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Abstract—Eclipse framework provides two interfaces: stable
interfaces (APIs) and unstable interfaces (non-APIs). Despite the
non-APIs being discouraged and unsupported, their usage is
not uncommon. Previous studies showed that applications using
relatively old non-APIs are more likely to be compatible with
new releases compared to the ones that used newly introduced
non-APIs; that the growth rate of non-APIs is nearly twice as
much as that of APIs; and that the promotion of non-API to APIs
happens at a slow pace since API providers have no assistance
to identify public interface candidates.

Motivated by these findings, our main aim was to empirically
investigate the entire population (2,380K) of non-APIs to find
the non-APIs that remain stable for a long period of time. We
employ cross-project clone detection to identify whether non-
APIs introduced in a given Eclipse release remain stable over
successive releases. We provide a dataset of 327K stable non-
API methods that can be used by both Eclipse interface providers
as possible candidates of promotion. Instead of promoting non-
APIs which are too fine-grained, we summarized the non-API
methods groups in given classes that are stable together and
present class-level non-APIs that possible candidates promotion.
We have shown that it is possible to predict the stability of a
non-API in subsequent Eclipse releases with a precision of ≥
56%, a recall of ≥ 96% and an AUC of ≥ 92% and an F-
measure of ≥ 81%. We have also shown that the metrics of
length of a method and number of method parameters in a non-
API method are very good predictors for the stability of the
non-API in successive Eclipse releases. The results provided can
help the API providers to estimate a priori how much work could
be involved in performing the promotion.

Index Terms—Eclipse; Framework; Internal Interfaces; Inter-
nal Interfaces Promotion; Internal Interfaces Stability; Software
Evolution

I. INTRODUCTION

Application developers build their systems on top of frame-
works and libraries [1]. Building applications this way fosters
reuse of functionality [2] and increases productivity [3]. This
is why large application frameworks such as Eclipse [4]
MSDN [5], jBPM [6], JUnit [7] commonly provide public
(stable) interfaces (APIs) to application developers.

In addition to public (stable) interfaces all these frameworks
also provide internal (possibly unstable) interfaces (non-APIs).
Eclipse, jBPM, jUnit, all adopt the convention of internal
interfaces by using sub-string internal in their package
names while JDK non-APIs packages start with the substring
sun. Framework developers discourage the use of non-APIs
because they may be immature, unsupported, and subject to
change or removal without notice [4], [5], [7], [8]. Supporting

these recommendations previous empirical studies have shown
that when the Eclipse application framework evolves, APIs
do not cause compatibility failures in applications that solely
depend on them [9], while non-APIs cause compatibility
failures in applications that depend on them [9], [10].

Despite the non-API being discouraged and causing compat-
ibility failures, usage of non-APIs is not uncommon. Businge
et al. have observed that about 44% of 512 Eclipse plug-ins
use non-APIs [11], [12]: application developers claim that they
cannot find APIs with the functionality they require among
APIs and therefore feel compelled to use non-APIs [13].

Much as the developers discourage the use of non-
APIs they do know that application developers use
them. One example of non-API client usage known to
the API providers is the non-API class org. ecli-
pse.jdt.internal.corext.dom.NodeFinder.

On Bugzilla an Eclipse bug tracking forum a client
requested that: NodeFinder class is part of the pack-
age org.eclipse.jdt.internal.corext.dom
and provides very useful logic. Would be nice if the
node finder (or a similar one) becomes part of the
AST API1 (reported after the release of Eclipse 2.1
(25-20-2004)). After a series discussions and adap-
tations on NodeFinder over years, the interface
providers promoted the NodeFinder to API pack-
age org.eclipse.jdt.core.dom during Eclipse
release 3.6 (05-10-2009 six years later).

In a preliminary study of the non-APIs, Kawuma et al. [14]
observed twice as many fully qualified non-API methods
compared to APIs methods. As a solution to mitigate discussed
risks and help client developers, API producers may promote
some internal interfaces to public ones. However, Hora et
al. [15] discovered that promotion occurs slowly causing a
delay to client developers to benefit from stable and supported
interfaces. The authors further state that slow promotion results
from API producers having no assistance in identifying public
interface candidates (i.e., internal interfaces that should be
public). In this paper, using clone detection techniques, we
study the stability of Eclipse internal interfaces over subse-
quent Eclipse releases. Our main aim is to detect internal
interfaces that could be recommended to the API producers
for promotion to public interfaces.

1Commit: http://goo.gl/MlrRzx. Request Issue: http://goo.gl/DLRUKS.



The remainder of this paper is organized as follows: Sec-
tion II presents the background information on Eclipse Frame-
work and its interfaces. Section III discusses the experimental
setup of our study. We present our answers for the research
questions in Sections IV and V. Section VI presents threats
to the validity of our study, while Section VII provides an
overview of the related work. Finally, Section VIII concludes
the paper and outlines some avenues for future work.

II. BACKGROUND

Similarly to most of the previous studies of non-APIs we
focus on Eclipse [9], [10], [11], [12], [13], [14], [15]. This
section introduces the background related to Eclipse interfaces
and to the context of the technique we use, software clones.

A. Eclipse Interfaces

Eclipse application framework provides two different types
of interfaces.

Eclipse non-APIs: Non-APIs are internal implementation
artifacts that according to Eclipse naming convention [4]
are found in packages with the substring internal in the
fully qualified name. These internal implementation artifacts
include public Java classes or interfaces, or public or protected
methods, or fields in such a class or interface. Usage of non-
APIs is strongly discouraged since they may be unstable [16].
Eclipse clearly states that clients who think they must use these
non-APIs do it at their own risk as non-APIs are subject to
arbitrary change or removal without notice. Eclipse does not
usually provide documentation and support to these non-APIs.

Eclipse APIs: These are public Java classes or interfaces
found in packages that do not contain the segment internal
in the fully qualified package name, a public or protected
method, or field in such a class or interface. Eclipse states that,
the APIs are considered to be stable and can be used by any
application developer without any risk. Furthermore, Eclipse
also provides documentation and support for these APIs.

B. Clone Terminology

We use clone detection techniques to determine the sta-
bility of a non-API method between subsequent Eclipse re-
leases. Software clone detection is a well-established research
area [17], [18]; in the remainder of the section we briefly
introduce notions related to clone detection.

Code Fragment [17] is a sequence of code lines with or
without comments. A code fragment is identified by its file
name and begin-end line numbers in the original code base.

A code fragment CF2 is a clone of another code fragment
CF1 if they are similar by some given definition of similarity.
The pair (CF1; CF2) form then a clone pair. If multiple frag-
ments are similar, they form a clone class or clone group [17].

Code Clone Types Depending on definition of similarity
different clone types can be distinguished. In this study we
consider code clones of Types I, II, & III [17]. Type-1 clones
are identical code fragments except for variations in white
space, layout, and comments. Type-2 clones are structurally
and syntactically identical except for variations in identifiers,

literals, types, layout, and comments. Type-3 code clones are
copies with further modifications, statements can be changed,
added, or removed in addition to variations in identifiers,
literals, types, layout, and comments.

C. Stability of non-APIs

In this section we formalize the notion of non-API stability.
Def. 1: Let Eold and Enew be two Eclipse releases. We say

a non-API method m is stable between Eold and Enew, if m
in Eold and m in Enew are a pair of Type-1 or Type-2 clones.

Since the inception with Eclipse 1.0, the Eclipse framework
has been introducing a new release every year. Therefore, the
non-APIs that have remained unchanged since Eclipse release
1.0 and still present in Eclipse 4.6 are now 15 years old.

Using the notion of stability we pose the following research
questions.
RQ1 Are there stable non-API methods that could be

candidates for promotion to APIs?
We hypothesize that the non-APIs that have not changed
over subsequent Eclipse releases could be mature and
therefore possible candidates of promotion to APIs.
Using our methodology identify stability of the non-
APIs at method-level as a way of identifying candidates
for promotion. We understand that method-level non-
APIs that are candidates of promotion may be too fine
grained for recommendation. However, if we identify
groups of methods in a class that are stable, then they
could be together candidates for promotion at class-level.

RQ2 Can we predict whether a non-API will remain stable
in subsequent Eclipse releases?
The results to this question can help the API providers
to estimate a priori how much work could be involved
in performing the promotion.

Contributions of our work are twofold:
1) A dataset of 327K stable non-API methods that can

be used by Eclipse interface providers as possible can-
didates for promotion. Instead of promoting individual
non-API methods which might be too fine-grained, we
identify groups of non-API methods in given classes
that are stable together. These groups are presented as
possible candidates promotion.

2) We have shown that it is possible to predict the sta-
bility of a non-API in subsequent Eclipse releases with
precision ≥ 56%, recall ≥ 96%, AUC ≥ 92% and the F-
measure ≥ 81%. We have also shown that the length of
a method and the number of method parameters are very
good predictors for the stability of the non-API method
in successive Eclipse releases.

III. EXPERIMENTAL SETUP

Our study is based on all the 19 major releases of Eclipse
SDK downloaded from the Archive website [19]. Details of
the releases are summarized in Table I.

To answer the RQs we extract the data using the NiCad
clone detection tool [20]. We opt for NiCad as it has also been
extensively validated in the past [21], [22], [23]. When NiCad



Listing 1: Nicad Cross Clone Report

<clones>
<clone nlines=”74” similarity =”100”>

public void md1(Cl c1) {<source File=”E 1.0/org/ eclipse /p1/sp1/pk1/F1. java”>
public void md1(Cl c1) {<source File=”E 4.6/org/ eclipse /p2/sp2/pk2/F2. java”>

</clone>
<clone nlines=”79” similarity =”100”>

void m2(){<source File=”E 1.0/org/ eclipse /p3/ internal /sp3/pk3/F3. java”>
void m2(){<source File=”E 4.6/org/ eclipse /p4/ internal /sp4/pk4/F4. java”>

</clone>
<clone nlines=”90” similarity =”100”>

public C1 m3(){<source File=”E 1.0/org/ eclipse /p5/ internal /sp5/pk5/F5. java”>
public C1 m3(){<source File=”E 4.6/org/ eclipse /p6/sp6/pk6/F6. java”>

</clone>
</clones>

TABLE I: Eclipse major releases and their corresponding release dates

Major Release Major Release
Releases Date Release Date

E-1.0 07-Nov-01 E-3.7 13-Jun-11
E-2.0 27-Jun-02 E-3.8 08-Jun-12
E-2.1 27-Mar-03 E-4.0 27-Jul-10
E-3.0 25-Jun-04 E-4.1 20-Jun-11
E-3.1 27-Jun-05 E-4.2 08-Jun-12
E-3.2 29-Jun-06 E-4.3 05-Jun-13
E-3.3 25-Jun-07 E-4.4 06-Jun-14
E-3.4 17-Jun-08 E-4.5 03-Jun-15
E-3.5 11-Jun-09 E-4.6 06-Jun-16
E-3.6 08-Jun-10
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Fig. 1: Evolution of the number of non-API methods (left y-axis) and their
percentage (right y-axis).

is applied to the collection of the 19 releases of Eclipse, in
addition to detecting clones it generates an XML report with a
list of all methods in any given Eclipse release. Since non-API
methods can be distinguished from API methods by having a
substring internal in their fully qualified name, we counted
the number of methods with substring internal in the XML
report. We used this report to obtain the total number of non-
API methods in each Eclipse release.

Figure 1 superimposes two charts–evolution of the number
of non-API methods and of the percentage of non-API meth-
ods. The percentage of non-API methods shows a slow de-

crease. We determine the percentage of the non-API methods
in a given Eclipse release as a ratio of the non-API methods
to the total interfaces (i.e., APIs plus non-API methods). The
number of non-API methods per releases shows a non-linear
increasing trend in the different subsequent Eclipse releases.

IV. RQ1: STABILITY OF INTERNAL INTERFACES

With RQ1, we want to investigate if non-API methods
released in earlier Eclipse releases remain stable in later
Eclipse releases.

A. Data extraction for RQ1
Often later releases of Eclipse contain interfaces that were

introduced in the earlier Eclipse releases. Therefore, before
carrying out the NiCad clone detection, we first eliminate
the old non-API methods in the new Eclipse release by
locating the unchanged non-API in Enew that were previously
introduced Eold. This leaves only non-API methods newly
introduced in Enew.

We illustrate the data collection for RQ1 using Figure 2
and Listing 1. For a given Eclipse release—R4, in Step 1 of
Figure 2 we identify files from R4 absent from earlier releases
R1–R3, i.e., the shaded area R4’. Next, in Step 2 we subject
R4’ and a later Eclipse release, say R5, to NiCad cross-project
clone detection. NiCad reports clones similarly to the report
in Listing 1. Using different NiCad configurations, the tool
is able to produce Type-1 and Type-2 clone reports.

R4

R1

R2

R3

R4’

Source Files 
Set Differencing

NiCad 
cross-
clone

R4’ 
Source 

Files

R5 
Source 

Files

Clone Report

STEP 1 STEP 2

Fig. 2: Illustration diagram of data collection of RQ1.

Listing 1 is an example of fragment of the XML clone report
generated by NiCad cross-project clone detection for Eclipse



TABLE II: The number of stable non-APIs methods in subsequent Eclipse releases identified through clone detection–Type-1 and Type-2

E-1.0 E-2.0 E-2.1 E-3.0 E-3.1 E-3.2 E-3.3 E-3.4 E-3.5 E-3.6
Total 28,732 46,156 59,075 79,630 95,868 108,455 119,153 141,915 144,353 156,893
New 28,732 30,993 19,011 42,281 30,094 27,344 19,992 28,852 19,603 14,785

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
E-2.0 2504 2744
E-2.1 2007 2264 3523 3865
E-3.0 1052 1308 1529 1829 1229 1420
E-3.1 731 914 968 1164 658 790 4269 4562
E-3.2 544 673 770 933 511 631 3082 3391 3086 3256
E-3.3 487 606 673 834 437 548 2739 3044 2533 2752 3659 3830
E-3.4 475 590 636 783 419 523 2523 2848 2294 2509 3142 3331 2603 2708
E-3.5 436 541 618 755 404 498 2334 2649 2088 2287 2865 3053 2214 2378 2421 2640
E-3.6 381 491 601 740 388 482 2254 2577 2038 2271 2660 2852 2075 2247 2049 2219 2677 2757
E-3.7 366 473 559 689 350 429 2020 2320 1768 1986 2404 2590 1966 2135 1765 1917 2431 2515 2047 2067
E-4.2 331 420 471 579 297 368 1774 2060 1656 1875 2253 2439 1805 1971 1682 1835 2274 2382 1398 1422
E-4.3 327 414 454 557 290 360 1736 1997 1599 1811 2193 2366 1659 1813 1554 1713 2173 2270 1327 1348
E-4.4 324 405 447 542 271 326 1583 1817 1417 1623 2034 2197 1529 1677 1391 1522 1935 2016 1142 1171
E-4.5 317 395 428 519 258 311 1477 1691 1369 1557 1906 2056 1439 1584 1287 1408 1861 1940 1064 1088
E-4.6 295 357 411 492 233 283 1320 1490 1261 1414 1655 1778 1268 1409 1166 1264 1725 1801 908 922
Mean 705 840 863 1,020 442 536 2,259 2,537 1,919 2,122 2,477 2,649 1,840 1,991 1,664 1,815 2,154 2,240 1,314 1,336
Min 295 357 411 492 233 283 1,320 1,490 1,261 1,414 1,655 1,778 1,268 1,409 1,166 1,264 1,725 1,801 908 922
Median 436 541 610 748 388 482 2,137 2,449 1,768 1,986 2,329 2,515 1,805 1,971 1,618 1,774 2,173 2,270 1,235 1,260
Max 2,504 2,744 3,523 3,865 1,229 1,420 4,269 4,562 3,086 3,256 3,659 3,830 2,603 2,708 2,421 2,640 2,677 2,757 2,047 2,067

TABLE III: non-APIs that have remained stable over subsequent Eclipse releases–candidates of promotion summarized at class level.

E-1.0 E-2.0 E-2.1 E-3.0 E-3.1 E-3.2 E-3.3 E-3.4
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

E-2.0 130//704 146//765
E-2.1 97//593 109//668 208//1,229 233//1,308
E-3.0 50//384 58//473 72//661 90//774 76//413 94//459
E-3.1 34//291 40//368 34//482 40//573 35//277 45//325 244//1,380 266//1,449
E-3.2 26//216 32//271 25//408 29//481 23//236 34//284 161//1,126 181//1,215 212//891 224//913
E-3.3 21//202 28//256 20//360 24//435 19//213 25//258 146//1,043 167//1,134 177//782 195//813 241//1,085 256//1,112
E-3.4 21//196 28//250 19//344 22//414 17//206 21//250 126//982 144//1,085 149//740 164//778 195//988 213//1,023 153//791 163//801
E-3.5 18//182 26//233 19//333 22//399 17//199 21//240 111//922 131//1,020 136//692 149//739 170//927 187//965 126//717 141//739 150//726 162//768
E-3.6 15//166 24//217 18//324 21//392 17//191 21//234 108//911 130//1012 127//683 142//734 156//892 174//932 115//683 131//710 121//636 130//677
E-3.7 14//157 23//206 17//315 19//375 12//182 17//218 87//855 111//957 104//645 117//695 140//855 156//893 103//655 120//682 97//590 107//630
E-4.2 12//139 22//180 12//276 13//331 9//158 12//194 72//780 95//881 97//611 111//663 132//809 147//849 91//615 107//644 89//568 101//607
E-4.3 12//139 22//179 11//267 12//321 9//156 12//191 71//766 92//861 95//596 106//649 126//795 140//831 83//588 97//619 78//556 91//595
E-4.4 12//136 22//174 10//263 11//314 7//149 9//178 63//716 80//806 83//550 92//605 115//757 125//794 72//558 86//589 65//522 75//556
E-4.5 12//132 22//166 10//253 11//300 7//142 9//171 55//676 71//758 80//533 89//584 103//726 113//759 67//532 80//561 62//486 68//521
E-4.6 11//125 19//156 10//243 11//288 6//134 7//162 45//635 55//708 71//512 75//555 78//675 86//708 54//486 66//520 56//458 61//489

// – Symbol is used as a separator of two numbers. We explain how it is used in the text.

releases 1.0 and 4.6. In the first clone pair in Listing 1, both
methods are from APIs (no segment internal in the source
file paths). In the second clone pair both methods are from
non-API methods. This clone pair indicates that the method
p4.internal. sp4.pk4.F4.m2() that was introduced
in Eclipse 1.0 and is still unchanged in the Eclipse release 4.6.

B. Results

Tables II and III present the results of RQ1, i.e., the number
of stable non-API methods in a given Eclipse release observed
in subsequent Eclipse releases. The first row of Table II shows
the different Eclipse old releases (Eold) where we carried
NiCad cross-project clone detection with the corresponding
successive Eclipse new releases (Enew), in the first column.
Due to space limitations, in the first row, we present the
results from Eclipse 1.0 to 3.6. However, the remaining Eclipse
releases show similar figures. The second row–Total shows
the total number of non-API methods in the different Eclipse
releases: e.g., E-2.0 has a total of 46, 156 non-API methods.
The third row–New shows the number of newly introduced
non-API methods in the different Eclipse releases: e.g., E-
2.0 has a total of 30, 993 newly introduced non-API methods
during its release and the rest (46, 156 − 30, 993 = 15, 163)
evolved with Eclipse from earlier releases. The rest of the
values in the matrix report the number of non-API meth-
ods of the newly introduced non-API methods in the given

Eclipse releases that remained unchanged in successive Eclipse
releases. For example, the value (E-2.1, E-2.0–T1) = 3, 523
indicates that among 30, 993 non-API methods introduced in
E-2.0, 3, 523 stayed unchanged (Type-1) in E-2.1. The last four
rows of Table II present the descriptive statistics of stability of
the non-API methods. From the results presented in Table II,
we observe that a few of the non-API methods that were
newly introduced in a given Eclipse release still exist and
have remained unchanged in subsequent Eclipse releases. In
Table II, in the summary statistics in the last four rows, we
can observe high values on unchanged newly introduced non-
API methods of given current Eclipse releases in successive
Eclipse releases. Take for example the results of Eclipse 1.0,
after 15 years of the evolution of Eclipse framework producing
a major release every year in Table II in cell (E-1.0, E-4.6)
we still find 1.02%–Type 1 and 1.24%–Type 2 of the 28, 732
have remained stable. In Eclipse-E-3.5, we observe that in the
last Eclipse release–E-4.6 there still exists over 8.8%–Type
1 and 9.19%–Type 2 of the 19, 603 non-API methods newly
introduced in E-3.5 that have not been changed. Looking at
row-E4.6 in Table II we can see the numbers of old non-
API methods still present in Eclipse 4.6. For example Type 1
E-4.6–295, 411, 233, . . . , shows the number of old non-API
methods from Eclipse release–1.0, 2.0, 2.1, . . . , respectively.
The 295 non-API methods in E-1.0 present in E-4.6 indicate



that they have never been changed throughout the evolution
of Eclipse.

In Table II we have presented stable non-API methods that
are candidates of promotion to APIs. However, we understand
that non-API methods are too fine grained to be considered as
candidates of promotion. To this end, we present a summarized
version of Table II in Table III. For example, in Table III
cell (E-2.1, E-2.0-T2) = 233//1, 308 is a class-level summary
of the non-API methods in cell (E-2.1, E-2.0-T2) = 3, 865
of Table II. The value 1, 308 in cell (E-2.1, E-2.0-T2) =
233//1, 308 indicates that the 3, 865 non API methods are
contained in a total of 1, 308 non-API classes. Whereas the
value 233 in (E-2.1, E-2.0-T2) = 233//1, 308 indicates that
233 of the 1, 308 non-API classes contain five of more non-
API methods. Due to space limitations, in Table III we only
present the results of Eclipse 1.0, . . . , 3.4.

The detailed lists of stable non-API methods in different
Eclipse releases is available on-line2.

C. RQ1-Findings

The main reason for Eclipse interface providers to label the
interfaces as non-API methods is the expectation of evolution-
ary changes. Once a non-API is through these evolutionary
changes it is supposed to be promoted to an API [24].

To understand why some non-API methods remain un-
changed for a very long time during the evolution of the frame-
work, we contacted the Director of Open Source Projects–The
Eclipse Foundation, Wayne Beaton. According to Mr. Beaton
promotion of the non-API methods to APIs is something that
the project teams decide for themselves. He also believes that
“internal API oftentimes becomes official API when somebody
steps up to do the work to make it so”.

High number of stable non-API methods in Table II suggests
that promotion indeed does not happen often. In addition to
lack of developers interested in the promotion task suggested
by Mr. Beaton, lack of promotion can be attributed to presence
of developers dependent on non-API methods. However, at the
same time plug-in developers might prefer to avoid these non-
API methods since they are advertised as being unstable and
likely to change. Hence, a developer intending to carry out
such a promotion should balance the costs incurred on the
developers making use of a non-API and the potential gains
obtained by engaging more developers that might have been
reluctant to use the non-API (cf. [25], [26]).

We identify methods in the same classes that have been
stable for a long time. For example in Table II, the in cell (E-
4.6, E-1.0-T1) = 295 non-API methods introduced in E-1.0
and have not changed (Clone Type-1) until E-4.6. We identify
these stable non-API methods as candidates of promotion.
We understand that Eclipse providers normally perform non-
API promotion at the level of a class. Promotion at the
method level seems to be fine grained. We have therefore
summarized the non-API methods that are possible candidates
for promotion to APIs to the class-level. Instead of promoting

2https://sites.google.com/view/eclipse-saner-2019/home
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Fig. 3: Illustration diagram of data collection of RQ2.

a single non-API method, the providers can, hence, promote
groups of non-API methods that are stable together in a single
class.

V. RQ2: PREDICTING NON-API STABILITY

Next we want to predict whether non-API methods present
in a given Eclipse release will remain stable in the subsequent
Eclipse releases. We want to investigate possible factors that
relate to the stability of the non-API methods. We hypothesize
that in a given Eclipse release, length of the methods, the
number of parameters of the method signature and the age of
the non-API methods could have an influence on the stability
of the non-API methods in the next Eclipse release.

A. Approach

We want to compare the importance of multiple metrics of
methods in a given Eclipse release. For the dependent variable,
we consider non-API stability–Stability. Stability on
a non-API method in the subsequent Eclipse release can take
one of two values—stable or unstable.

As independent variables we consider metrics of lengths
of a methods–mLengths, number of methods parameters–
mParams, age of a method–Age on the non-API. We want to
build a random-forest classifier to predict whether an internal
interface will be promoted, given the values of the metrics.
We choose the random-forest classifier because it is known
to have several advantages, such as being robust to noise and
outliers [27], [15]. In selecting the training and testing set,
we rely on the built-in internal evaluation of performance
of random forests based on out-of-bag dataset [28]. In the
implementation of the random forest algorithm, each tree is
trained on about 2/3 of the total training data also known as
the bootstrapped data. As the forest is built, each tree can thus
be tested on the out-of-bag data (similar to leave one out cross
validation) on the samples not used in building that tree.

To assess the effectiveness of the classifier in predicting sta-
bility of the non-API methods we use such common measures
as precision, recall, F-measure, and AUC [29], [27], [15], [30],
[31].
B. Data extraction

As explained earlier, a newer Eclipse release is composed
of newly introduced non-API methods as well as non-API
methods carried over from older Eclipse releases. We illus-
trate the different steps we used collect the data for RQ2



Listing 2: Illustration of method signatures in Eclipse 4.6 before annotation

org/ eclipse / core / internal / runtime/ Activator public Location getInstallLocation () :199:211
org/ eclipse / core / internal / resources /XMLWriter private static String getReplacement(char c):112:128
org/ eclipse /pde/ internal / core / product /Product public void addPlugins( IProductPlugin [] plugins ):408:425
org/ eclipse /pde/ internal / ui / editor / feature / LicenseFeatureSection public boolean doGlobalAction(String actionId ):354:377

Listing 3: Illustration of method signatures in Eclipse 4.6 after annotation

org/ eclipse / core / internal / runtime/ Activator public Location getInstallLocation E4 2 () :199:211
org/ eclipse / core / internal / resources /XMLWriter private static String getReplacement E3 6(char c):112:128
org/ eclipse /pde/ internal / core / product /Product public void addPlugins E3 5(IProductPlugin [] plugins ):408:425
org/ eclipse /pde/ internal / ui / editor / feature / LicenseFeatureSection public boolean doGlobalAction E4 6(String actionId ):354:377

Listing 4: Nicad Clone cross-Report between the annotated Eclipse Releases of 4.2 and 4.6

<clones>
<clone nlines=”79” similarity =”100”>

void m4 E1 0(C1 cls, int x){<source=”E 4.2/org/eclipse /p4/ internal /sp4/pk4/f4 . java”>
void m4 E1 0(C1 cls, int x){<source=”E 4.6/org/eclipse /p4/ internal /sp4/pk4/f4 . java”>

</clone>
<clone nlines=”90” similarity =”100”>

public C2 m5 E2 0(){<source=”E 4.2/org/eclipse/p6/ internal /pk6/f6 . java”>
public C2 m6 E2 6(){<source=”E 4.6/org/eclipse/p6/ internal /pck6/f6 . java”>

</clone>
<clone nlines=”90” similarity =”100”>

public int m8 E4 6(){<source=”E 4.2/org/eclipse/p8/ internal /pk8/f7 . java”>
public int m8 E4 6(){<source=”E 4.6/org/eclipse/p8/ internal /pk8/f8 . java”>

</clone>
</clones>

using Listings 2, 3, and Figure 3. Using the NiCad tool,
from sources of the different Eclipse releases, we extracted
signatures of non-API methods, the fully qualified name of
Java files, start-line and end-line of the method in
the file. Using set differencing on the lists of non-API method
signatures, we isolate the newly introduced non-API methods
in each Eclipse release.

In Step 1 of Figure 3, we automatically annotate non-API
methods in each .java file in a given Eclipse release with the
Eclipse release where these methods have been introduced. For
example in Step 1, the release of interest R4 has methods that
were introduced in R1–R3 as well as those newly introduced
in R4. After annotating the non-API methods in R4 that are
uniquely identified from which Eclipse release they were intro-
duced, the output is R4-Annot. In Listing 2 we present an ex-
tract of four method signatures from Eclipse release 4.6 before
method annotation. The methods in the listing show the fully
qualified methods name, its parameter list, the method start
line–number after the first full colon and end line–number after
the second full colon. In Listing 3 we show the corresponding
methods after the annotation. The non-API method annotations
are on the method name–E4 2, E3 6, and E3 6 and E4 6). For
example, getInstallLocation_E4_2 tells us that the
method getInstallLocation was introduced in Eclipse
4.2 but still present in Eclipse 4.6.

For building the models, we considered data from Eclipse
releases 4.2, 4.3, 4.4, 4.5, and 4.6. Looking at Listing 3, we can
determine the values for the metrics mLengths—difference
between method end-line and start-line, mParams—count of
the method parameters. For the Age metric, newly introduced
non-API methods in Eclipse release under study have an Age
of zero, those introduced in previous release Age of one, etc.
For example in Eclipse 4.2, the newly introduced non-API
methods in 4.2 would have zero years, those introduced in 3.7
would have one year and those introduced in 1.0 would be 11
years.

Extracting data for dependent variable–Stability, we
subject two annotated Eclipse releases to NiCad cross-project
(see Step 2 in Figure 3). The output of Step 2 is an annotated
clone report in XML format. We configure NiCad cross-
project to extract Type-2 and Type-3 clone pairs between two
Eclipse releases. We do not extract Type-1 clones since the
method annotations eliminate the occurrences of Type-1. In
Listing 4 we present an XML file that is an illustration of the
output of the NiCad cross-project between Eclipse 4.2 and the
target Eclipse 4.6. Considering for example the total number
of non-API methods in Eclipse 4.2, one is able to determine
those that remained stable in the target Eclipse 4.6—those that
appear in the annotated clone report and the unstable non-API
methods—the rest of the non-API methods in Eclipse 4.2 not



TABLE IV: Stability prediction results (percentages) of non-API between a pair of Eclipse releases.

4.2 4.3 4.4 4.5
Prec Rec F-m AUC Prec Rec F-m AUC Prec Rec F-m AUC Prec Rec F-m AUC

Ta
rg

et

4.3 T2 82 96 86 97
T3 86 97 91 98

4.4 T2 71 98 82 95 73 99 84 95
T3 83 98 90 97 82 99 89 95

4.5 T2 65 97 78 93 67 99 80 94 75 99 85 96
T3 80 97 88 97 79 99 88 95 82 99 90 97

4.6 T2 56 98 71 92 57 99 72 92 66 97 79 93 70 99 82 94
T3 78 97 86 96 76 99 86 94 78 99 87 96 82 98 90 97

T2 Type-2 Clones
T3 Type-3 Clones

TABLE V: Stability prediction results (percentages) of non-API between a pair of Eclipse releases.

4.2 4.3 4.4 4.5
L P A L P A L P A L P A

Ta
rg

et

4.3 T2 98 2 0
T3 86 14 0

4.4 T2 89 11 0 97 3 0
T3 99 1 0 64 36 0

4.5 T2 86 14 0 90 10 0 80 20 0
T3 99 1 0 92 8 0 75 25 0

4.6 T2 96 4 0 91 9 0 96 4 0 78 22 0
T3 74 26 0 98 2 0 74 26 0 97 3 0

L mLength
P mParams
A Age

in the clone report.
We extracted cross-project clone reports for Type-2 and

Type-3 between pairs of Eclipse releases 4.2 to 4.6. A total
of 20 cross-project clone reports were obtained from the
considered Eclipse releases. Thereafter, we carried out random
forest predictions of the stability of non-API methods between
all the 20 pairs of Eclipse releases. We used a commercial tool
called Salford Predictive Modeler3 to perform the predictions.
In the tool, some of the key controls of the random forest
process were set as follows: number of trees to 200, the
number of predictors considered for each tree node to two
and the parent node minimum cases to two records.

C. Model Evaluation

To evaluate our models, we assess the effectiveness of the
classifier in correctly predicting stability of the new Eclipse
releases. We use precision, recall, F-measure and AUC (area
under curve) to measure its effectiveness, which are commonly
adopted in classification tasks [32], [27]. Precision and recall
measure the correctness and completeness, respectively, of
the classifier in predicting whether a non-API is stable. F-
measure is the harmonic mean of precision and recall. AUC
is a commonly used measure to judge predictions in binary
classification problems, and it refers to the area under the
Receiver Operating Characteristic (ROC) curve. AUC is robust
toward unbalanced data [33]. AUC of 70% is considered
reasonably good [34], [35], [27].

3https://www.salford-systems.com/

D. Results RQ2

The number of non-API methods present in Eclipse 4.2 to
4.5 range from 147K to 152K. The number of stable non-API
methods in the 20 different pairs of Eclipse releases 4.2 to 4.6
for Clone Type-2 and Type-3 range from 33K to 40K (about
19 to 28% of the total target observations). This implies that
the majority of the values in the dependent variable in the 20
different datasets are class-0–unstable interfaces. To ensure
that our models are not suffering from over-fitting/under-
fitting, we employed other model testing methods other than
out-of-bag like: test sample contained in a separate file and
fraction of testing selected at random. The two testing cases
did not yield different results from the out-of-bag method.
The predictions success results reveal that in solving the
classification problem, the random forest model shows that
the out-of-bag internal validation performance as being in the
range of 82 to 94% correct in correctly classifying stability
class-0–unstable interfaces and a range of 96 to 99%
correct in correctly classifying class-1–stable interfaces.

Table IV and V present the prediction results of RQ2.
Table IV shows effectiveness of the classifier in correctly
predicting the non-API stability using precision, recall, AUC
and F-measure. For example, the value in cell (4.4-T2, 4.2-
Prec) = 71 indicates that the non-API methods present in
Eclipse 4.2 were predicted to be stable/unstable in the target
Eclipse release 4.4 with a precision of 71%.

The results show that the precision is between 56%–86%,
recall 96%–99%, F-Measure 81%–89%, and AUC 92%–98%
for all the data of clone Type-2 & 3. From the results
presented we observe relatively high prediction values for



all the considered measures. We observe very high recall
compared to the precision. Precision is the ratio of correctly
predicted positive observations to the total predicted positive
observations (i.e., Precision = TP/(TP + FP )). Recall is
defined as the ratio of correctly predicted positive observations
to the total predicted positive observations (i.e., Recall =
TP/(TP + FN)). The reason we have very high values of
recall is that, as stated earlier, the prediction success of the
class-1 was very high (i.e., all the models revealed very few
cases of incorrectly classified stable non-API methods–FN ).
In Software Engineering domain the value of AUC between
≥ 70% is considered a reasonably good measure [15], [27],
[30], [35].

In Table V we show the predictor importance that sum-
marizes how the individual variables have contributed to
the prediction accuracy. The Gini importance was used to
indicate how large a variable’s overall discriminative value was
for the classification problem. We observe that the predictor
mLength of the non-API methods is the most influential
followed by Params and finally Age. As can be seen, the
variable Age is insignificant in separating the two target
classes.

E. RQ2-Findings

Yes we can predict the stability of a non-API in subsequent
Eclipse releases with a precision of 56% and higher, a recall
of 96% and higher and an AUC of 92% and higher and an
F-measure of 81% and higher. From the results presented in
Section V-D we can observe that the number of parameters
and the lengths of a non-API method have a significant
effect in determining the non-API stability in new Eclipse
releases. Developers who use the non-API methods in their
applications can use our dataset to estimate the stability of
the non-API methods in new Eclipse releases. We have also
observed that the age of a non-API has an insignificant impact
on the stability of a non-API in a new Eclipse release. Our
observation contradicts with the earlier observation of Businge
et al. [10], [9] that older non-API methods are more stable than
the more recently introduced ones.

VI. THREATS TO VALIDITY

We observe a construct validity threat related to the results
of RQ1. An object-oriented API may much more complex than
it is assumed in the paper. To use the functionality provided
by an API, in some cases one be required to instantiate an
object and call two or more methods from this object.

Furthermore, we determine non-API stability using clone
Type 1 & 2. Using Type 2 clones could threaten the construct
validity since the changes in the stable non-API determined
by clone Type 2 might actually make the non-API unstable.

Internal validity threat related to the tool (i.e., NiCad) used
to extract the data used in our experiments. However, studies
who have compared NiCad tool with other clone detection
tools have observed that NiCad tool has the highest precision
and recall of any existing code clone detector tools [22], [36].

Threats to external validity concern the possibility to gen-
eralize our results. Our study focus on only one framework.
Validation on other frameworks and libraries developed in the
same setting like Eclipse like those we presented in Section I
(i.e., JDK, MSDN, jBPM and JUnit) is desirable.

VII. RELATED WORK

In the previous sections, we implicitly discussed how the
current work relates to the previous work [12], [11], [9], [37],
[10], [13]. In general, the previous studies were based on
empirical analysis of the co-evolution of the Eclipse SDK
framework and its third-party plug-ins (ETPs). During the
evolution of the framework, the authors studied how the
changes in the Eclipse interfaces used by the ETPs, affect
compatibility of the ETPs in forthcoming framework releases.
The authors only used open-source ETPs in the study and
the analysis was based on the source code. One of previous
studies [13] was based on analysis of a survey, where they
complement other previous studies by including commercial
ETPs and taking into account human aspects. One of the
major findings of the previous studies was that interface users
are continuously using unstable interfaces and the reason for
using these unstable interfaces was because there no alternative
stable interfaces offering the same functionality. This study
was based on understanding the evolutionary trend followed
by the Eclipse non-APIs in successive Eclipse releases. We use
code clone detection analysis to carry out our investigation.

Another study that is directly related to ours is that of
Hora et al. [15] who investigated the transition from internal
to public interfaces. They carried out their investigation on
Eclipse (JDT), JUnit, and Hibernate. Their main aim was to
study the transition from internal to public interfaces (i.e.,
internal interface promotion). They detect internal interface
promotion when the two conditions are satisfied: 1) there is at
least a file change that removes only one reference to Internal
and adds only one reference to Public, and 2) the class names
of the references remain the same or have an suffix/prefix
added/removed. They discovered that 7% of 2,277 of internal
interfaces are promoted to public interfaces. They also found
that the promoted interfaces have more clients. They also
predicted internal interface promotion with precision between
50%–80%, recall 26%–82%, and AUC 74%–85%. Finally, by
applying their predictor on the last version of the analyzed
systems, they automatically detected 382 public interface
candidates. Our study and this study both aim at identifying
internal interfaces that are candidates of promotion. However,
in comparison to our study, we use clone detection techniques
on the Eclipse releases to determine stable internal interfaces
that we recommend as possible promotion candidates.

Other work related to ours includes [38], [39], [40], [41],
[42], [43], [44], [45], [46] Sawant et al. [38] studied the effects
of deprecation of Java API artifacts on their clients. Their
work expands upon a similar study done on the Smalltalk
ecosystem. The main differences between the two studies is
in the type systems of the language targeted (static type vs
dynamic type), the scale of the dataset (25,357 vs 2600 clients)



and the nature of the dataset (third- party APIs vs third-party
and language APIs). They found that few API clients update
the API version that they use. In addition, the percentage of
clients that are affected by deprecated entities is less than 20%
for most APIs—except for Spring where the percentage was
unusually low. In the case of the JDK API, they saw that
only 4 clients were affected, and all of them were affected by
deprecation because they introduced a call to the deprecated
entity at the time it was already deprecated, thereby limiting
the probability of a reaction from these clients.

Wu et al. [39] analyzed and classified API changes and
usages in 22 framework releases from the Apache, Eclipse
ecosystems and their client programs. They discovered that
framework APIs are used on average in 35% of client classes
and interfaces and that about 11% of APIs usages could cause
ripple effects in client programs when these APIs change. The
authors also found that missing classes and methods happen
more often in frameworks and affect client programs more of-
ten than the other API change types do. Mastrangelo et al. [40]
discovered that client projects often use internal interfaces
provided by JDK. Brito et al. [41] introduced APIDIFF, a tool
to identify API breaking and non-breaking changes between
two versions of a Java library. The tool detects changes
on three API elements: types, methods, and fields. We also
report usage scenarios of APIDIFF with four real-world Java
libraries. McDonnell et al. [42] investigated API stability and
adoption on Android ecosystem. They discovered that Android
is evolving fast with an average of 115 API updates per month
but developers are resistant to embrace unstable fast evolving
APIs quickly. They found out that 28% of Android references
in client code are out-of-date with a median lag of 16 months.
Dig and Johnson [43] studied the role of refactorings in API
evolution and found that 80% of the changes that break client
applications are API-level refactorings.

Henkel et al. [44] propose CatchUp, a tool that uses an IDE
to capture and replay refactorings related to API evolution.
Hora et al. [47], [48] propose tools to keep track of API
evolution by mining fine-grained code changes. Hou [49]
studied the evolution of Eclipse Java editor by exploring
the Eclipse source code for six releases. He discovered that
although there are changes to the design of individual features,
architecturally, the editor benefits from the MVC based design
laid out in the outset of the project. Hou and Wang [50], [51]
analyzed release note entries in seven releases of the Eclipse
IDE both quantitatively and qualitatively. The authors found
that majority of the changes were refinements or incremental
additions to the feature architecture set up in early releases.

API evolution has also been studied for many other plat-
forms. Jezek et al. [52] investigated the API changes and their
impacts on Java programs. They found out that API instability
is common and will eventually cause problems. Hora et al. [45]
studied how developers react to API evolution for the Pharo
system, they discovered that API evolution can have a large
impact on a software ecosystem in terms of client systems,
methods, and developers. Hou and Yao [46] explored the
intent behind API evolution by by analyzing the evolution of

a production API in detail. The authors discovered that a large
part of API evolution is minor correctives.

VIII. CONCLUSION AND FUTURE WORK

In this study we have carried out an extensive investigation
on the evolution of Eclipse non-APIs. 1) In RQ1, we observed
that indeed there exist non-API methods that remain stable
subsequent Eclipse releases during the evolution of Eclipse. 2)
In RQ2, We have shown that the metrics of length of a method
and number of method parameters in a non-API method are
good predictors for the stability of the non-API method in
subsequent Eclipse releases. We have observed that age of an
non-API is not a significant predictor of the non-API’s stability
in subsequent framework releases.

We determined non-API stability in subsequent Eclipse re-
leases using clone detection techniques. Our recommendation-
s/contributions to Eclipse interface providers are as follows:

1) We provide a dataset of 327K stable non-API methods
that can be used by both Eclipse interface providers as
possible candidates of promotion. Instead of promoting
non-APIs which are too fine-grained, we summarized of
non-API methods groups in given classes that are stable
together and presented class-level non-APIs that possible
candidates promotion. The Eclipse providers can use our
data as a starting point to analyze and promote stable
non-APIs to APIs.

2) We have shown that it is possible to predict the stability
of a non-API in subsequent Eclipse releases with a
precision of ≥ 56%, a recall of ≥ 96% and an AUC
of ≥ 92% and an F-measure of ≥ 81%. We have
also shown that the metrics of length of a method and
number of method parameters in a non-API method are
very good predictors for the stability of the non-API
in successive Eclipse releases. The results provided can
help the API providers to estimate a priori how much
work could be involved in performing the promotion.

As future work we would extend the current study by 1)
gathering data about how often each stable non-API methods
is used (popularity), and 2) carrying out a survey with the in-
terface providers to investigate why non-APIs remain unstable
for a long time. In the survey, we shall also get the opinion of
the developers on how best our work can be packaged for them
the dataset for non-APIs that are candidates for promotion.
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