fully stateless. Due to its
flexibility, robustness, and scalability, REST is largely used
by major Internet companies to implement Web-based APIs.
However, REST interfaces—in order to reduce the need of
frequent access by clients—tend to rapidly become coarse-
grained services. As a result, clients tend to receive superfluous
data as a result of REST calls. This problem—called over-
fetching—was the main motivation for GraphQL design.

Despite its recent popularity, GraphQL is an understudied
topic in the scientific literature. In a workshop paper, Hartig
and Perez were one of the first to study and provide a
formal definition for GraphQL [9]. Later, they complemented
and finished this formalization in a conference paper [5].
In this second paper, the authors also prove that evaluating
the complexity of GraphQL queries is a NL-problem (i.e., a
decision problem that can be solved by a nondeterministic
Turing machine under a logarithmic amount of memory).
In practical terms, this result shows that it is possible to
implement efficient algorithms to estimate the complexity of
GraphQL queries before their execution; which is important
for example to handle the performance problems normally
associated to GraphQL (as reported in our grey literature
review) and particularly to avoid denial-of-service attacks.
Vogel et al. [|25]] present a case study on migrating to GraphQL
part of the API provided by a smart home management system.
They report the runtime performance of two endpoints after
migration to GraphQL. For the first endpoint, the gain was
not relevant; but in the second one GraphQL required 46%
of the time required by the original REST API. The authors
also comment that parallel operation of REST and GraphQL
services is possible without restrictions. Romano et al. [20]

propose a genetic algorithm for refactoring “fat interfaces”,
i.e., coarse-grained interfaces whose clients rely on different
subsets of their methods. The authors argue that such interfaces
should be refactored into fine-grained interfaces, containing
only methods effectively called by groups of clients. There-
fore, they focus on superfluous methods, while GraphQL focus
on superfluous data returned by REST-based APIs. Wittern et
al. [27]] propose a tool to generate GraphQL wrappers from
REST-like APIs with OpenAPI Specification (OAS). Their tool
takes as input an specification that describes a REST API and
generates a GraphQL wrapper. They evaluate the proposed
tool with 959 publicly available REST APIs; and it was able
to generate GraphQL wrappers for 89.5% of these APIs, but
with limitation in some cases.

VIII. CONCLUSION

As our key finding, we show that there is a drastic reduction
in the number of fields and size of the returned JSON
documents when using GraphQL, instead of REST. Probably
to avoid frequent client/server interactions [28] (or to avoid the
implementation of slightly different endpoints), REST-based
interfaces are usually coarse-grained components, designed to
provide at once all possible data needed by clients. However,
specific clients require only a small subset of the data provided
by such interfaces; and therefore simply discard the unneeded
information. Our results show that the proportion of data
received but discarded by clients is outstanding: GraphQL can
reduce the size of the JSON documents returned by REST-
based APIs in 94% (measured in number of fields) and in
99% (measured in bytes); both measures are median values.
To our knowledge, we are the first to reveal such numbers,
by means of a study involving 24 queries performed by seven
open source clients of two popular REST APIs (GitHub and
arXiv) and 14 queries performed by seven recent empirical
papers published in two software engineering conferences.

As our secondary finding, we show that it is not straightfor-
ward to refactor API clients to use complex GraphQL queries.
The reason is that developers tend to organize their code
around small functions that consume small amounts of data.
Refactoring these programs to request at once large graph
structures is probably a complex reengineering task.

Our work paper can be extended as follows: (a) by evaluat-
ing the runtime performance of GraphQL queries, particularly
the ones used in Section [V} (b) by interviewing developers
to reveal their views and experience with GraphQL; (c) by
migrating more systems to GraphQL and studying the logs
they produce during normal operation; (d) by investigating
the benefits of GraphQL in specific domains, such as mobile
applications and microservices orchestration [29].

The dataset used in this paper—including the articles of
the grey literature, the source code of the migrated systems,
and the queries used in the runtime evaluation—is publicly
available at https://github.com/gleisonbt/migrating-to-graphql.

ACKNOWLEDGMENTS
Our research is supported by CNPq, CAPES, and FAPEMIG.

https://github.com/gleisonbt/migrating-to-graphql

[1]
[2]

[3]

[4]

[10]

(1]

[12]

[13]

[14]

REFERENCES

Facebook Inc., “GraphQL specification (draft),” https://facebook.github.
io/graphql/draft/, 2015, [accessed 15-October-2018].

R. T. Fielding and R. N. Taylor, “Principled design of the modern Web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115-150, 2002.

——, “Principled design of the modern web architecture,” in 22nd
International Conference on on Software Engineering (ICSE), 2000, pp.
407-416.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

O. Hartig and J. Pérez, “Semantics and complexity of GraphQL,” in
27th World Wide Web Conference on World Wide Web (WWW), 2018,
pp. 1155-1164.

R. T. Ogawa and B. Malen, “Towards rigor in reviews of multivocal
literatures: Applying the exploratory case study method,” Review of
Educational Research, vol. 61, no. 3, pp. 265-286, 1991.

V. Garousi, M. Felderer, and M. V. Mintyld, “The need for multivocal
literature reviews in software engineering: complementing systematic
literature reviews with grey literature,” in 20th International Conference
on Evaluation and Assessment in Software Engineering (EASE), 2016,
p. 26.

——, “Guidelines for including the grey literature and conducting
multivocal literature reviews in software engineering,” arXiv preprint
arXiv:1707.02553, 2017.

O. Hartig and J. Pérez, “An initial analysis of Facebook’s GraphQL
language,” in 11th Alberto Mendelzon International Workshop on Foun-
dations of Data Management and the Web (AMW), 2017, pp. 1-10.

T. Barik, B. Johnson, and E. Murphy-Hill, “I heart Hacker News: ex-
panding qualitative research findings by analyzing social news websites,”
in 10th Foundations of Software Engineering Conference (FSE), 2015,
pp. 882-885.

M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.-A. Storey,
and M. A. Gerosa, “How modern news aggregators help development
communities shape and share knowledge,” in 40th International Con-
ference on Software Engineering (ICSE), 2018, pp. 499-510.

P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of function-as-a-service software development in indus-
trial practice,” PeerJ PrePrints, vol. 6, pp. 1-24, 2018.

A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java
developers break APIs,” in 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 255-265.
L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
impact analysis of API breaking changes: A large scale study,” in
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017, pp. 138-147.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]

[29]

B. Floyd, T. Santander, and W. Weimer, “Decoding the representation
of code in the brain: An fMRI study of code review and expertise,” in
39th International Conference on Software Engineering (ICSE), 2017,
pp. 175-186.

Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 39th International
Conference on Software Engineering (ICSE), 2017, pp. 416-426.

W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers
fix cross-project correlated bugs? a case study on the GitHub scien-
tific Python ecosystem,” in 39th International Conference on Software
Engineering (ICSE), 2017, pp. 381-392.

H. Osman, A. Chig, C. Corrodi, M. Ghafari, and O. Nierstrasz, “Ex-
ception evolution in long-lived Java systems,” in [4th International
Conference on Mining Software Repositories (MSR), 2017, pp. 302-311.
F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. D. Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in [4th International Conference on Mining
Software Repositories (MSR), 2017, pp. 334-344.

C. Macho, S. Mclntosh, and M. Pinzger, “Extracting build changes
with builddiff,” in /4th International Conference on Mining Software
Repositories (MSR), 2017, pp. 368-378.

Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in /4th International Conference
on Mining Software Repositories (MSR), 2017, pp. 413-424.

M. M. Zloof, “Query-by-example: A data base language,” IBM Systems

Journal, vol. 16, no. 4, pp. 324-343, 1977.
D. Gelernter, “Generative communication in Linda,” ACM Transactions

on Programming Languages and Systems (TOPLAS), vol. 7, no. 1, pp.
80-112, 1985.

N. Carriero and D. Gelernter, “Linda in context,” Communications of
the ACM, vol. 32, no. 4, pp. 444458, 1989.

M. Vogel, S. Weber, and C. Zirpins, “Experiences on migrating RESTful
Web Services to GraphQL,” in /5th International Conference on Service-
Oriented Computing (ICSOC), 2017, pp. 283-295.

D. Romano, S. Raemaekers, and M. Pinzger, “Refactoring fat interfaces
using a genetic algorithm,” in 30th IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2014, pp. 351-360.

E. Wittern, A. Cha, and J. A. Laredo, “Generating GraphQL-WTrappers
for REST (-like) APIs,” in International Conference on Web Engineer-
ing, 2018, pp. 65-83.

S. Baker and S. Dobson, “Comparing service-oriented and distributed
object architectures,” in 7th International Symposium on Distributed
Objects and Applications (DOA), 2005, pp. 631-645.

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24-35, 2018.

https://facebook.github.io/graphql/draft/
https://facebook.github.io/graphql/draft/

	I Introduction
	II GraphQL in a Nutshell
	III Grey Literature Review
	III-A Study Design
	III-B Results

	IV Migration Study
	IV-A Study Design
	IV-B Results

	V Runtime Evaluation
	V-A Study Design
	V-B Results

	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

