arXiv:2001.00773v1 [cs.SE] 3 Jan 2020

CryptoExplorer: An Interactive Web Platform
Supporting Secure Use of Cryptography APIs

Mohammadreza Hazhirpasand
SCG, University of Bern
Bern, Switzerland
mohammadreza.hazhirpasand @inf.unibe.ch

Abstract—Research has shown that cryptographic APIs are
hard to use. Consequently, developers resort to using code
examples available in online information sources that are often
not secure.

We have developed a web platform, named CryptoExplorer,
stocked with numerous real-world secure and insecure examples
that developers can explore to learn how to use cryptographic
APIs properly. This platform currently provides 3 263 secure uses,
and 5 897 insecure uses of Java Cryptography Architecture mined
from 2324 Java projects on GitHub.

A preliminary study shows that CryptoExplorer provides
developers with secure crypto API use examples instantly, de-
velopers can save time compared to searching on the internet for
such examples, and they learn to avoid using certain algorithms
in APIs by studying misused API examples.

We have a pipeline to regularly mine more projects, and, on
request, we offer our dataset to researchers.

Index Terms—Cryptography, security, code analysis

I. INTRODUCTION

Employing cryptographic APIs (or “crypto APIs”) correctly
is a troublesome task for developers. For instance, a recent
study of Java Cryptography Architecture (JCA) in 2324
projects on GitHub showed that more than 72% of the projects
suffer from at least one cryptographic misuse, and of 1578
distinct developers who committed cryptography code, 41%
have always misused cryptography [1].

The widespread misuse of crypto APIs has manifold rea-
sons. API documentation, as the official source of learning
how to use crypto APIs, lacks security-related hints [2[]. Code
snippets obtained from online information sources are untrust-
worthy too. A study of 1.3 million Android apps showed
that 196403 (i.e., 15%) used vulnerable code snippets that
were very likely copied from the Stack Overflow website [3]].
Examination of 217818 Stack Overflow posts also showed
that 31% suffer from potential API misuses that could lead
to unexpected behavior such as program crashes and resource
leaks [4]]. There exist several tools to assist developers in using
crypto APIs correctly [5], [6]]. These tools nevertheless need
to be installed, work in a specific programming environment,
and each is complex to learn. What’s worse, not all developers
are aware of such tools.

Preprint - SANER 2020

Mohammad Ghafari
SCG, University of Bern
Bern, Switzerland
mohammad.ghafari @inf.unibe.ch

Oscar Nierstrasz
SCG, University of Bern
Bern, Switzerland
oscar.nierstrasz@inf.unibe.ch

We introduce CryptoExplorerE] a web platform that devel-
opers can use to reliably explore secure crypto code examples
mined from open-source projects, and compare them against
insecure code uses. Developers can either look for a particular
API use or explore examples that are similar to a given crypto
code snippet. This platform mines open-source projects to
increase the number of API usage examples, and opens a
potential bug report in each project that suffers from crypto
misuses. At the time of writing, CryptoExplorer provides 3 263
secure uses, and 5897 insecure uses of Java Cryptography
Architecture (JCA) mined from 2 324 Java projects on GitHub.
A preliminary user study shows that this platform helps
developers to find secure crypto examples, and learn how to
properly use crypto APIs.

We believe the advantage of using CryptoExplorer is
twofold. Not only will the platform help developers to find
secure examples of crypto APIs or learn from insecure exam-
ples, but they also do not need to search for an appropriate
analysis tool and struggle with installation issues or spend
time on the internet to look for secure examples. Furthermore,
as the CryptoExplorer pipeline gathers more crypto usages
behind the scene at regular intervals, the dataset, available on
request, will be useful for researchers who want to conduct
any large-scale analysis in this domain.

The remainder of this paper is structured as follows. In

we explain various types of mistakes in using
crypto APIs. In [section III| we introduce the CryptoExplorer

platform and its current use cases. In we present a
preliminary user study, and discuss related work in

We conclude this paper in
II. MOTIVATION
The method in presents a password-based encryp-
tion. Lines 2 to 7 derive the cryptographic key cipherkey
from a password pwd. The remaining three lines perform
the encryption of plaintext using the key. The encryption

is, however, insufficiently secure due to several mistakes of
different kinds in the key derivation.

Uhttps://www.crypto-explorer.com

https://www.crypto-explorer.com

[N S

Wrong Type: In Java, passwords should not be stored as
String objects as they are immutable and therefore cannot be
overwritten once they are no longer used. That is why the
constructor call of PBEKeySpec requires the password to be
passed as a character array.

Wrong object: The second parameter of the PBEKeySpec
constructor is insecure as it must be random to fulfill its
purpose as a salt, but it has been defined as a constant array
one line above. According to this misuse, a crypto object that
flows into the member method of another does not fulfill a
certain expected requirement.

Listing 1. Various types of crypto API misuses
public byte [] encrypt(byte [] plaintext, String pwd) {
byte [] salt = {15, —12, 94, 0, 12, 3, —65, 73,—1, —84, —35};
PBEKeySpec spec = new PBEKeySpec (pwd.toCharArray(), salt, 100);

SecretKeyFactory skf = SecretKeyFactory.getInstance("
PBKDF2WithHmacSHA256");

byte [] keyMaterial = skf.generateSecret(spec).getEncoded();

SecretKeySpec cipherKey = new SecretKeySpec(keyMaterial, "AES");

Cipher ciph = Cipher.getinstance("AES/ CBC/ PKCS5Padding");
ciph.init(Cipher.ENCRYPT_MODE, cipherKey);
return ciph.doFinal(plaintext);

Wrong constraint: The third parameter of PBEKeySpec is
also not secure. It specifies the number of iterations that the
password is hashed in order to derive a cryptographic key.
This iteration count parameter however should not be lower
than 1 000 while in this example it is only 100 [7]]. This type of
violation concerns wrong values for integer or string objects,
like key sizes, algorithm names, or iteration counts.

Forbidden call: A method may be forbidden and should not
be called if it is outdated but left in the API for legacy reasons.
One such forbidden method is the PBEKeySpec constructor
call in this snippet. The call is discouraged because it does
not set the key size of the key derived from its password.

Incomplete operation: A developer should call
PBEKeySpec.clearPassword () after the key has
been created. When this method is executed, the password
within the object is nullified. This code snippet, however,
fails to make this call, leading to an incomplete operation
in finalizing the whole path for the desired cryptographic
purpose. This misuse occurs when developers forget to call
all required methods on an object.

Incomplete order: This misuse is signaled when a required
sequence of method calls on a crypto object is not respected.
This would be the case if the call to ciph.init () were to
be omitted.

Such categories of errors commonly occur in using cryp-
tographic APIs. We analyze a significant number of Java
applications in order to present a large dataset of analyzed
projects to the research community and help developers to
use such APIs correctly.

III. CRYPTOEXPLORER

In this section we present the CryptoExplorer web platform
that developers can use to explore real-world crypto API
uses mined from open-source projects. Developers can search
crypto APIs, explore secure and insecure API uses, and
compare them.

We explain the workflow supported by the tool as presented

in and explain the current use cases.
A. Workflow

CryptoExplorer automatically grows its database of crypto-
graphic examples by finding cryptographic-related projects and
analyzing and storing the cryptographic API examples. The
pipeline consists of five major steps to add one cryptographic
example. We use the cron scheduling daemon to automatically
schedule and execute bash scripts.

1) Search and filter: To add more cryptographic API us-
ages, we look for current open source projects hosted on
GitHub. First, we look for Java projects using GitHub’s
repository search API. We exclude forked projects to avoid
cloning duplicated projects. We then use GitHub’s code search
API to search for JCA APIs inside Java projects. Finally,
we store the addresses of Java projects whose code contains
cryptographic APIs.

2) Clone and compile: We clone and compile projects
to perform static analysis. We clone identified Java projects
containing JCA APIs. To build the projects, we check for
the presence of the Project Object Model (POM) file in the
project’s path, and if it exists, we proceed with compilation.
The POM file is an eXtensible Markup Language (XML)
representation of a Maven project. We use the Maven build
tool for the compilation process and we skip projects in which
dependencies cannot be resolved. Lastly, we neither download
the forked version of a project nor a project twice for analysis.

3) Analyse: We currently employ CogniCrypt, a static-
analysis tool tailored to find a wide range of misuses of JCA
APIs [8]]. It takes a target program and specification rules
(e.g., method-call patterns, parameter constraints and secure
compositions of cryptography-related classes) as input, and
evaluates the program’s correctness with respect to these rules.
The tool returns secure and buggy API usages. We specified
a time period, i.e., 15 minutes, for CogniCrypt to run the
analysis to limit time and resources used on the server.

In future, we plan to add more analysis tools and present
their results in CryptoExplorer.

4) Parse and inform: We extract information from the
analysis report to present to developers via CryptoExplorer. In
particular, for every project, we extract which cryptographic
API was (mis)used, the reason for being misused, the cor-
responding file name, and the line number of each detected
(mis)use. With the help of the git blame command we also
identify the last developer who committed the code associated
with each API use, as well as the commit time.

Afterwards, we create issues on the GitHub page’s of
projects to report the potential misuses. In case the project
owner decided to disable issues for the project, we send an
email to the developers who committed the API misuse. Each
issue report includes help instructions related to the type of
misuse, line number, and file path.

In order to curate a healthy dataset, we check responses to
each issue and, in case of a false positive, we adapt the entry in
CryptoExplorer’s dataset. As we need to manually analyze the
responses, we mine 100 projects weekly at the moment. At the
moment, we do not re-examine the repositories automatically
once we notify them concerning the crypto misuses.

5) Store: We store the analysis results in a database,
tracking elements such as the filename, the crypto API name,
the API call line number, the user-defined function where JCA
APIs were used, and whether the API use is secure or not.
CryptoExplorer is designed to support multiple languages: it
must be configured with the API host language, build tools,
and static analysis tools. If a specific crypto algorithm is found
to be vulnerable (e.g., SHA-256), it is feasible to mark the
specific crypto algorithm’s usages as buggy in the database.

Table I| presents the current numbers of secure and buggy
projects and commits, and their totals. There is an average of
1.7 distinct API usages per project with a standard deviation
of 1.3 and an average number of 3.9 commits per project with
a standard deviation of 7.4.

TABLE 1
THE STATUS OF PROJECTS AND COMMITS
Secure Buggy Total
Projects 642 1,682 2,324
Commits (LoC) 3,263 5,897 9,160

B. Usage Scenario

The user interface of CryptoExplorer, shown in
is simple to use, and just a few options need to be adjusted

to tune the search query. Developers can either directly visit
the publicly available website of the CryptoExplorer, or use
an Eclipse plugin that we have developed to interact with
CryptoExplorer from within the IDE. The simplicity of the
plugin only requires developers to select either an entire Java
file or part of one and click on the plugin’s icon to open
CryptoExplorer in a web browser.

CryptoExplorer allows developers to search for example
usages of a particular cryptographic API. For instance, a user
might input the MessageDigest API name to see how this
API is (mis)used in different examples in order to circumvent
the lack of usage examples and security hints in the official
Java documentation. Developers may also input a piece of
cryptography code that they would like to evaluate, or to use
as a query to find similar crypto usages. They can choose
to explore only secure uses or buggy uses. In case Cryp-
toExplorer does not find any example, it suggests examples
where both secure and buggy uses of the queried APIs exist,
distinguishable by green and red colors, respectively.

D G ¢

Search and filter Clone and compile Analyse Parse and inform Store

Fig. 1. The workflow of CryptoExplorer

When developers input sample code to be used to search for
usages of cryptographic APIs, CryptoExplorer identifies the
cryptographic APIs in the code, and presents developers with
code examples that use the same APIs. For better readability,
we rank those files higher where crypto API usages are close
to each other in a file and are in the same user-defined
method. We use standard deviation to compute how close API
usages are in a file. As each API could be misused in a few
ways, CryptoExplorer does not return hundreds of examples
to users with several identical key messages. In case users
are interested to study more APIs examples, they can navigate
more examples.

For instance, in a user has entered a piece of code
that aims to conduct file encryption. CryptoExplorer recog-
nizes the Cipher and Mac cryptographic APIs in the code
(1). Once the user hits the “Search” button, CryptoExplorer
returns code examples that simultaneously use the same APIs
listed in the search code (2). In this example, CryptoExplorer
could not find any secure example where both APIs were used
securely, and it suggested an example where the APIs were
used in both secure and buggy ways. The misused API is
highlighted by a red linear gradient color and the secure API
usage is highlighted by a green linear gradient color. In the
case of navigating large files, there are two buttons that assist
users to jump to the highlighted lines quickly. Under each
returned example, users can read related information regarding
the example’s misuses (3). Finally, users can navigate for more
examples (4).

IV. USER EXPERIENCE

We investigated the experience of users interacting with
CryptoExplorer to understand to which extent it supports
developers to properly use crypto APIs.

A. Methodology

We conducted semi-structured interviews with four partici-
pants who used this platform. They willingly chose to partici-
pate without being paid and all had an academic background in
computer science (i.e., two bachelors, and two Ph.D. students).
The participants had at least 2 years of experience in Java
programming. They all used MessageDigest to produce
hashes, and they were familiar with cryptography concepts.
However, it was not their daily job to write cryptographic-
related code in Java or any other languages.

We presented CryptoExplorer to the participants, and ex-
plained its features. Then we asked them to accomplish the
following two tasks using CryptoExplorer, while they could
consult official JCA documentation as well:

Home contact us

CryptoExplorer

Browse Java Cryptography Uses in Opén-source Projects

Mac mac = Mac.getInstance("HmacSHA1");
mac.initCkey);

secure buggy

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding™);

No results found for your query. Here are suggested results by CryptoExplorer

19¢

193 Mac mac = Mac.getInstance(kg.getAlgorithm()); :
194 mac.init(kg.generateKey());

195 byte[] result = mac.doFinal(baseString.getBytes());

196

197 return new String(Base64.encodeBase64(result));

198 } catch (Exception e) {

199 throw new AuthenticationException(e.getMessage(), e);

200

201 } else if (method.equalsIgnoreCase("md5")) {

202 return new String(Base64.encodeBase64(DigestUtils.md5(baseString)));

203 } else if (method.equalsIgnoreCase("shal")) {

204 return new String(Base64.encodeBase64(DigestUtils.sha(baseString)));

205 } else if (method.equalsIgnoreCase("RSA-SHA1")) {

206 if (cert == null) {

207 throw new AuthenticationException("a cert is mandatory to use SHAL with RSA");
208 1

209 try {

210 Cipher cipher = Cipher.getInstance("SHAIwithRSA");

211 cipher.init(Cipher.ENCRYPT_MODE, cert):

212 byte[] result = cipher.doFinal(baseString.getBytes());

More description

At line 210 : ConstraintError : First parameter (with value *“SHA1withRSA") should be any of {AES, Blowfish, DESede, 3
PBEWithHmacSHA224ANdAES_128, PBEWithHmacSHA256 AndAES _128, PBEWithHmacSHA384ANndAES_128, PBEWithHmacSHA512ANdAES _128,

PBEWithHmacSHA224ANdAES_256, PBEWithHmacSHA256ANdAES_256, PBEWithHmacSHA384ANdAES_256, PBEWithHmacSHA512ANdAES _256,
RSAL

More examples

Fig. 2. Exploring code examples based on a given code snippet

o Taskl. Tell us of two security concerns that one should
consider when using the MessageDigest API to gen-
erate a hash.

o Task2. Find security issues in a given crypto code snippet
that uses the Cipher API to conduct file encryption, and
explain how to resolve them. This task first must be done
by using any resources on the internet and then with the
help of CryptoExplorer.

We asked participants to think aloud while working on each
task. In the end, we interviewed them regarding the difficulties
that they experienced.

B. Results

To accomplish the first task, participants had to search the
MessageDigest API, and explore 20 similar code exam-
ples. Every participant succeeded to complete this task, on
average within seven minutes. They stated that they had to read

all of the returned examples as the API was used in a different
ways (e.g., initialized with different hashing algorithms). A
participant suggested adding an option to decide whether to
exclude an example due to false positives. Such examples may
present different scenarios that are not cryptography-related
or tool’s mistake. When we asked whether they know why
a particular security issue exists, they stated that sometimes
this was not directly evident from a misuse itself. They
had to read the information below each example, and in
a few cases, they stated the information is not sufficiently
expressive. For instance, one participant did not know why
using SHA-1 is not secure. One participant said that providing
external links for each misuse could help demystify the reason
behind each misuse. A participant explored more examples by
clicking on the more examples button, and we realized that he
could not completely benefit from examples that had variables
whose definitions were missing in the provided Java file.

He suggested excluding examples whose information spans
more than one Java file and providing a button to report such
examples. All in all, all participants figured out what hashing
algorithms, e.g., MD5 or SHA1, can be problematic or the
importance of calling the Digest and Update methods in
MessageDigest.

To accomplish the second task, participants first used the
internet for 20 minutes to find out the misuses in the code
snippet. Only one participant could realize where the problem
lies. Then, they used CryptoExplorer and completed the task
on average in eight minutes. They all had to go through six
similar examples to learn the correct and wrong way of using
the APIL. The found that mainly because the algorithm/mode/-
padding string in the get Instance method of the Cipher
API accepts several algorithms, mode, and padding modes.
Participants stated that the buttons for jumping to affected
lines help immensely as sometimes files contain hundreds of
lines of codes. They also suggested that a search feature for
each example would ease the problem of finding variables. We
also discovered that different types of misuses have different
levels of difficulty for users to understand. For instance,
the incomplete operation error type required developers to
carefully read a misuse example, while a constraint error
was often clear to participants only after looking at a misuse
example.

Finally, we asked participants about their experience with
CryptoExplorer, and how much easier it is compared to
searching for misuses on the internet. They all agreed that
CryptoExplorer facilitates learning how a crypto API should
be used correctly by providing real-world analyzed examples,
highlighting the lines, and presenting information related to
each example. They also pointed out that it is extremely hard to
find topics on Stack Overflow or a particular website regarding
misuses of a specific cryptographic API and that they cannot
trust the provided cryptographic code snippets.

V. RELATED WORK

CryptoLint, developed by Egele et al., checks real-world
Android applications for the violation of six security rules [6].
They succeeded to find 10327 of 11 748 Android applications
analyzed by CryptoLint that use cryptographic APIs exposed
to at least one mistake. CryptoLint is not yet open source.

Yong Li et al. proposed iCryptoTracer, which performs a
combination of static and dynamic analysis on iOS applica-
tions [9]. Their research showed that nearly 65.3% of the
examined applications suffered from a cryptographic misuse.

Rahaman et al. describe CRYPTOGUARD, a deployment-
quality static analysis tool to identify Java cryptographic
misuses [5]. They provide contextual refinements for false
positive reduction, on-demand flow-sensitive, and context-
sensitive analysis.

Kim et al. introduced a code search engine that merges
results from API documents with code example summaries,
mined from the web [10]. However, it is not tailored to mine
secure examples.

Kriiger et al. presented a tool called CogniCrypt, an Eclipse
plugin that empowers developers to identify cryptographic
misuses in Java code [8]].

In summary, CryptoExplorer differs from existing work
in several ways: (1) it maintains secure crypto API usage
examples that practitioners can use to learn how to properly
use crypto APIs, and researchers can use to benchmark analy-
sis tools in this domain; (2) it continuously mines projects
on GitHub, and can notify project developers of existing
cryptographic misuses.

VI. CONCLUSION

We have presented CryptoExplorer, a web platform to
search for real-world crypto API (mis)uses in open-source
projects. It currently provides hundreds of code examples
mined from 2324 Java projects on GitHub. A preliminary
study showed that CryptoExplorer helps developers to find
secure crypto examples, and learn how to properly use crypto
APIs by examining examples of correct uses and misuses.
Moreover, as the dataset of CryptoExplorer is growing, it can
be useful for researchers to conduct other related studies.

We plan to provide more useful explanations with respect to
each API misuse, to further help developers to comprehend the
reason underpinning each problem. We are considering adding
a feature for users to compare secure and buggy examples side-
by-side. We intend to provide the possibility of exploring code
examples based on crypto scenarios. Finally, we will expand
CryptoExplorer with both more programming languages and
other crypto libraries.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile Soft-
ware Assistance” (SNSF project No.200020-181973, Feb. 1,
2019 — April 30, 2022). We also thank CHOOSE, the Swiss
Group for Original and Outside-the-box Software Engineering
of the Swiss Informatics Society, for its financial contribution
to the presentation of this paper.

REFERENCES

[1] M. Hazhirpasand, M. Ghafari, S. Kriiger, E. Bodden, and O. Nierstrasz,
“The impact of developer experience in using Java cryptography,”
in 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1EEE, 2019, pp. 1-6.

[2] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic APIs,” in
2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp.
154-171.

[3] F. Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy paste
on Android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP), May 2017, pp. 121-136.

[4] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online QA forum reliable?: A study of API misuse
on Stack Overflow,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), May 2018, pp. 886-896.

[5] S. Rahaman, Y. Xiao, K. Tian, F. Shaon, M. Kantarcioglu, and D. Yao,
“CHIRON: deployment-quality detection of Java cryptographic vulner-
abilities,” CoRR, vol. abs/1806.06881, 2018.

[6]

[7]

[8]

[9]

[10]

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer Communications
Security, ser. CCS "13. New York, NY, USA: ACM, 2013, pp. 73-84.
M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommendation for
password-based key derivation,” NIST special publication, vol. 800, p.
132, 2010.

S. Kriiger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Gopfert,
F. Giinther, C. Weinert, D. Demmler et al., “Cognicrypt: Supporting de-
velopers in using cryptography,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. 1EEE
Press, 2017, pp. 931-936.

Y. Li, Y. Zhang, J. Li, and D. Gu, “iCryptoTracer: Dynamic analysis
on misuse of cryptography functions in iOS applications,” in Network
and System Security, M. H. Au, B. Carminati, and C.-C. J. Kuo, Eds.
Cham: Springer International Publishing, 2014, pp. 349-362.

J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Towards an intelligent
code search engine,” in Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

	I Introduction
	II Motivation
	III CryptoExplorer
	III-A Workflow
	III-A1 Search and filter
	III-A2 Clone and compile
	III-A3 Analyse
	III-A4 Parse and inform
	III-A5 Store

	III-B Usage Scenario

	IV User Experience
	IV-A Methodology
	IV-B Results

	V Related Work
	VI Conclusion
	References

