

SLICE-BASED COGNITIVE COMPLEXITY METRICS
FOR DEFECT PREDICTION

A dissertation submitted

to Kent State University in partial

fulfillment of the requirements for the

degree of Doctor of Philosophy

by

Basma Alqadi

August 2020

© Copyright

All rights reserved

Except for previously published materials

Dissertation written by

Basma Alqadi

B.S., King Saud University, Saudi Arabia, 2006

M.S., University of Houston, USA, 2014

Ph.D., Kent State University, USA, 2020

Approved by

 Dr. Jonathan I. Maletic , Chair, Doctoral Dissertation Committee

 Dr. L. Gwenn Volkert , Members, Doctoral Dissertation Committee

 Dr. Kambiz Ghazinour Naini

 Dr. Joseph Ortiz

 Dr.Robin Selinger

Accepted by

 Dr. Javed Khan , Chair, Department of Computer Science

 Dr. Mandy Munro-Stasiuk , Interim Dean, College of Arts and Sciences

 iii

TABLE OF CONTENTS

TABLE OF CONTENTS………………………………………………………………III

LIST OF FIGURES ... VIII

LIST OF TABLES ... X

ACKNOWLEDGEMENTS ... XII

 INTRODUCTION ... 1

1.1 Motivations .. 4

1.2 Research Questions ... 9

1.3 Contributions ... 9

1.4 Organization .. 11

1.5 Publication Notes .. 12

 BACKGROUND AND RELATED WORK ... 13

2.1 Software Defect Prediction ... 13

2.2 Software Defect Prediction Process .. 15

2.3 Dependent Variables (Defects Data) ... 17

2.4 Independent Variables (Software Metrics) ... 18

2.4.1 Source Code Metrics (SCM) ... 19

2.4.1.1 Source Lines of Code (SLOC) ... 19

2.4.1.2 Complexity Metrics ... 21

2.4.1.3 Object-Oriented (OO) Metrics .. 24

2.4.2 Process Metrics ... 28

 iv

2.4.2.1 Change Metrics ... 28

2.4.2.2 Code Churn ... 30

2.4.2.3 Change Burst ... 33

2.4.2.4 Change Entropy .. 33

2.4.2.5 Code Metrics Churn (CHU) and Code Entropy (HH) 34

2.4.2.6 Popularity Metrics .. 35

2.4.2.7 Ownership and Authorship Metrics .. 36

2.4.3 Finer Grained Techniques ... 36

2.4.3.1 Text Analysis ... 36

2.4.3.2 Code Smells ... 38

2.4.3.3 Network Analysis ... 39

2.4.4 The Problem with Traditional Independent Variables 40

 PROGRAM SLICING .. 42

3.1 Slicing Example .. 43

3.2 Program Slicing Techniques ... 44

3.2.1 Static and Dynamic Slicing ... 45

3.2.2 Direction of Program Traversal ... 45

3.2.3 Inter-Procedural Versus Intra-Procedural ... 46

3.2.4 Executable Slice .. 46

3.3 Program Dependence Analysis ... 46

3.4 Slice-Based Metrics ... 48

3.5 The Use of Slice-Based Metrics for Code Quality .. 50

 v

 SLICE-BASED COGNITIVE COMPLEXITY METRICS 52

4.1 Definitions of Slice-Based Cognitive Complexity Metrics 54

4.1.1 sliceCount .. 54

4.1.2 sliceSize ... 55

4.1.3 sliceIdentifier ... 56

4.1.4 sliceSpatial .. 57

4.2 Extracting Slice-Based Cognitive Complexity Metrics .. 58

4.2.1 The srcSlice Tool .. 58

4.2.2 Running Example .. 60

4.2.3 Slice Profile ... 62

4.2.4 Slice-Based Metrics Computation ... 63

 SOFTWARE DEFECT PREDICTION PROCESS 67

5.1 Creating a Labeled Dataset ... 70

5.2 Cognitive Complexity Metrics .. 71

5.3 Baseline Metrics .. 72

 EXPERIMENTAL DESIGN .. 75

6.1 Test Systems .. 75

6.1.1 Different Corpora .. 75

6.1.2 Sufficient EPV .. 75

6.1.3 Defect Rate .. 76

6.2 Correlational Analysis ... 78

6.2.1 Spearman Rank Correlation .. 79

 vi

6.2.1.1 Assumptions ... 80

6.2.1.2 Statistical significance .. 80

6.3 Modeling Techniques .. 80

6.4 Model Construction Process .. 81

6.4.1 Normality Analysis ... 81

6.4.2 Correlation Analysis .. 81

6.4.3 Redundancy Analysis .. 82

6.4.4 Handling Category Imbalance ... 82

6.4.5 Binary Logistic Regression ... 83

6.4.6 Out-of-Sample Bootstrap .. 83

6.5 Model Analysis ... 84

6.5.1 Logistic Regression Model Explanatory Power .. 84

6.5.1.1 Area under the ROC curve (AUC) .. 84

6.5.1.2 Nagelkerke R2 ... 85

6.5.1.3 Influential Observations .. 85

6.5.2 Logistic Regression Model Prediction Abilities ... 86

 EVALUATION RESULTS ... 88

7.1 Research Question 1 .. 88

7.1.1 Data Distribution ... 88

7.1.2 Correlation Analysis .. 94

7.2 Research Question 2 .. 98

7.2.1 Metrics Preprocessing ... 99

 vii

7.2.1.1 Normalization of the Data ... 99

7.2.1.2 Collinearity and Redundancy Analysis ... 99

7.2.1.3 Category Balancing .. 99

7.2.2 Models Explanatory Power ... 100

7.2.3 Models Prediction Power .. 109

7.3 Applying the Cognitive Complexity Measures During Software Inspections 112

 THREATS TO VALIDITY .. 114

8.1 Construct Validity ... 114

8.2 External Validity ... 115

8.3 Internal Validity .. 116

 CONCLUSIONS AND FUTURE WORK .. 117

9.1 Conclusions ... 117

9.2 Future Work .. 118

9.2.1 Cross-Project Prediction .. 118

9.2.2 Churn of Slice-Based Metrics ... 119

9.2.3 Enhance Reliability ... 119

9.2.4 Varimax Transformation ... 119

APPENDIX A SCATTERPLOTS FOR THE RELATIONSHIPS BETWEEN

SLICE-BASED METRICS AND DEFECT COUNTS 121

APPENDIX B .. 126

RESULTS OF THE PRINCIPAL COMPONENT ANALYSIS (PCA) 126

REFERENCES .. 136

 viii

LIST OF FIGURES

Figure 1.1: Relative cost of correcting defects. Source (Pressman 2015) 2

Figure 2.1: A diagram depicting the relationship between problems, failures, faults, and

defects (“IEEE Standard Classification for Software Anomalies” 2010). 14

Figure 2.2: Common process of software defect prediction. .. 16

Figure 2.3 : Examples of control graphs and their calculated complexity scores. 22

Figure 2.4: The three node subgraphs examined by (Petrić and Grbac 2014). 40

Figure 3.1: (a) An example program (b) A slice of the program w.r.t. criterion<11,

product> ... 44

Figure 3.2: (a) An example program. (b) Program Dependency Graph. 47

Figure 4.1: (a) Sample source code, (b) System dictionary with all slice profiles for the

source code in (a). .. 61

Figure 5.1: Overview of the study design. .. 69

Figure 6.1: A typical ROC curve .. 85

Figure 7.1: Histograms of slice-based metrics in Linux 3.13 and Eclipse 3.1. 89

Figure 7.2: Histograms of slice-based metrics in Eclipse 3.2 and Koffice 2.0. 90

Figure 7.3: Histograms of slice-based metrics in Appache HTTP 2.0 and 2.2. 91

Figure 7.4: Histograms of slice-based metrics in Dolphin 14.11 and Lucene 3.0. 92

Figure 7.5: Histograms of slice-based metrics in KDE Krita 3.0 and 3.1.4. 93

Figure 7.6: Spearman correlation coefficients between bug counts and metrics. 95

Figure 7.7: ROC curves comparing the models of SBCCM and BMM in Linux 3.13 and

Eclipse 3.1 ... 103

 ix

Figure 7.8: ROC curves comparing the models of SBCCM and BMM in Eclipse 3.1 and

Koffice 2.0. .. 104

Figure 7.9: ROC curves comparing the models of SBCCM and BMM in Appache HTTP

2.0 and 2.2. .. 105

Figure 7.10: ROC curves comparing the models of SBCCM and BMM in Dolphin 14.11

and Lucene 3.0. .. 106

Figure 7.11: ROC curves comparing the models of SBCCM and BMM in KDE Krita 3.0

and 3.1.4. ... 107

Figure 7.12: Logistic regression models AUC distribution of the 1000 out of sample

bootstrap .. 108

Figure 7.13: Logistic regression models F-measure distribution of the 1000 out of sample

bootstrap .. 111

Figure 9.1: Scatterplots for the relationships between slice-based metrics and defect

counts in Linux 3.13 and Eclipse 3.1. .. 121

Figure 9.2: Scatterplots for the relationships between slice-based metrics and defect

counts in Eclipse 3.2 and Koffice 2.0. ... 122

Figure 9.3: Scatterplots for the relationships between slice-based metrics and defect

counts in Apache HTTP 2.0 and 2.2. ... 123

Figure 9.4: Scatterplots for the relationships between slice-based metrics and defect

counts in Dolphin 14.11 and Lucene 3.0. .. 124

Figure 9.5: : Scatterplots for the relationships between slice-based metrics and defect

counts in KDE Krita 3.0 and 3.1.4. ... 125

 x

LIST OF TABLES

Table 2.4.1: Halstead complexity metrics (Halstead 1977). ... 24

Table 2.4.2: Class level OO metrics described in (D’Ambros, Lanza, and Robbes 2010).

 ... 27

Table 2.4.3: List of change metrics used in (Moser, Pedrycz, and Succi 2008). 32

Table 2.4.4: Popularity metrics (Bacchelli, D’Ambros, and Lanza 2010). 35

Table 3.4.1: Slice-based metrics by (Weiser 1984; Ott and Thuss 1993). 49

Table 4.2.1: Description of file level slice-based metrics. .. 65

Table 4.2.2: Slice-based metrics computations of running example. 66

Table 5.3.1: Description of the baseline metrics. .. 74

Table 6.1.1: Revisions, file instances and % of defective files. .. 77

Table 7.1.1: Spearman correlation coefficient rs, p-value and confidence interval (CI)

between defect counts and cognitive complexity metrics. All correlation coefficient

values are statistically significant except values not bolded. 96

Table 7.2.2: The dependent variable counts before and after balancing by SMOTE

technique. ... 100

Table 7.2.3: Logistic regression models average AUC, Nagelkerke R2 values across

systems using 1000 bootstrap validation (Bold font highlights the best performance).

 ... 102

 xi

Table 7.2.4: Logistic regression models recall, precision and F1 values across systems

using 1000 bootstrap validation (Bold font highlights the best performance). 110

Table 9.2.1: PCA aspects of Eclipse 3.1. .. 126

Table 9.2.2: PCA aspects of Eclipse 3.2. .. 127

Table 9.2.3: PCA aspects of Linux 3.13. .. 128

Table 9.2.4: PCA aspects of Koffice 2.0. ... 129

Table 9.2.5: PCA aspects of Apache HTTP 2.0. .. 130

Table 9.2.6: PCA aspects of Apache HTTP 2.2. .. 131

Table 9.2.7: PCA aspects of Dolphin 14.11~18.8. ... 132

Table 9.2.8: PCA aspects of Lucene 3.0. .. 133

Table 9.2.9: PCA aspect KDE Krita 3.0~3.1.3. .. 134

Table 9.2.10: PCA aspects of KDE Krita 3.1.4~4.0. .. 135

 xii

ACKNOWLEDGEMENTS

First, I would like to show my greatest appreciation to my research advisor, Prof.

Jonathan I. Maletic, for believing in me, and allowing me the time and freedom to pursue

my own interests. His endless patience, unfailing wisdom and excellent coaching are the

primary reasons this dissertation was actually completed.

I express my deepest gratefulness toward my wonderful parents, Suliman and

Madawi, who did more than their best to raise, educate and support me. Thank you for

keeping me in your thoughts and prayers. None of this would ever have been possible

without the enormous support, and patience from the closest soul, my beloved husband,

Khaled. Thanks to the sweetest kids, sliver of my heart, eyes of glory, in which I see the

world through, Mohammed, Suliman, Saud and Lena. My sincere appreciation goes to my

sisters and brothers. I am truly lucky and blessed to have them in my life.

I would like to extend my grateful thanks to my colleagues and friends in software

engineering development laboratory <SDML>, Computer Science Department, and Kent

State University, who helped me in different ways to accomplish my research and

dissertation. I wish them luck in their careers. Finally, I greatly thank my dissertation

committee for their appreciated services, efforts, and precious time.

Basma Alqadi

August 2020, Kent, Ohio

 1

INTRODUCTION

Given the centrality of software in modern life, defective software code can have

negative impact on company stock and brand. Tricentis, a software-testing company

analyzed 606 software fails from 314 companies to better understand the business and the

financial impact of software failures. The report shows that these software failures affected

3.6 billion people and caused $1.7 trillion in financial losses in 2017 (Tricentis 2017). From

a brand value perspective, software defects can affect a customer’s confidence in a system

or product. For example, there are many stories about how every Microsoft product is

released with a list of known issues. Microsoft could have avoided the problems before

shipping the product to the customer. However, this would have taken considerable time,

and cost a large amount of money and personnel.

Software defect prediction approaches are of tremendous interest both in academia

and industry. Early identification of defects helps reduce the costs associated with locating

and fixing defects. As expected, the relative costs to find and repair defect increase

dramatically as system maturity increases (Pressman 2015). Figure 1.1 illustrates this issue.

The industry average cost to correct a defect during code generation is approximately $977

per error. The industry average cost to correct the same defect if it is discovered during

system testing is $7,136 per defect while the cost of the same defect in the maintenance

 2

phase is $14,102. For software organization, the cost savings associated with early quality

control and assurance activities are compelling.

Figure 1.1: Relative cost of correcting defects. Source (Pressman 2015)

Therefore, the driving scenario of defect prediction is the limitation of resources

for software Quality Assurance (QA), which may include manual code inspections,

technical review meetings, and intensive testing. Such resources are always limited by time

and by cost, e.g., the deadlines that development teams face to release the product or not

enough personnel are available for QA. When managers want to spend resources more

effectively, they would typically allocate them on the parts where they expect most defects

or at least the most severe ones, which is usually based on their experience of the product

and hence make further decisions on testing, inspections, etc.

Defect prediction uses machine-learning algorithms to build models. These models

predict the areas of software code where defects are likely to occur. That provides the list

 3

of defect-prone software modules, which can represent a system, a software component (or

package), a source code file, a class, a function (or method), and/or a code line according

to prediction granularity. Accordingly, QA can effectively allocate limited resources by

spending more effort on the modules that are likely to be defective (contains at least one

defect). As the size of software projects becomes larger, defect prediction techniques will

play an important role to support developers as well as to speed up time to market with

more reliable software products.

Models for defect prediction rely on independent and dependent variables.

Independent variables are normally software quality metrics collected from software

systems. Researchers identified several metrics using different information, such as code

metrics and process metrics. Software code metrics (SCMs) used in the models include

Lines of Code (LOC) (Fenton and Bieman 2014; Weyuker, Ostrand, and Bell 2010; Nam

et al. 2017), Halstead size metrics (Halstead 1977), object oriented metrics (Bird et al.

2009; D’Ambros, Lanza, and Robbes 2010; Khoshgoftaar et al. 1996; Wang, Liu, and Tan

2016) and complexity measures (Turhan et al. 2009; Menzies, Greenwald, and Frank 2007;

Mende and Koschke 2010; Zhang et al. 2016). Process metrics include code churn

(Nagappan and Ball 2005), revision control histories (Bell, Ostrand, and Weyuker 2006;

Graves et al. 2000; Moser, Pedrycz, and Succi 2008; Ostrand, Weyuker, and Bell 2005;

Bird et al. 2011; Rahman and Devanbu 2013; Nucci et al. 2018) and number of previous

faults identified (Hassan and Holt 2005; Kim et al. 2007; D’Ambros, Lanza, and Robbes

2010). The dependent variables in the models are normally defect variables (e.g. the

number of defects predicted in a module, or if a defect has been predicted in the module).

 4

1.1 Motivations

This dissertation is motivated by several factors. First is that existing defect

prediction approaches lack metrics to estimate program understandability effort of the

source code. It has been shown that software defects are often the result of the incomplete

or incorrect comprehension of a program segment (Chen et al. 2018). Therefore, finding

sections of code that presents a comprehension challenge to the developer can be the basis

for isolating code that has a greater risk of defects. Existing metrics for understandability

are often tied to readability or syntactic features of source code such as structural

complexity. However, understandability is a cognitive and semantic aspect; a developer

can find a piece of code readable, but still difficult to understand (Scalabrino et al. 2017).

Much of the research on cognitive models explains how programmers comprehend code

using a bottom-up approach (Storey, Wong, and Müller 2000; Storey 2005). The

programmer analyzes the source code statement by statement and gradually develop

control-flow and data-flow abstractions through the process of chunking (Pennington

1987). Program chunks are grouped together to form larger chunks, until the entire program

is understood. In this way a hierarchical semantic representation of the program is built

from the bottom-up. Thus, assessing the cognitive complexity of program semantic chunks

can be a criterion for characterizing defects for defect prediction. Specifically, in order to

make accurate predictions, the metrics need to be discriminative: capable of distinguishing

one instance of code region from another of different cognitive complexity.

Second, most of existing metrics, for defect prediction, focus on syntactic aspects

of software modules, such as lines of code (LOC), number of declarations, number of

 5

functions, etc. It is known that software systems have well-defined syntax, which can be

represented by Abstract Syntax Trees (ASTs) (Hindle et al. 2012) and at the same time

have semantics, which is hidden deeply in source code (White et al. 2015). It has been

shown that such semantic information is useful for tasks such as code completion, effort

estimation and bug detection (Li and Zhou 2005; Nguyen and Nguyen 2015; Alomari,

Collard, and Maletic 2014; Tu, Su, and Devanbu 2014; Hindle et al. 2012). Such semantic

information should also be useful for characterizing defects to improve defect prediction.

Specifically, most existing metrics only focus on single elements and rarely take the

interactions between elements into account. However, with the emergence of static and

dynamic bug localization techniques, the nature of defects has changed and today most

defects in bug databases are of semantic nature (Li et al. 2006).

Third, most of the traditional metrics suffer from being very coarse grained with

low capability that measure only a small sub-set of code features. Gray et al. advocate that

the coarse grained nature of such metrics prevents machine learning algorithms from

effectively differentiate between defective and non-defective modules: if two modules

have the same metric values, e.g., LOC, but they have not been labeled the same in terms

of their defectiveness, this will obstruct the algorithm’s ability to learn (Gray et al. 2011).

Gray et al. identify many modules that have identical values across number of metrics but

different defectiveness labels. This highlights that commonly used metrics are not

sufficient enough for defect prediction.

Lastly, defect predictors based on static code attributes are calculated using static

analysis, since they do not require the execution of code. An advantage of static code

 6

attributes is that they can be easy, quickly and automatically collected from the source

code, even if no other information is available (Turhan et al. 2009). By contrast, process

metrics that are widely introduced and based on information extracted from software

archives are among the most expensive ones to collect. These process metrics quantify

aspects of software development process such as changes of source code, and ownership

of source code files that may be unavailable or hard to characterize especially in new

projects and projects without perfect historical records. In practice, employing defect

prediction technique should not be expensive in term of time for both data collection and

constructing the prediction models themselves (Moser, Pedrycz, and Succi 2008).

To bridge the gap between program understandability and features used for defect

prediction, this dissertation proposes a novel set of cognitive complexity metrics by

utilizing program slicing to predict defects. Program slicing is a reduction technique that

traces the data and control dependencies for determining only those parts of the original

program that are relevant to the computation of a given feature of interest (Weiser 1984).

Program slicing has been successfully employed for program comprehension during

different maintenance tasks such as testing and debugging (Alomari, Collard, and Maletic

2014; Meyers and Binkley 2007; Counsell, Hall, and Bowes 2010). A program slice

consists of all the statements that may influence the value of a specific variable at a given

program point (Horwitz, Reps, and Binkley 1988; Ferrante, Ottenstein, and Warren 1987).

Specifically, we compute program-slicing metrics based on forward, static, non-

executable, inter-procedural program slice for each variable in a system and then utilize

these features to train a defect prediction model.

 7

Unlike straightforward code metrics based on line counts and statement counts,

slice-based cognitive complexity metrics have the potential to consider more insightful

code properties based on program behaviors, as captured by program slices and obtained

from program analysis and points-to analysis. The slice-based metrics give different

weights to each statement based on their significance in the control dependence and flow

dependence in the program. For example, a while predicate that encloses multiple

statements will contribute more than one control dependence in slice-based cognitive

complexity metrics, while in code metrics it typically contributes only one source code

line.

Previous work on the computation of program slices is most often been based on

the notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984) or one

of its variants, e.g., a System Dependence Graph (SDG) (Liang and Harrold 1998).

Unfortunately, all these approaches suffer from scalability and computational issues due to

the fact that building the PDG is complicated in terms of time, space, and data related

operations. Consecutively, the use of program slicing approaches in academia and industry

has been somewhat limited over years. However, with the emergence of the lightweight

and highly scalable slicing tool namely srcslice (Alomari et al. 2014; Newman et al. 2016),

program slicing can be used to address a number of applications and problems that in

practice cannot be (or are extremely costly) addressed with other heavyweight slicing

approaches. srcslice eliminates the time and effort needed to build the entire PDG of the

program by combining a text-based approach with a lightweight static analysis

infrastructure that only computes dependence information as needed (aka on-the fly) while

 8

computing the slice for each variable in the program (Alomari et al. 2014; Newman et al.

2016).

In this dissertation, an empirical investigation is performed to determine if

cognitive complexity correlates with, and predict defects, on parts of the version history of

10 datasets extracted from 7 open-source systems. That is, to determine their effectiveness

in helping practitioners find defects when taking into account the effort needed to test or

inspect the code. Like other work on defect prediction, machine learning techniques are

used to build regression models from the metric data applied to older versions of a system.

This allows evaluation of the prediction models on more recent versions of the system.

Additionally, we adapt the most commonly used code metrics and process metrics,

including size, structural complexity, Halstead’s, line changed, and function changed as

the baseline metrics. We first employ correlation analysis to analyze the relationships

between slice-based metrics and defect proneness. Then, build multivariate prediction

models to investigate the prediction ability of slice-based metrics in defect-proneness

(regression models). Finally, we build multivariate prediction models using baseline

metrics to examine the effectiveness of slice-based metrics compared to the baseline code

and process metrics. In order to obtain comprehensive performance evaluations and ensure

that the conclusions that we draw about our models are robust, we evaluate the

effectiveness of prediction using the out-of-sample bootstrap validation technique, which

has been shown to yield the best balance between the bias and variance (Tantithamthavorn

et al. 2017).

 9

1.2 Research Questions

To achieve the goal of this dissertation, we attempt to answer the following two

research questions:

RQ1. Do slice-based cognitive complexity metrics significantly correlate to

defects?

RQ2. Do slice-based cognitive complexity metrics contribute to the prediction of

the probability of defects?

The purpose of these questions is to investigate whether cognitive complexity

metrics can effectively lead to significant relationship to defect prediction. These questions

are critically important to both software researchers and practitioners, as they help to

answer whether slice-based cognitive complexity metrics are of practical value. We choose

to use defects as one widely used indicator of software quality and known as a result of

comprehension difficulty.

1.3 Contributions

The contributions of this research are relevant for academic and practical activities

as follow:

- A new set of slice-based cognitive complexity metrics that capture more fine-

grained program properties and pay special attention to interactions between source

code elements. These metrics measure static code attributes that can be collected in

an easy, quickly and automatically process, even if no other information is

available. While others have proposed slicing as a means for defect prediction

(Black et al. 2009; Pan, Kim, and Jr 2006; Black et al. 2006), there is no other work

 10

that provides empirical results of the use on realistically sized software systems and

indicates evidence of cognitive complexity.

- This work is one of the first that empirically studies the relationship between

program understandability and the probability of defects. We validate the

correlations between slice-based cognitive complexity metrics and defect-

proneness. Results show that most slice-based metrics are statistically related to

defect-proneness in an expected direction.

- In a thorough large-scale empirical investigation, we compare slice-based metrics

with the most commonly used code and process metrics including size, structural

complexity, Halstead’s metrics, line changed, and function changed. Results show

that slice-based metrics measure essentially different quality information than the

baseline code metrics measure and the metrics in general outperform the most

commonly used code and process metrics in defect proneness prediction.

- The study provides valuable data in an important area for which there is limited

experimental data available. For our analysis, we collect data from industry and

made it publicly available for the use of other researchers and practitioners.

- As a practical contribution, we believe that our analysis and the proposed

methodology allow the construction of defect predictors even for projects with no

local defect data is available.

- Lastly, practitioners can easily adopt the proposed metrics for defect prediction as

computing them is scalable to large systems. Generally, program slicing time

consuming to compute, however here we take advantage of a lightweight high

 11

scalable and publicly available program slicing approach to compute the necessary

information.

1.4 Organization

The following is an overview of the chapters that appear in this dissertation:

CHAPTER 2 provides an overview of what defects are, why they are a problem

and how they are currently predicted. It gives the background of common process of

software defect prediction that relies on machine learning models.

CHAPTER 3 describes program slicing in more detail and how this relates to the

work carried out in this research.

CHAPTER 4 introduces the proposed slice-based cognitive complexity metrics and

describes the methodology for the work undertaken in computing the metrics. It discusses

the use of srcSlice tool to collect analysis data and extract slice-based metrics.

CHAPTER 5 discusses the process used to create the corpus and how we extract

defects data, baseline metrics and slice-based metrics.

CHAPTER 6 explains the experimental design and the techniques used to build

various statistical prediction models and identify the statistical measures for validating the

association between program slicing and defective modules.

CHAPTER 7 provides statistical results to the research questions from applying

different models and discusses the potential impact of these results across defect prediction.

CHAPTER 8 discusses the research threats to validity and looks at specific types

of validity threats and ways used to avoid them.

 12

CHAPTER 9 concludes this dissertation and highlights future directions of this

research.

1.5 Publication Notes

CHAPTER 4 is published at the 35th IEEE International Conference on Software

Maintenance and Evolution (ICSME) (Alqadi 2019). CHAPTER 5, CHAPTER 6, and

CHAPTER 7 are published at the 27th IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER) (Alqadi and Maletic 2020).

 13

BACKGROUND AND RELATED WORK

This chapter defines the term defect, describes process of defect prediction, and

summarizes the methods and metrics have been used for prediction. It highlights the current

limitations present in defect prediction and how this can potentially be overcome.

2.1 Software Defect Prediction

IEEE defines a defect within software as “an imperfection in a software product

where the product does not meet its requirements or specifications”. Defects appear as the

result of errors made during software creation. For a defect to be known as a fault the error

must be discovered during software execution. A defect is not known as a fault if it is

detected during testing, or inspection before executing the software (“IEEE Standard

Classification for Software Anomalies” 2010). Figure 2.1 is a diagram taken from (“IEEE

Standard Classification for Software Anomalies” 2010) that presents the relationship

between problems, errors, defects and faults as a UML class diagram. The diagram shows

that a failure could be the result of problem with the system and a failure could cause one

or many problems. A fault is a specific type of defect that is discovered during the software

execution and could cause one or more failures.

 14

Figure 2.1: A diagram depicting the relationship between problems, failures, faults,

and defects (“IEEE Standard Classification for Software Anomalies” 2010).

Within the context of the software process, there is no distinction between fault and

defect. Both terms imply a quality shortcoming that is encountered after the software has

been delivered to end-users (or to another activity in the software process) (Pressman

2015). These different issues are interdependent and connected to each other. Usually,

occurrence of one leads to the introduction of other, which together impacts the

functionality of the software. Additionally, in the general consensus within the software

engineering community, the point in time that the problem is discovered has no effect on

the term used to describe the shortcoming. This means that defects, errors, faults, and bugs

are all synonymous. This same nomenclature is followed in this dissertation.

There are many reasons why defects arise in software. A software defect can be the

result of inadequate planning and specifications, poor design or coding practice, use of

immature technology, or incompatibilities with an underlying level. While some defects

are trivial, some other defects can cause major consequences. Software failures can be

devastating to company value and reputation. Pressman pointed out in his book “Software

Engineering” that the earlier a defect is fixed, the less cost involved in fixing said defect.

He shows that once a piece of software makes it into the field, the cost of fixing a defect

can be up to 100 times as high as it would have been during the development stage

 15

(Pressman 2015). Defective code can also arise the cost of litigation from irate customers

suing suppliers for poorly implemented systems.

Defect prediction is therefore important as it indicates potential artifacts that could

contain defects, allowing resources to be assigned to these artifacts of a software system

that have a greater propensity to defects. Defect prediction models use software metrics

on which to base their decisions. Software metrics are a measure of some property of

particular software modules that can represent a system, a software component (or

package), a source code file, a class, a function (or method), and/or a code change

according to prediction granularity.

2.2 Software Defect Prediction Process

The common process of software defect prediction relies on machine learning

models. Figure 2.2 shows a typical prediction process commonly used in the literature

(Bacchelli, D’Ambros, and Lanza 2010; Bird et al. 2011; D’Ambros, Lanza, and Robbes

2012; Nam 2015). The key insight behind these models is learning from software evolution

history. Most software uses software configuration management (SCM) systems to record

the evolution of a software project. Recorded data includes change history, change log

messages, and bug fixes that cover years of data and can be a useful resource for learning

from previous defects and predicting the new ones.

Software defect prediction relies on three main components; dependent variables,

independent variables and a model. The first step in building a prediction model is to collect

instances and history information from software archives such as version control systems

(commit messages), issue tracking systems, email archives, and so on. Instances can

 16

represent different granularity such as system, a software component (or package), a source

code file, a class, a function (or method), or a code change level. Processing the raw data

falls into two folds:

Figure 2.2: Common process of software defect prediction.

1. Labeling instances as buggy/clean or defects count. Defects data are the

model dependent variables.

2. Extracting metrics (features) to determine useful patterns in bug fix or

occurrence that can be applied for prediction. Metrics are the independent

variables, which can describe the software code, how it has changed or who

changed it. Independent variables come mostly in two forms, software code

metrics; those that can be derived from the software artifact, and process

metrics; metrics that measure the change process of software artifact over

time.

After generating the corpus, i.e., instances with metrics and labels, preprocessing

techniques can be applied which are common in machine learning. Such techniques used

in defect prediction studies include feature selection, data normalization, and noise

 17

reduction (Zhang et al. 2014; Nam et al. 2017; Tantithamthavorn et al. 2018).

Preprocessing is an optional step and were not applied on all defect prediction studies, e.g.,

(D’Ambros, Lanza, and Robbes 2010; Zimmermann and Nagappan 2008). The final step

is training a prediction model, so the model can predict whether a new instance has a bug

or not. The prediction for defect-proneness (buggy/clean) of an instance is based on binary

classification, while that for the defects count in an instance is based on ranking.

The model contains the rule(s) or algorithm(s) that predict the dependent variable

from the independent variables. These rules can be as simple as the number of independent

variables in the model or be as complicated as decision trees and regression techniques.

Decision tree creates a graph of decisions based on the chance of an event happening while

regression technique seeks to determine best fit of independent value(s) based on a

dependent value(s). Defect prediction modeling is an important area of research and the

subject of many previous studies. A study by Hall et al. identified over 200 defect

prediction studies published and the models/metrics used to carry out defect prediction

(Hall et al. 2012).

2.3 Dependent Variables (Defects Data)

In defect prediction, the dependent variables are the variables that indicate whether

an artifact is defective or not. The dependent variables can be counts (i.e. the number of

defects in an artifact) or categorical (i.e. an artifact is defective or not). A defect can come

in two forms - a pre-release or a post-release defect (“IEEE Standard Classification for

Software Anomalies” 2010). A pre-release defect is one that is found and fixed during

 18

development and testing before a product is released while a post release defect manifests

itself when a customer experiences a failure with the product.

Machine learning models can predict the dependent variables to forecast if a

module is defective or not. This result can then be tested to examine the power of the

forecast by determining different kinds of statistical measures such as the recall and

precision of the model. Precision and recall are measures of relevance of the data used.

Precision is a measure of the accuracy of the model used to predict defects (i.e. of all the

instances predicted defective, how many are actually defective). Recall is the measure of

relevant retrieval of instances (i.e. how many instances are identified by the model as

defective out of all those defective instances that should have been returned). Since

precision and recall have trade-offs, f-measure, which is a harmonic mean of precision and

recall, can be used to compare different prediction models. It is one of the most frequent

measures used in defect prediction classification to compare between different

classification models.

2.4 Independent Variables (Software Metrics)

Many research studies in a decade have focused on proposing new metrics to build

statistical prediction models. Widely studied metrics can be categorized into two kinds:

code metrics and process metrics. Sections 2.4.1, 2.4.2, and 2.4.3 detail these independent

variables, describing which have been used, why they were used and how effective they

have been.

 19

2.4.1 Source Code Metrics (SCM)

Source code metrics (SCM) measure how source code is complex and are directly

collected from existing source code. The main assumption of the code metrics is that code

with higher complexity can be more bug prone. To measure code complexity, researchers

proposed various metrics. These metrics and the studies they appear in are described below.

2.4.1.1 Source Lines of Code (SLOC)

SLOC was introduced as a simple size measure that might represent the complexity

of software system and indicate potential defective areas. There are two major types of

SLOC measures: physical SLOC (LOC) and logical SLOC (LLOC). LOC measures the

size of a software program by counting the number of lines in the text of the program's

source code. Specific definitions of physical SLOC measure vary, some studies include

comment lines, some include blank lines and others omit one or both of these lines.

However, Rosenberg showed that the format of the LOC was irrelevant as they all correlate

with each other (Rosenberg 1997). Other studies use logical lines of code (LLOC), but their

definitions are tied to specific computer languages, e.g., for C-like programming languages

LLOC is the number of statement-terminating semicolons. Unfortunately, SLOC measures

are often stated without giving their definition, and LLOC can often be significantly

different from LOC.

 One of the first defect prediction models proposed by Akiyama was built on SLOC

in 1971 (Akiyama 1971). Akiyama built a simple regression model using (SLOC) for

determining the number of defects in the system. Using SLOC has some advantages; it is

very quick to calculate and easily transferred across different languages. Fenton and

 20

Ohlsson analyzed pre and post release defects of a large communications system (Fenton

and Ohlsson 2000). They found that LOC was good at ranking the most fault-prone

modules. Zhang confirmed the ranking ability of LOC discovered by Fenton and Ohlsson

and showed that LOC can be useful predictors of defects at both package and file level

(Zhang 2009). Ostrand et al. proposed a simple LOC based model to predict defect density

in a large industrial system (Ostrand, Weyuker, and Bell 2005). Their results reveal that a

model based on LOC was a good indicator for predicting defects, with the model finding

around 75% of defects.

Bell et al. conducted a case study by using the Ostrand et al. model on a different

software system, an automated voice response system (Bell, Ostrand, and Weyuker 2006).

In this study, LOC model was not effective as it had been for the other system: 55% versus

75%. Gyimothy et al. found that LOC was a very significant indicator of defects by

performing regression analysis on open source web and e-mail suite called Mozilla

(Gyimothy, Ferenc, and Siket 2005). Subramanyan and Krishnan also found that LOC was

significant when they analyzed a commercial Java/C++ system (Subramanyam and

Krishnan 2003). Afterwards, LOC was used in most defect prediction papers to build a

model (D’Ambros, Lanza, and Robbes 2012; Hata, Mizuno, and Kikuno 2012; Lessmann

et al. 2008; Shihab et al. 2011; Wang, Liu, and Tan 2016; Nam et al. 2017).

Hall et al. reviewed 17 studies that used LOC for building defect prediction models

(Hall et al. 2012). While LOC is very easy to collect, a disadvantage is that it measures

only one dimension of the code and may only show limited insight into potential sources

of defects. Measuring just the size is a coarse-grained feature and does not take into account

 21

the finer detail involved, for example how complex the code is or how the code interacts

with the system.

2.4.1.2 Complexity Metrics

Complexity metrics were introduced to provide a measure of how difficult software

code may be to understand and maintain. Halstead metrics and McCabe’s complexity

measure (Halstead 1977; McCabe 1976) were two of the first complexity measures

introduced. McCabe’s cyclomatic complexity (CC) is based on the number of decisions in

a program (McCabe 1976). CC measures the human comprehension of the code by

identifying the number of distinct logical paths through a given unit. As the number of

paths increase, it increases the difficulty of testing a module - more test cases are required

to cover the various conditional logic paths through the system. High cyclomatic

complexity tends to indicate high code complexity and therefore high probability of defects

being present.

It is calculated by developing a control flow graph of a particular module. A control

flow graph is a representation of all linearly independent paths that could be traversed

through a program during its execution (Allen 1970). The nodes are the collection of

instructions and edges indicate the direction of flow that which set of instructions is to be

executed next. Figure 2.3 shows some examples of control flow graphs in which the nodes

represent basic blocks and the edges represent control flow paths. The number of nodes in

a program (N), the number of edges (E), and the number of exit node, i.e., the number of

disconnected parts of the flow graph (P), are the main components used to calculate the

 22

cyclomatic complexity. Equation 2.1 shows the cyclomatic complexity (V(G)) of any

control flow graph (G).

!(#) = & − (+ 2+																												(2.1)

Ohlsson and Alberg adopted McCabe’s cyclomatic metric to predict defect-prone

modules in a telecommunications system and wanted to predict which modules could be

faulty before coding had already begun (Ohlsson and Alberg 1996). Ohlsson and Alberg’s

results showed that the metrics could predict the most fault prone modules in the design

phase. Other defect prediction studies (Menzies, Greenwald, and Frank 2007; Moser,

Pedrycz, and Succi 2008; Kim et al. 2011; Nam, Pan, and Kim 2013; Nam et al. 2017) also

used McCabe’s cyclomatic metric to build a prediction model.

 (a) A simple control graph (b) If-then-else control flow graph (c) A more complicated control flow

 graph (As seen in (McCabe 1976))

V(G) = 1 - 2 + 2 = 1 V(G) = 4 - 4 + 2 = 2 V(G) = 9 - 6 + 2 = 5

Figure 2.3 : Examples of control graphs and their calculated complexity scores.

 23

Halstead created a set of metrics that measures how much “information” is in the

source code (Halstead 1977). Theses metrics consider the source code as a collection of

tokens, which can be classified as either operators or operands, and look at how many

tokens are used and how often they are used. By counting the tokens and classifying, which

are operators, and which are operands, the following base measures can be collected:

n1= Number of unique operators

n2= Number of unique operands

N1= Total number of operators

N2= Total number of operands

These four measures form the basis of Halstead metrics shown in Table 2.4.1.

Halstead metrics have been used popularly in many studies (Menzies, Greenwald, and

Frank 2007; Lessmann et al. 2008; Turhan et al. 2009; Zhang et al. 2016). Turhan et al.

used McCabe’s and Halstead alongside many other metrics to create a defect prediction

approach using cross-company and within-company data (Turhan et al. 2009).

There are lots of debates about the usefulness of code metrics as defect predictors

(Shepperd and Ince 1994; Fenton and Ohlsson 2000). Contrary, Menzies et al. confirmed

that code metrics are useful to build a defect prediction model (Menzies, Greenwald, and

Frank 2007). They also showed that how the attributes are used to build models is more

important than which particular attributes are used. However, according to Rahman et al.’s

study comparing code and process metrics, code metrics is less useful than process metrics

because of stagnation of source code metrics (Rahman and Devanbu 2013).

2.4.1.3 Object-Oriented (OO) Metrics

OO metrics emerged following the introduction of object-oriented programming

languages. One of the most popular and highly cited suites for measuring Object-Oriented

(OO) characteristics is Chidamber and Kemerer (CK) metrics suite (Chidamber and

Kemerer 1994). The authors developed a suite originally consists of 6 metrics calculated

for each class and focused on understanding object-oriented design complexity and how

complexity can impact on the development process. For the notion of defects prediction,

Metric Equation Description

Length ! = !1 + !2
The total number of operator occurrences and the total
number of operand occurrences. A size metric that is an
alternative to LOC.

Vocabulary & = &1 + &2
The total number of unique operator and unique operand
occurrences. High values indicate harder to read the code
and therefore difficult to maintain.

Volume ' = ! log! & A size metric that represents the size in bits.

Difficulty + = &1
2 	×	

!2
&2

Measures how difficult to handle the program, thus how
error prone it may be.

Level . = 1
+

A low-level score increases the program difficulty.

Effort / = + × '
Measures the amount of mental activity needed to
understand the program. The higher the metric the more
difficult the code is to maintain.

Content 0 = . − ' Language independent complexity metric.

Error
Estimate 2 = '

300	
This metric aims to predict the number of validation
bugs. 300 is the proportion of defects within the system.

Programming
Time 5 = /

18

The time (in minutes) needed to program a particular
module. 18 is a constant that reflects the number of
decisions a programmer will have to make per second.

Table 2.4.1: Halstead complexity metrics (Halstead 1977).

 25

the higher the complexity of a certain method and/or its class, the higher the potential for

errors presents in the certain method and/or its class. The six OO metrics described are

outlined below (Chidamber and Kemerer 1994):

1. Weighted Methods per Class (WMC) - WMC is a weighted sum of all the

methods defined in a class. The number of methods and the weight of these

methods indicate the amount of maintenance needed for the class. As of the

inheritance feature of OO, an increase in the number of methods and their

weight leads to increase in the impact on the children. Classes with high

number of methods are more likely to be application specific thus limiting

their reuse potential.

2. Depth of Inheritance Tree (DIT) - The DIT metric is the maximum length

from a given class to the root class in the inheritance hierarchy. High DIT

means high number of inherited methods thus increases the design

complexity and difficulty to predict behavior.

3. Number of Children (NOC) - NOC is the number of immediate subclasses

that have inherited from a given class. The greater the number of children,

the greater the likelihood of improper abstraction of the parent class.

4. Coupling Between Object classes (CBO) – CBO is a count of the number

of other classes to which a given class is coupled. It denotes the dependency

of one class on other classes in the design. A large amount of couples

reduces the reusability of a class and complicates modifications and testing.

 26

5. Response for a Class (RFC) - This is the count of methods that can be

invoked in response to a message received by an object in a given class. A

high RFC increase the testing effort and the overall design complexity of

the given class.

6. Lack of Cohesion in Methods (LCOM) - LCOM is a count of the number

of method pairs whose similarity is zero minus the count of method pairs

whose similarity is not zero within a class. The greater the amount of similar

methods, the more cohesive is the class. A lack of cohesion increases design

complexity, thereby increase the likelihood of errors.

Besides the CK metrics, other object-oriented metrics based on volume and

quantity of source code, have been proposed as well (Abreu and Carapuça 1994). As size

metrics, D’Ambros et al. identified number of metrics that simply counts the number of

instance variables, methods and then build defect prediction models. Table 2.4.2 shows

OO metrics proposed by (D’Ambros, Lanza, and Robbes 2010).

Basili et al. investigated OO metrics on eight information management systems

written in C++ to see how effective they were as predictors (Basili, Briand, and Melo

1996). Basili et al. concluded that five out of the six CK metrics were useful predictors

during the early phase of development. Similar types of analysis have been performed by

(Briand, Daly, and Wust 1999; Chidamber, Darcy, and Kemerer 1998; Li and Henry 1993).

Each of the studies was performed on industrial C++ projects, except for Li and Henry’s

study, which was done in Ada. Studies concluded that at least one or more of the metrics

 27

is good at predicting defects. Emam et al. used CK metrics along with metrics from the

(Briand, Daly, and Wust 1999) to investigate different defect prediction models on a

commercial Java application (Emam, Melo, and Machado 2001). Emam et al. results

showed that their model had high accuracy and that the coupling metrics had the strongest

association with fault proneness.

Metric Description

FanIn Number of other classes that reference the class

FanOut Number of other classes references by the class

NOA Number of attributes

NOPA Number of public attributes

NOPRA Number of private attributes

NOAI Number of attributes inherited

NOM Number of methods

NOPM Number of public methods

NOPRM Number of private methods

NOMI Number of methods inherited

Table 2.4.2: Class level OO metrics described in (D’Ambros, Lanza, and Robbes

2010).

Afterward, many defect prediction studies for object-oriented programs have used

the OO metrics to build prediction models (Zimmermann and Nagappan 2008; Kamei et

al. 2010; Lee et al. 2011; He et al. 2012; Nam et al. 2017). Hall et al. surveyed 42 studies

 28

that utilized OO metrics in defect prediction (Hall et al. 2012). Compared to LOC, the OO

metrics measure some finer grained code features and identify more of those features.

2.4.2 Process Metrics

Process metrics are extracted from software archives such as version control

systems and issue tracking systems that manage all development histories. Process metrics

quantify many aspects of software development process such as changes of source code,

ownership of source code files, developer interactions, etc. Usefulness of process metrics

for defect prediction has been proved in many studies (Rahman and Devanbu 2013). Main

process metrics include:

2.4.2.1 Change Metrics

Change metrics are to measure the extent of changes in the history recorded in

version control systems. For example, we can count the number of revisions/bug-fix

changes/refactorings of a file and the number of authors editing a file. Graves et al.

investigated a telephone switching system that consisted of over 1.5 million LOC (Graves

et al. 2000). The authors proposed seven new measures derived from the revision history -

number of past faults, number of deltas (i.e. the amount of previous changes), the average

age of the code, the development organization, number of developers, how modules are

changed together, and a weighted time damp model. The weighted time damp model

computes a module’s fault potential by adding contributions from each change. A

contribution is the level of fault potential, if the change is recent and large then a large fault

potential is computed. Graves et al. concluded that the sum of the contributions (the

weighted time damp) was the best predictor of faults in a system while the number of

 29

developers and the extent to which a module is connected with another module have no

influence on the defect potential (Graves et al. 2000).

Ostrand et al. created a negative binomial regression model that predicts number of

faults for each file of a release (Ostrand, Weyuker, and Bell 2005). The model predictors

are based on characteristics such as the file size, whether the file was new to the release, or

changed or unchanged from the previous release, the age of the file, the number of faults

in the previous release, and the programming language. The model was analyzed on 15

different releases of an industrial system. The evaluation showed the model to be very

efficient with the top 20% of the files identified as most defective containing at least 84%

of the faults (Ostrand, Weyuker, and Bell 2005). Bell et al. used the model described by

Ostrand et al. to investigate an automated voice system and attained similar results to the

previous study (Bell, Ostrand, and Weyuker 2006). Later, Weyuker et al. tried to generalize

Ostrand et al. model to be able to apply to different software systems without extensive

statistical modeling expertise and effort (Weyuker, Ostrand, and Bell 2006).

Hassan and Holt presented a top-ten list approach, which validated heuristics about

the defect proneness of the most frequently/recently modified areas and the most

frequently/recently fixed areas to show the top 10 subsystems that are susceptible to a fault

(Hassan and Holt 2005). They used a cache system to track the location of such areas, thus

managers can focus testing resources to the subsystems suggested by the list (Hassan and

Holt 2005). Kim et al. followed the work of Hassan and Holt and wanted to show that bugs

occur in bursts of related faults (Kim et al. 2007). The authors’ analysis includes seven

different software systems and used a BugCache to hold the locations of the last known

 30

faults and FixCache to hold the locations of where the bug has been fixed. Kim et al. claim

that when a fault is fixed in a location, there is a high chance that a bug will appear there

in the future (Kim et al. 2007).

Schröter et al. conducted empirical study on 52 Eclipse plug-ins and used

information of past and post-release failures to predict future failures at both file and

package level (Schröter, Zimmermann, and Zeller 2006). Schröter et al.’s results showed

that usage relationships between components can predict failure-prone components, i.e.,

information of specific use of packages in one failed file/package could be used to predict

future failures in another file/package. However, the results on file level were not as good

as on package level (Schröter, Zimmermann, and Zeller 2006).

2.4.2.2 Code Churn

Code churn (i.e. the number of modified lines in a file or module per commit) has

been researched extensively by a number of researchers. Nagappan and Ball proposed 8

relative code churn metrics measuring the amount of code changes (Nagappan and Ball

2005). For example, one of the metrics is calculated by churned LOC (the accumulative

number of added and deleted lines between a base version and a new version of a source

file) divided by total LOC. Other metrics consider various normalized changes such as

deleted LOC divided by total LOC and the number of changed files in a component divided

by files count and so on. In case study, Nagappan and Ball proved that the relative churn

metrics are good predictors to explain the defect density of a binary and bug-proneness

(Nagappan and Ball 2005).

 31

Moser et al. extracted 18 churn metrics (Table 2.4.3) from three different releases

of Eclipse (2.0, 2.1 and 3.0) to conduct a comparative analysis between code and change

metrics (Moser, Pedrycz, and Succi 2008). Moser et al.’s change metrics include added and

deleted LOC similar to relative code change churn. However, Moser et al.’s change churn

metrics did not consider any relativeness by the total LOC and the files count but consider

average and maximum values of change churn metrics. Moser et al. results support their

hypothesis that change metrics are better predictors than code metrics to predict the

presence/absence of bugs in files.

Their conclusion also showed that files with a high number of revisions and files

with a high number of bug fixing activities are the best indicators of potential defects while

heavily edited files or files committed in a large CVS transaction are less likely to be faulty

(Moser, Pedrycz, and Succi 2008).

Metric Description

REVISIONS Number of revisions of a file

REFACTORINGS Number of times a file has been refactored

BUGFIXES Number of times a file was involved in bug-fixing

AUTHORS Number of distinct authors that have committed the file into

the repository

LOC_ADDED Sum over all revisions of the lines of code added to a file

MAX_LOC_ADDED Maximum number of lines of code added for all revisions

AVG_LOC_ADDED Average number of lines of code added for all revisions

LOC_DELETED Sum over all revisions of the lines of code deleted from a file

MAX_LOC_DELETED Maximum number of lines of code deleted for all revisions

AVG_LOC_DELETED Average number of lines of code deleted for all revisions

CODECHURN Sum of (added lines of code - deleted lines of code) over all

revisions

MAX_CODECHURN Maximum CODECHURN for all revisions

AVG_CODECHURN Average CODECHURN for all revisions

MAX_CHANGESET Maximum number of files committed together to the

repository

AVG_CHANGESET Average number of files committed together to the repository

AGE Age of the file in weeks

Table 2.4.3: List of change metrics used in (Moser, Pedrycz, and Succi 2008).

 33

2.4.2.3 Change Burst

Change burst which is a sequence of consecutive changes, have been investigated

as predictors of defects by looking at code churn over a set number of days with a specified

gap size. Sliwerski et al. showed that the larger the change to a file, the more likely that

change is going to need fixing in the future (Śliwerski, Zimmermann, and Zeller 2005).

The study findings also revealed that it is three times more likely that a fix in an Eclipse

project induces a further fix in the future compared to an enhancement. This finding was

also observed by Purushothaman and Perry as they showed that nearly 40% of the changes

made to correct code introduced a defect into the software (Purushothaman and Perry

2005). Similarly, the authors found that small changes to code were unlikely to introduce

fault in the module as a one-line change has less than 4% probability of causing a fault.

Nagappan et al. investigated 3,404 Windows Vista binaries exceeding 50 million LOC.

Change bursts were shown to have high predictive power in terms of precision and recall

(Nagappan et al. 2010).

2.4.2.4 Change Entropy

This metric was investigated by applying Shannon’s entropy to capture how

changes are complex (Hassan 2009). Hassan measures the complexity of the change

process (HCM) by assessing how much modifications are scattered across space and time.

The metrics derived from the location of the changes made; scattered changes could be

more complex to manage, and thus more likely to induce defects. To validate the HCM,

Hassan built statistical linear regression models based on HCM, the number of previous

modifications, and previous faults. The evaluations on six open-source projects showed

 34

that prediction models build using HCM outperform those using the other two change

metrics (Hassan 2009).

A recent work that considers to what extent developers apply scattered changes in

the system is by Di Nucci et al. (Nucci et al. 2015; 2018). The authors exploited the role of

structural and semantic scattering of changes performed by a developer in bug prediction.

Their findings demonstrate the superiority of the bug prediction model built using

scattering metrics with respect to other baseline models including the change entropy by

Hassan (Hassan 2009). Moreover, they show that the proposed metrics are orthogonal with

respect to other predictors.

2.4.2.5 Code Metrics Churn (CHU) and Code Entropy (HH)

These two metrics are proposed by D’Ambros et al. (D’Ambros, Lanza, and Robbes

2010). The authors conducted an extensive comparisons study of the newly proposed

metrics and number of existing bug prediction approaches using source code metrics,

change history metrics, past defects and entropy of change metrics. These approaches have

been studied and introduced in previous subsections (Nagappan and Ball 2005; Hassan

2009). In contrast to code churn metrics based on the amount of lines (Nagappan and Ball

2005), CHU measures the change in biweekly basis of code metrics such as CK metrics

and OO metrics. Thus, CHU captures the extent of changes more precisely than code

change churn that computes the amount of changes between a base revision and a new

revision.

While change Entropy is computed based on the count of file changes (Hassan

2009), code entropy (HH) is computed based on the count of involved files when a certain

 35

code metric is changed. In the comparison evaluation, D’Ambros et al. concluded that CHU

and HH metrics led to good prediction results on all subjects used in their experiments.

However, these novel metrics are limited since they require heavy computation resources

and data because they track biweekly changes from version control systems (D’Ambros,

Lanza, and Robbes 2010).

Metric Description

POP-NOM The number of e-mails discussing a class.

POP-NOCM The number of characters in all e-mail discussing a class.

POP-NOT The number of e-mail threads discussing different topics for a class.

POP-NOMT The number of e-mails in a thread discussing a class in at least one of e-

mails in a thread.

POP-NOA The number of authors motioning about the same class.

Table 2.4.4: Popularity metrics (Bacchelli, D’Ambros, and Lanza 2010).

2.4.2.6 Popularity Metrics

This group of metrics were proposed by Bacchelli et al. by analyzing e-mail

archives by developers in a group mailing list (Bacchelli, D’Ambros, and Lanza 2010).

The intuition is that problematic classes are more often discussed in email conversations

than classes that have fewer problems. Table 2.4.4lists the popularity metrics. The

extracting metrics from e-mail archives is novel but their evaluation of the metrics shows

 36

that popularity metrics themselves did not outperform other code and process metrics

(Bacchelli, D’Ambros, and Lanza 2010).

2.4.2.7 Ownership and Authorship Metrics

Ownership and authorship were discussed by Bird et al. who examined the

relationship between ownership and quality. They examined the effects of ownership on

Windows Vista and Windows 7 (Bird et al. 2011). They proposed four ownership metrics:

the number of minor contributors, the number of major contributors, the total number of

contributors, and the proportion of ownership for the contributor with the highest

proportion of ownership. They concluded that a high ratio of ownership leads to less

defects. A similar study by Rahman and Devanbu examined the effects of ownership and

experience on quality in several open-source projects, using a fine-grained level of analysis

based on fix-inducing code-fragments (Rahman and Devanbu 2011). The interesting

finding is that QA should be focused on code files touched by less experienced developers

and that a developer’s specialized experience in a target file is more important than general

experience.

2.4.3 Finer Grained Techniques

2.4.3.1 Text Analysis

Apart from code and process metrics, some defect prediction studies have used less

traditional independent variables that focused on finer grained details of the source code.

Some of these independent variables have been based on analyzing the text of the code.

Mizuno et al. used spam-filtering techniques to create a fault detection technique (Mizuno

et al. 2007). Mizuno et al.’s approach considered source code files as text files and used

 37

text-mining techniques used in spam filtering to identify problematic patterns in the text

files. This framework is based on the fact that spam e-mails usually include particular

patterns of words or sentences. From a viewpoint of source code, similar situation usually

occurs in faulty software modules. That is, similar faults may occur in similar contexts.

they guessed that faulty software modules have similar pattern of words or sentences like

spam e-mail messages. Their result showed that the technique was able to classify more

than 75% of modules correctly (Mizuno et al. 2007).

Binkley et al. used an information retrieval based defect prediction technique,

known as the QALP score to help identify potential defects (Binkley et al. 2007). The

QALP score measures the similarity between a module’s comments and its source code

using a cosine similarity. The results showed that, when used alongside LOC, the QALP

score improves fault prediction (Binkley et al. 2007). Later, Binkley et al. combined the

QALP score with two other metrics based on natural language processing of program’s

identifiers and found them helpful in predicting defects in files (Binkley et al. 2009).

Marcus et al. also proposed an information retrieval technique - latent semantic

indexing (LSI) (Marcus, Poshyvanyk, and Ferenc 2008). They used LSI to analyze the text

of source code to develop a class cohesion measure called C3. C3 measures how strongly

the methods of a class related to each other based on the analysis of the unstructured

information embedded in the source code, such as comments and identifiers. The measure

is inspired by the mechanisms used to measure textual coherence in cognitive psychology

and linguistics. The case study shows that the novel measure captures different aspects of

class cohesion compared to any of the existing cohesion measures. Marcus et al. were able

 38

to combine C3 alongside existing structural cohesion metrics to attain better defect

prediction than with structural cohesion metrics alone (Marcus, Poshyvanyk, and Ferenc

2008).

2.4.3.2 Code Smells

Abebe et al. used lexicon bad smells (LBS) in conjunction with software structure

metrics to improve defects detection (Abebe et al. 2012). Examples of poor-quality lexicon

are short terms identifiers (e.g., abbreviation or acronym) and meaningless terms (e.g., foo

and bar). Lexicon bad smells for identifiers has been shown to be associated with the

introduction of errors (Butler et al. 2009). Taba et al. proposed four anti-pattern metrics

(Taba et al. 2013). Antipatterns are specific design and implementation styles that can

identify poor system. They are usually introduced in software systems due to the lack of

knowledge or experience of developers when solving a particular problem. In their

evaluation with two open source projects, they found that design smells can be used to

predict faults as files that have design smells tend to have a higher density of faults than

other files and anti-pattern metrics could improve prediction performance in terms of f-

measure (Taba et al. 2013). A study by Palomba et al. proposed a smell-aware bug

prediction model. Their results indicated that the accuracy of a bug prediction model

increases by adding the code smell intensity as predictor (Palomba et al. 2016; 2017).

Padua and Shang investigated the exception handling anti-patterns and found them to have

significant relationship with defects (Pádua and Shang 2018).

 39

2.4.3.3 Network Analysis

Zimmermann and Nagappan presented a study with the Microsoft Windows 2003

server project (Zimmermann and Nagappan 2008). They applied network centrality

measures such as centralness, closeness, and betweenness to the static dependency graph

of Windows Server 2003 binaries to predict the probability and number of post-release

failures. The authors compared their model to models constructed by code and process

metrics. In their evaluation, network measure could predict more bug-prone binaries than

code and process metrics (Zimmermann and Nagappan 2008).

Petric and Grbac investigated finer grained software code structure that represented

with help of graph representations (Figure 2.4) , and subgraph frequencies (Petrić and

Grbac 2014). Through an empirical study of more than 30 releases of three open source

software systems, Petric and Grbac identified that the same set of sub-graphs of software

system is present across the system version, but different sets are present in different

software systems. Petric and Grbac were able to find some evidence between certain

subgraphs and defects (Petrić and Grbac 2014).

Various researches proposed metrics quantifying other aspects of software

engineering in order to model software quality. For example, Shihab et al. (Shihab, Bird,

and Zimmermann 2012) consider branching activities; Shang et al. (Shang, Nagappan, and

Hassan 2015) investigate logging characteristics, Zhang et al. (Zhang et al. 2012) examine

editing patterns, and McIntosh et al. (McIntosh et al. 2016) study code reviews.

 40

Figure 2.4: The three node subgraphs examined by (Petrić and Grbac 2014).

2.4.4 The Problem with Traditional Independent Variables

Most of the traditional independent variables (as described above) have been

extensively used in defect prediction techniques and showed metrics to correlate with the

number of defects. Despite all this research, Menzies et al. reported that existing defect

prediction models are thought to have reached a predictive performance ceiling and new

approaches are needed (Menzies et al. 2010).

One possible reason for the limit power could be that most of the metrics introduced

suffer from being very coarse grained with low capability that measure only a small sub-

set of code features. Gray et al. advocated that the coarse grained nature of such metrics

prevents machine learning algorithms from effectively differentiate between defective and

non-defective modules: if two modules have the same metric values, e.g., LOC, but they

have not been labeled the same in terms of their defectiveness, this will obstruct the

learning algorithm’s ability to learn (Gray et al. 2011). Gray et al. identified many modules

in the NASA datasets that have identical values across number of metrics but different

defectiveness labels. Kim et al. showed that the amount of noise in the data set affects the

 41

predictive power of a technique. Kim et al. highlighted that the current commonly used

metrics are not sufficient enough to differentiate modules for defect prediction (Kim et al.

2011).

Another problem with most of existing metrics is that metrics focus on syntactic

aspects of software modules, such as LOC, number of declarations, number of functions,

etc. It is known that software systems have well-defined syntax, which can be represented

by Abstract Syntax Trees (ASTs) (Hindle et al. 2012) and at the same time have semantics,

which is hidden deeply in source code (White et al. 2015). It has also been shown that such

semantic information is useful for tasks such as code completion, effort estimation and bug

detection (Li and Zhou 2005; Nguyen and Nguyen 2015; Alomari, Collard, and Maletic

2014; Tu, Su, and Devanbu 2014; Hindle et al. 2012). This semantic information should

also be useful for characterizing defects for improving defect prediction. Specifically, in

order to make accurate predictions, the metrics need to be discriminative: capable of

distinguishing one instance of code region from another. Additionally, most of these

metrics only focus on single elements, but rarely take the interactions between elements

into account (Zimmermann and Nagappan 2008). However, with the emergence of static

and dynamic bug localization techniques, the nature of defects has changed and today most

defects in bug databases are of semantic nature (Li et al. 2006).

 42

PROGRAM SLICING

One of the goals for this research is to investigate the use of slice-based metrics for

defect prediction as a mean of semantic view of the source code. Thus, this chapter outlines

how program slicing works, how it motivates the work in this dissertation and how it is in

favor for defect prediction. In general, slicing techniques are associated with different areas

of software engineering including system specifications (Wu and Yi 2004), software

architectures (Zhao 1998), and UML and state-based models (Bae and Chae 2008; Korel

et al. 2003). The key aspect of slicing in all these areas is when given a particular criterion,

all other elements of the domain, whether it is extraneous source code, or architecture

specifications or UML models, are eliminated, leaving just that portion that is relevant to

some specific element of that domain under study.

Program slicing in particular is the computation of the set of programs statements,

the program slice, which may affect or affected by the values computed at some point of

interest, referred to as a slicing criterion (Weiser 1984; Horwitz, Reps, and Binkley 1988).

Program slicing is a reduction technique that can reduce the total amount of source code to

be analyzed to a more manageable level without eliminating relevant pieces. The reason

for introducing program slicing by Weiser was to model the behavior that programmers

exercised during debugging task (Weiser 1981, 1982; Weiser 1984). It was observed that

many expert programmers when debugging start at the location where the fault is identified

 43

and then work backwards to consider what earlier statements might have led to this faulty

state. While working backwards, the programmer focuses attention only on statements that

could impact the errant line creating a "slice" of the program for analysis. Program slicing

supports this technique by eliminating any code statement not affecting the values

computed at a specified point in the program.

Weiser defined the slice as an executable program that preserved the behavior of

the original program. The algorithm traces the data and control dependencies by solving

data-flow equations for determining the direct and indirect relevant variables and

statements (Weiser 1981, 1982; Weiser 1984). Based on Weiser algorithm, a static program

slice S consists of all statements in program P that could influence the value of variable v

at point of interest p. The slice is defined for a slicing criterion – a pair <i, v>, where “i” is

a point of interest for slicing typically specified by a location in the program, and “v” is a

subset of program’s variables to be observed at statement “i”. The starting point is a specific

statement in the program and a variable state at that point in the program. Based on data

flow analysis, relevant statements are recursively processed working backwards in the

source code to extract the slice.

3.1 Slicing Example

 Figure 3.1 shows an example of program (a) and a valid slice (b) of the program

with respect to criterion <11, product>. The statements in the backward slice of the output

statement write (product) in line 11, are shown in (b). The value of variable product

impacted by lines 1, 2, 4, 5, 7, 8, and 9 in the example code.

 44

Figure 3.1: (a) An example program (b) A slice of the program w.r.t. criterion<11,

product>

3.2 Program Slicing Techniques

Program slicing has motivated a large body of research for different applications in

software engineering, and has been proposed to guide programmers during many aspects

of the software development life cycle, including software maintenance (Gallagher and

Lyle 1991; Feng and Maletic 2006), debugging (Agrawal, Demillo, and Spafford 1993;

Weiser and Lyle 1986), program comprehension (Korel and Rilling 1997; 1998; Lucia,

Fasolino, and Munro 1999), testing (Binkley 1998; Korel and Rilling 1998; Binkley 1998;

Harman and Danicic 1995; Gupta, Harrold, and Soffa 1992), and bug classification (Pan,

Kim, and Jr 2006).

These applications require different properties of slices; thus, a number of different

slicing definitions have been proposed after Weiser’s. Various surveys of the slicing

literature (Tip 1994; Lucia 2001; Xu et al. 2005; Silva 2012; Androutsopoulos et al. 2013)

covered these definitions in detail. Interestingly, each survey presents the definitions from

Original program
1 read(n);
2 i = 1;
3 sum = 0;
4 product = 1;
5 While i < = n {
6 sum = sum + i;
7 product = product * i;
8 i = i + 1;
9 }
10 write(sum);
11 write(product);

(a)

Criterion: <11, product>
1 read(n);
2 i = 1;

4 product = 1;
5 While i < = n {

7 product = product * i;
8 i = i + 1;
9 }

11 write(product);

(b)

 45

a slightly different perspective. These techniques can be broadly distinguished according

to the type of slices such as the following:

3.2.1 Static and Dynamic Slicing

Static slice is computed without making assumptions regarding a program’s inputs. It

includes all statements that potentially affect/affected by the value of a variable at a

particular point of interest in the program (Tip 1994; Xu et al. 2005). This captures all

possible executions of the value of a variable. Contrary, dynamic slice is a set of statements

that affect the value of a variable for one specific input. Dynamic data dependence

information is traversed to compute the slices. This information is constructed using an

execution trace of the program, thus only the dependencies that occur in a specific

execution of the program are taken into account (Tip 1994; Xu et al. 2005). Dynamic slice

gives a better understanding of programs and their executions for a particular input that is

useful for applications such as debugging and testing (Feng and Maletic 2006; X. Zhang,

Gupta, and Gupta 2007).

3.2.2 Direction of Program Traversal

Program slicing can be either backward or forward (Xu et al. 2005). A forward slice

contains all the statements and control predicates dependent on the slicing criterion, a

statement being “dependent” on the slicing criterion if the values computed at the statement

depend on the values computed at the slicing criterion, or if the values computed at the

slicing criterion determine the fact if the statement under consideration is executed or not.

Thus, a forward slice includes all statements affected by changing the value of the slicing

variable. In contrast, a backward slice is computed by gathering statements and control

 46

predicates by way of a backward traversal of the program’s control flow graph (CFG) or

program dependence graph (PDG), starting at the slicing criterion. Technically, these slices

are called backward static slices and contains all the statements in the program that may

affect the value of variable (Xu et al. 2005).

3.2.3 Inter-Procedural Versus Intra-Procedural

The slice can be characterized in how it handles slicing across procedure boundaries

called inter-procedural slicing, or locally, called intra-procedural slicing slicing (Horwitz,

Reps, and Binkley 1988). Weiser (Weiser 1984) introduced inter-procedural program

slicing, and extended his previous intra-procedural work proposed in (Weiser 1981).

3.2.4 Executable Slice

A slice is executable if the statements in the slice form a syntactically correct

program that can be executed (Xu et al. 2005). Based on slice definition stated earlier, if

the slice is computed correctly (safely), the result of running the executable slice produces

the same result for variables in V at p for all inputs.

3.3 Program Dependence Analysis

All slicing approaches share a common factor that is they are based on the notion

of a Program Dependence Graph (PDG), or one of its variants, e.g., Control-Flow Graph

(CFG) and Def/Use Graph, to compute the slice. Statement s2 statically control-depends

on s1 if s1 is a conditional statement and can influence whether s2 is executed (Podgurski

and Clarke 1990). Statement s2 statically data-depends on s1 if there is a sequence of

variable assignments that potentially propagate data from s1 to s2 (Podgurski and Clarke

1990). The Control-Flow Graph (CFG) (Allen 1970) models the static control-flow

 47

between the statements in the program. Statements are represented as nodes. Arcs pointing

away from a node represent possible transfers of control to subsequent nodes. A program’s

entry and exit points are represented by initial and final vertices. So, a program can

potentially be executed along paths leading from an initial to a final vertex. The Def/Use

Graph extends the CFG and labels every node n by the variables defined and used in n.

Figure 3.2: (a) An example program. (b) Program Dependency Graph.

In Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984), every

statement s2 is a node that has an outgoing arc to another statement s1 if s2 directly (not

transitively) data- or control-depends on s1. A statement s2 syntactically depends on s1 if

int main() {
int sum = 0;
int i = 1;
while(i <= 11) {

sum = sum + i;
i++ ;

}
cout<< sum;

}
(a)

(b)

 48

in PDG s1 is reachable from s2. An example of a program and its program dependence

graph is shown in Figure 3.2. The graph is directed as represented by the arrows pointing

from one node to the next. It does not distinguish data- or control-dependence.

3.4 Slice-Based Metrics

The origin of slice-based metrics can be traced back to Weiser, who used backward

slicing to describe the concepts of coverage, overlap, and tightness (Weiser 1984). For a

given module, Weiser first sliced on every variable where it occurred in the module. Then,

Weiser computed Coverage as the ratio of average slice size to program size, Overlap as

the average ratio of non-unique to unique statements in each slice, and Tightness as the

percentage of statements common in all slices.

Ott and Thuss improved the behavior of slice-based metrics through the use of

metric slices on output variables (Ott and Thuss 1993). A metric slice takes into account

both the uses and used by data relationships. More specifically, a metric slice with respect

to variable v is the union of the backward slice and the forward slice. Ott and Thuss

introduced two new metrics for program slicing, supplementing the existing slicing metric

introduced by Weiser: MinCoverage and MaxCoverage. MinCoverage and MaxCoverage

are respectively the ratio of the size of the smallest slice and the ratio of the size of the

largest slice to the module size. Consequently, the slice-based metrics suite proposed by

Ott and Thuss consists of five metrics: Coverage, Overlap, Tightness, MinCoverage, and

MaxCoverage. Note that these metrics are computed at the statement level, i.e. statements

are the basic unit of slicing metrics. Table 3.4.1 summarizes the descriptions of the slice-

based metrics introduced by Weiser and ott and thuss (Weiser 1984; Ott and Thuss 1993).

 49

Metric Description

Coverage The extent to which the slices cover the module

MaxCoverage The extent to which the largest slice covers the module

MinCoverage The extent to which the smallest slice covers the module

Overlap The extent to which slices are interdependent

Tightness The extent to which all the slices in the module belong together

Table 3.4.1: Slice-based metrics by (Weiser 1984; Ott and Thuss 1993).

Later, Ott and Bieman used program slicing in the context of tokens rather than

statements, in which the number of tokens that are shared by multiple slices are used to

represent cohesion (Bieman and Ott 1994). They called such slices data slices. More

specifically, a data slice for a variable v is the sequence of all data tokens in the statements

that comprise the metric slice of v. Consequently, this leads to five slice-based data-token-

level metrics.

Although Weiser introduced program slicing as a comprehension method used by

programmers while debugging (Weiser 1981), many slice-based metrics have been

developed to quantify the degree of cohesion in a module. Such metrics calculated in which

the numbers of statements that are shared by multiple slices represent cohesion (Meyers

and Binkley 2007; Black et al. 2006; Bieman and Ott 1994; Meyers and Binkley 2004;

Counsell, Hall, and Bowes 2010; Counsell et al. 2010).

 50

3.5 The Use of Slice-Based Metrics for Code Quality

Although slice-based metrics have been proposed for many years, to date little work

has been performed to empirically relate them to code quality and program propensity for

faults. Meyers and Binkley undertook a large-scale empirical study of five slice-based

metrics and analyzed the relations between these metrics and code size metrics (Meyers

and Binkley 2004; 2007). They found that slice-based metrics provided a unique view of a

program. The research also showed that the same set of metrics could be used to identify

degraded modules and guide software reconstruction. However, a major difference

between their study and our study is that they did not relate slice-based metrics to defect-

proneness nor to cognitive complexity.

Black et al. empirically investigated the ability of two slice-based metrics,

Tightness and Overlap, to distinguish between faulty and not-faulty functions (Black et al.

2009). In their study, they combined the nineteen versions of a small program called

Barcode to obtain a single data set. Black et al. (Black et al. 2006) had planned to test the

hypotheses relating three slice-based metrics (Tightness, Overlap, and Coverage) and

defect-proneness. However, they failed to do this due to lack of data. Compared with their

work, we perform an in-depth and comprehensive empirical study on the relationships

between new and different set of slice-based metrics and defect-proneness. Work by Pan

and Kim used C language slicing metrics to compare the classification of defects with code

metrics for C++ (Pan, Kim, and Jr 2006). The calculation of their metrics is based on the

notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984) such as

edge count and vertices count (Liang and Harrold 1998).

 51

Yang et al. (Yang et al. 2015) studied the usefulness of Weiser (Weiser 1981) and

Ott and Thuss (Ott and Thuss 1993) cohesion metrics in effort aware defect prediction. The

metrics leverage program slices with respect to the output variables of a module to quantify

the strength of functional relatedness of the elements within the module.

Yet we still know very little about software semantic and their cognitive

complexity. Very few studies have investigated the concept of program slicing from an

evolutionary viewpoint. To the best of our knowledge, this is the first work that applies

program slicing to measure characteristics of cognitive complexity and investigate their

relationship to defect propensity from an evolutionary viewpoint. In this dissertation, we

use a novel set of slice-based metrics and form a relationship between these slicing metrics

and defect propensity through the evolution of the system. In particular, we use forward

slicing technique to calculate slice-based metrics at the statement level. The reason for

choosing the statement is that previous studies suggested that software metrics at a finer

granularity would accordingly have a higher discriminative power and hence may be more

useful for fault-proneness prediction.

 52

SLICE-BASED COGNITIVE COMPLEXITY METRICS

For years researchers have devoted their efforts trying to understand how

programmers comprehend code and several cognitive model have been proposed (Storey,

Wong, and Müller 2000; Storey 2005). Much of the research explains how programmers

comprehend complex code using a bottom-up approach (Storey, Wong, and Müller 2000;

Storey 2005). The programmer analyzes the source code statement by statement and

gradually develops control-flow and data-flow abstractions through the process of

chunking (Pennington 1987). Program chunks are grouped together to form larger chunks,

until the entire program is understood. In this way a hierarchical semantic representation

of the program is built from the bottom-up. Thus, assessing the cognitive complexity of

program semantic chunks can be a criterion for characterizing defects for defect prediction.

Specifically, in order to make accurate predictions, the metrics need to be discriminative:

capable of distinguishing one instance of code region from another of different cognitive

complexity.

A study by Siegmund et al. looked at the process of bottom-up program

comprehension with (fMRI), a technique used by to understand brain regions activated by

cognitive tasks, and found a network of brain areas activated that are related to natural-

language comprehension, problem solving, and working memory (Siegmund et al. 2017).

 53

Klemola argues that measuring complexity should reflect attributes of human

comprehension since complexity is relative to human cognitive characteristics. They focus

on aspects of cognition which involves both short-term and long-term memory.

Overloading over a short period of time affects short-term memory (STM) while long term

memory (LTM) is affected by the frequency of exposure to a concept over time (Klemola

2000).

Researchers theorize that all information processed for comprehension must at

some time occupy short-term memory (STM). For the purposes of natural-language

comprehension, the capacity of STM has been measured at 4 concepts (Cowan 2001). This

suggests that any code segment that is using more than 4 concepts to make a point

unfamiliar to the reader might not be immediately understood.

In coping with these demands and limitations, the programmer must have mental

capacity for dealing with large workloads for short periods of time and cognitive

mechanisms for locating the code relevant to a particular feature. Program slicing was

introduced by Weiser (Weiser 1984) after noticing programmers try to identify program

bugs by using slices of the program composed of statements, which affect the computation

of interest (Weiser 1982). Thus, slicing process removes from consideration parts of the

program that are determined to have no effect upon the semantics of interest in a similar

way as it would be perceived by developer during the process of comprehension (Weiser

1982).

A slice is a cognitive chunk of the program that preserves control flow and data

flow dependences relevant to a specific point of interest. It is possible to determine the

 54

parts with different behaviors by comparing the slices of two artifacts. With slice

granularity, a hierarchical internal semantic representation of the whole program can be

measured in addition to a detailed analysis of the comprehension effort required to retrace

and inspect particular function. In the following we define four categories of slice-based

cognitive complexity measures.

4.1 Definitions of Slice-Based Cognitive Complexity Metrics

4.1.1 sliceCount

The count of slices focuses on the overall cognitive complexity of source code

parts. Program segment that has a high number of slices will have high number of features

leading to a higher concentration of identifiers, method invocations and relevant control

and data dependencies. When there are many possible paths to be taken within a module

the time spent tracing references increases and at the same time the use of identifiers must

be carefully observed and retained in human memory to arrive at a correct understanding.

When time is limited, a program segment with a high value of slice count can be difficult

to interpret. sliceCount is defined as number of slices within a module and more formally

as follow:

sliceCount(x) = K, (4.1)

where k is the number of slices in x.

 55

4.1.2 sliceSize

This measure provides an indicator of the cognitive effort required to comprehend

a particular slice. As stated earlier, program slice consists of all the statements that may

influence the values of a variable at a program point (Weiser 1984). It includes program

artifacts that are data and control dependent to the function or variable of interest. A study

by Alomari et al. shows that the growth of the slice size over time in Linux kernel is related

to the maintenance activity being made (Alomari, Collard, and Maletic 2014). An increase

in the slice size requires increase in the cognitive effort in analyzing the code related to the

slice. Failing in uncovering the causal interactions between components force programmer

to make unverified assumptions and eventually introducing defects (Chen et al. 2018;

Klemola 2000).

The granularity of the slice for the computation of this metric is relevant. A single

slice with highly dense dependencies may be buried in a large block of simple code

resulting in a low value for the large block. The single dense slice will be more difficult to

correctly interpret than the overall measure would suggest. Consequently, the best use of

the metric is to locate system artifacts with high concentrations of identifiers, and

dependencies to inspect or refactor. sliceSize is the mean count of statements per slice

within a module. sliceSize for a module x can be defined as:

/01234153(6) = ∑ 4!"
!#$ 8⁄ ,																					(4.2)

where S is the number of statements in slice i, and k is the number of slices in module x.

 56

4.1.3 sliceIdentifier

Identifiers play a crucial role in program comprehension, since developers express

domain knowledge through the names that they assign to the code entities at different levels

(i.e., packages, classes, methods, variables) (Arnaoudova et al. 2010; Enslen et al. 2009;

Abebe et al. 2012). Thus, source code lexicon impacts the psychological complexity of a

program (Scalabrino et al. 2016; Sharif and Maletic 2010). For the purpose of cognitive

complexity metrics, a high identifier density may overload STM and lead to error. The risk

of comprehension error has been observed to rise with the increase of general identifier

density metric in program code (Klemola 2000; Buse and Weimer 2010) and the increase

of concept density in text as well (Kintsch 2005). However, the problem with calculating

a general identifier density metric is that it only represents a general view on the system

under investigation (Rilling and Klemola 2003). A small block with highly dense identifier

may be buried in a large block of simple code resulting in a low value for the large block.

Therefore, it is essential to refine identifier density metric to reflect a more realistic

assessment based on the development task on hand. Program slicing allows for such

refinement, by focusing the metric only on these parts that are relevant with respect to a

particular feature or variable. sliceIdentifier can be defined as the mean distinct

occurrences of programmer defined labels within a slice in a module. For a module x it

can be formally defined as:

/0123<=3>?1@13A(6) 	= 	∑ 4<!"
!#$ 8⁄ , (4.3)

 57

where SI is the number of identifiers in slice i, and k is the number of slices in module x.

4.1.4 sliceSpatial

This measures account for the difficulty of reading the source code of a program

for understanding, in terms of the lexical distance (measured in lines of code) that the

maintainer is required to traverse to follow control and/or data dependencies as they build

a mental model (Gold, Mohan, and Layzell 2005; Chhabra and Gupta 2009). This type of

complexity was based on the spatial distance between the definition and direct use of

various program elements. However, understanding of the use of a program element also

requires knowledge of control and data flow in which the program element has been used

(Gold, Mohan, and Layzell 2005). More details about the elements are understood through

its use in a particular sequence and the use of other artifacts that influence the behavior of

the element of interest. Without program slicing, it would be impossible to find all relevant

uses that might affect or affected by the element value. The greater the distance in lines of

code, the more is the cognitive effort required to understand the purpose and data flow of

that slice. If a program element is defined and then used after, (e.g., 500) lines of source

code, the element details would be overwritten in the working memory by more recently

defined/used elements. Thus, we define sliceDistance as the spatial distance in LOC

between the definition and the last use of the slice divided by the module size.

40123B1/?C>23	(1) 	= 4D! −	4>! E⁄ , (4.4)

 58

where Sm is the line number of the first statement in slice i, Sn is the line number

of the last statement in slice i, and q is the module size in LOC. Accordingly, for module

x, sliceSpatial measured as the mean of the individual slice distance in x.

/01234FC?1C0	(6) =G
/0123B1/?C>23(1)

8

"

!#$
,																							(4.5)

where sliceDistance is the scatter measure of slice i measured as in equation (3.4), and k is

the number of slices in module x.

4.2 Extracting Slice-Based Cognitive Complexity Metrics

We use the srcSlice tool (Alomari et al. 2014; Newman et al. 2016) to compute the

slicing metrics. In the following subsections, we provide an overview description of the

theory and implementation of srcSlice tool and the computation of proposed slice-based

cognitive complexity metrics.

4.2.1 The srcSlice Tool

The srcSlice tool (Newman et al. 2016) is a fast and scalable, slicing approach. It

has practical means to estimate the source code semantic for very large systems within

practical time frames which makes it suitable for this work. Program slicing is typically

based on the notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein

1984) or one of its variants. Unfortunately, building the PDG is quite costly in terms of

computational time and space. As such, slicing approaches generally do not scale well and

while there are some (costly) workarounds, generating slices for a very large system can

 59

often take days of computing time. srcSlice addresses this limitation by eliminating the

time and effort needed to build the entire PDG. As a result, srcSlice is very fast and scalable

on large systems. It clocks in at about 274K identifiers per minute on Linux Kernel

(Newman et al. 2016). The approach was first introduced in (Alomari, Collard, and Maletic

2014), and then evaluated to a total of 18 open source systems through a comparison study

to the CodeSurfer tool from GrammaTech (Alomari et al. 2014).

The srcSlice tool implements a forward, static slicing technique. Forward static

program slicing refers to the computation of program points that are affected by other

program points (Horwitz, Reps, and Binkley 1988). The forward slice from program point

p includes all the program points in the forward control flow affected by the computation

at p. srcSlice uses the initial variable declaration as the starting point. It combines a text-

based approach with a lightweight static analysis infrastructure that only computes

dependence information as needed (aka on-the fly) while computing the slice for each

variable in the program. Specifically, srcSlice computes a forward, static, non-executable,

inter- procedural program slice for each variable in a system.

The tool is enabled by the srcML (Collard, Decker, and Maletic 2011; Collard,

Maletic, and Robinson 2010) infrastructure (see srcML.org). Source code is first converted

to srcML and then a stream-oriented approach to compute the slice is performed. srcML

(SouRce-Code Markup Language) augments source code with abstract syntactic

information from the AST to add explicit structure to program source code. This syntactic

information is used to identify program dependencies as needed when computing the slice.

srcML format has been previously used for different maintenance tasks, lightweight fact

 60

extraction (Collard, Decker, and Maletic 2011), pattern matching of complex code

(Dragan, Collard, and Maletic 2006), and software artifacts summarization (Abid et al.

2015).

The srcML format is supported with a toolkit, including src2srcml and srcml2src,

which supports conversion between source code (in multiple languages such as C, C++,

and Java) and the format. Then, a system dictionary instead of PDG/SDG represents the

program slice is generated by the srcSlice. Given a system (in the srcML format), srcSlice

gathers data about every file, function, and variable throughout the system, storing it all in

a three-tier dictionary.

4.2.2 Running Example

An example of a slice computed by srcSlice on a small program is given in Figure

4.1. The first portion of the figure (a) presents a small program constructed to show how

srcSlice computes the profile. The second part of the figure (b) is the slice profile for the

program in (a). The example is taken from (Newman et al. 2016).

 61

Figure 4.1: (a) Sample source code, (b) System dictionary with all slice profiles for

the source code in (a).

1 int fun(int z){
2 z++;
3 return z;
4 }
5 void foo(int &x, int *y){
6 fun(x);
7 y++;
8 }
9 int main(){
10 int abc = 0;
11 int i = 1;
12 while (I <= 10) {
13 foo(abc, &i);
14 }
15 std::cout<<"i:"<<i<<"abc:"<<abc<<std::endl;
16 std::cout<<fun(i);
17 abc = abc + i;
18 }

(a)

srcslicetest.cpp,main,i,def{11},use{1,2,5,7,12,13,15,16,17},dvars{abc},pointers{},cfuncs{f
un{1},foo{2}}

srcslicetest.cpp,main,abc,def{10,17},use{1,2,5,6,13,15},dvars{},pointers{},cfuncs{fun{1},f
oo{1}}

srcslicetest.cpp,fun,z,def{1},use{2},dvars{},pointers{},cfuncs{}

srcslicetest.cpp,foo,y,def{5},use{7},dvars{},pointers{i},cfuncs{}

srcslicetest.cpp,foo,x,def{5},use{1,2,6},dvars{},pointers{abc},cfuncs{fun{1}}

 (b)

 62

4.2.3 Slice Profile

Each entry of the system dictionary is a single slice profile for an identifier, which

contains all data gathered about that identifier during the slicing process. The following is

a list of that information:

• File, function, and variable name– the file/function the variable is in and its name.

• Def – the line a variable is defined or redefined on. Def is used to differentiate

between variables with the same name but in differing scopes.

• Use – the line a variable is used. This refers to a variable’s value being used in a

computation with no modification to its value. This can be used to construct def-

use chains.

• Slines – all lines that a variable is defined or used on. This is the union of def and

use.

• Cfunctions - a list of functions called using the slicing variable.

• Dvariables - a list of variables that are data dependent on the slice variable.

• Pointers - a list of aliases of the slicing variable. The elements of this list are

variables to which the slicing variable is a pointer.

srcSlice produces a system dictionary of all the slice profiles of all variables. It is three-

tiered and consists of three maps. On the first level is a map from files to functions, on the

second level is a map from functions to variable names, and on the third level is a map

from variable names to slice profiles.

 63

4.2.4 Slice-Based Metrics Computation

By using semantic approaches that depend on static-program analysis we can

extract facts and other information focusing on semantic aspects of the system. Slicing

process removes from consideration parts of the program that are determined to have no

effect upon the semantics of interest. It is possible to determine the parts with different

behaviors by comparing the slices of two artifacts. The assumption here is that if the slice

of artifact x differs from the slice of artifact y, then by the mean of the slicing definition,

artifact x potentially exhibits different behavior than artifact y. Thus, program slices have

the additional advantage of capturing program behavior, and hence the slice-based metrics

are more directly related to the program behavior. Additionally, unlike most other metrics,

slice-based metrics are based on program slice information, which is of finer granularity

than the measures of many other metrics.

Using the output generated from srcSlice, we parse it into a data structure and then

calculate the metrics. The first metric is sliceCount, it measures the file slices, which is

equivalent to the number of paths in the code representation model (e.g., program

dependence graph). This simply counts the number of entries in the system dictionary

produced by srcSlice for each file. Using the information stored in each slice profile, we

can easily retrieve the size of the slice for each variable in the system, identifier density,

and slice spatial.

sliceSize represents the mean size of a variable slice in a file, measured in number

of lines of code. It indicates how much the slice profiles depend on each other by intra-

procedural or inter-procedural control or data dependencies. sliceSize counts all lines that

 64

a variable is defined or used. This is the union between def and use in the slice profile.

Therefore, the sliceSize is the ratio of all slice sizes to the sliceCount.

Dvars, pointers and cfunc fields in the slice profile capture the distinct identifiers

appeared in the slice including variable names and methods invocation. For individual

slice, number of identifiers is the count of items in dvars, pointers, and cfunc fields.

Accordingly, file sliceIdentifier is the mean of all slice identifiers to the sliceCount.

sliceSpatial is the extent to which the slice scatter within a file. For an individual

slice, we calculate sliceDistance as the distance in LOC between the definition and the last

use of the slicing variable divided by the file size. As stated earlier, Def and use list all the

line numbers in ascending order where the slicing variable is defined or used. Thus,

sliceDistance is the subtraction of the first use from the last use divided by file size.

sliceSpatial of the file is then measured as the mean of the individual sliceDistance.

We also include sliceCoverage metric similar to the one proposed by Weiser

(Weiser 1981). However, srcSlice is a static slicing technique, which consider subsets of

the program with respect to all possible executions/behaviors, while Weiser uses dynamic

slicing that is suitable to identify code fragment with respect to one execution (Weiser

1981). We include sliceCoverage because of its relation to comprehension as it represents

the active portion of the file that the programmer needs to traverse and comprehend (Weiser

1981). By comparing the slice size to the file size, we can measure the sliceCoverage,

which is the mean slice size relative to file size.

 65

Table 4.2.1 lists the definitions of these slice-based metrics. Generally, high file-

level values of these metrics indicate more logically complex code and potentially more

complex behaviors that are difficult to understand, inspect and trace in maintenance

activities and hence exhibit more system defects. Note that slice metrics can be calculated

at different level of granularity (i.e., system, file, method, and variable), however, due to

the file-based nature of Git, a file-level granularity is used in this dissertation.

Table 4.2.2 shows the computations of the slice-based metrics of the running

example. In this table, the first rows are the computations for slice-level while the last row

shows the computations for file-level.

Metric Description

sliceCount Number of slices within a file

sliceSize Average slice size measured in LOC

sliceIdentifier Average of distinct occurrences of programmer defined labels within a

slice

sliceSpatial Average of spatial distance in LOC between the definition and the last

use of the slice divided by the file size

sliceCoverage Average slice size relative to LOC

Table 4.2.1: Description of file level slice-based metrics.

 66

Granularity level Metric Computation Value

Slice-
level

abc sliceCount 1 1
 sliceSize 8 8
 sliceCoverage 8 / 18 0.44
 sliceIdentifier 3 3
 sliceSpatial 16 / 18 0.89

i sliceCount 1 1
sliceSize 10 10
sliceCoverage 10 / 18 0.56
sliceIdentifier 3 3
sliceSpatial 16 / 18 0.89

z sliceCount 1 1
 sliceSize 2 2
sliceCoverage 2 / 18 0.11
sliceIdentifier 0 0
sliceSpatial 1 / 18 0.06

y sliceCount 1 1
 sliceSize 2 2
 sliceCoverage 2 / 18 0.11
 sliceIdentifier 1 1
 sliceSpatial 2 / 18 0.11

x sliceCount 1 1
 sliceSize 4 4
 sliceCoverage 4 / 18 0.22
 sliceIdentifier 2 2
sliceSpatial 5 / 18 0.28

File-level sliceCount 1+1+1+1+1 5
sliceSize (8+10+2+2+4) / 5 5.2
sliceCoverage (0.44+0.56+0.11+0.11+0.22) / 5 0.29
sliceIdentifier (3+3+0+1+2) /5 1.8
sliceSpatial (0.89+0.89+0.06+0.11+0.28) / 5 0.45

Table 4.2.2: Slice-based metrics computations of running example.

 67

SOFTWARE DEFECT PREDICTION PROCESS

The common process of software defect prediction relies on machine learning

models. The key insight behind these models is learning from software evolution history.

Most software uses software configuration management (SCM) systems such as SVN or

Git to record the evolution of a software project. Recorded data includes change history,

log messages, and bug fixes that cover years of data. This information can be a useful

resource for learning from previous defects and predicting the new ones.

Software defect prediction relies on three main components; dependent variables,

independent variables and a model. The first step in building the model is to collect

instances and history information from software archives. Instances can represent different

granularity such as system, a software component (or package), a source code file, or a

class. Due to the file-based nature of Git, a file-level granularity is used in this work.

Processing the raw data falls into two folds:

1. Labeling instances as defective/non-defective or defects count. Defect data are the

model for the dependent variables.

2. Extracting metrics to determine useful patterns in a bug-fix occurrence can be used

for prediction. Metrics are the independent variables.

After generating the corpus, i.e., instances with metrics and labels, preprocessing

techniques can be applied which are common in machine learning. Such techniques used

 68

in defect prediction studies include feature selection, data normalization, and noise

reduction (Zhang et al. 2014; Nam et al. 2017; Tantithamthavorn et al. 2018).

Preprocessing is an optional step and are not applied on all defect prediction studies, e.g.,

(D’Ambros, Lanza, and Robbes 2010; Zimmermann and Nagappan 2008).

The final step is training a prediction model, so the model can predict whether a

new instance has a defect or not. The prediction for defect-proneness (defective/non-

defective) of an instance is based on binary classification, while that for the defects count

in an instance is based on regression (ranking). Figure 5.1 shows the file-level defect

prediction process used in this dissertation. Following subsections provide details of our

process steps.

 69

Figure 5.1: Overview of the study design.

 70

5.1 Creating a Labeled Dataset

Source code management systems (SCM) contain a rich version history of every

file in software projects. This information includes the full history of commits to each file:

timestamps, authorship, change content, and the commit log. Since we will evaluate the

performance of bug prediction using program slicing metrics, we need to determine

whether a file actually contains bugs and how many times a file is included in a bug fixing

task. Typically, bugs are discovered and reported to an issue tracking system such as

Bugzilla and later on fixed by the developers. In order to link files with bugs, for each

system we download (clone) the repositories from Git, and for each repository r, we created

a series of patch files {"!}!"#$, where n is the latest revision number for repository r at

specific release. Each patch file "! 	was responsible for transforming repository r from

revision ri-1 to revision ri, where r1 is the initial revision for specific release. By initially

setting repository r to revision 1 (i.e. the initial revision) and then applying all patches

{"!}!"#$ in a sequential manner, the revision history for that repository r was essentially

replayed. Conceptually, this was equivalent to the case of all developers performing their

commits sequentially one by one according to their chronological order. To perform bug

labeling, we assume that a file has a bug if it is involved in a bug fixing transaction along

the whole history for the period under consideration.

The labeling begins with links between bugs reported in the issue tracking system

and the specific revision that fixes the bug- we call this a bug-fixing revision. Additionally,

we should note that not all bugs are maintained in a bug-tracking database as described by

Williams and Hollingsworth (Williams and Hollingsworth 2004). Therefore, we use

 71

several different heuristics to derive our data. Various key words such as “bug”, “fixed”

etc. in the git commit log are used to flag bug-fixing transaction. Also, numerical bug ids

mentioned in the commit log, are extracted using regular expression and linked back to the

issue tracking system’s identifiers. Finally, manual inspection is used to remove spurious

linking as much as possible. These heuristic was introduced and used in many bug

prediction studies (Śliwerski, Zimmermann, and Zeller 2005; Nagappan, Ball, and Zeller

2006; Bachmann and Bernstein 2009; Rahman and Devanbu 2011; D’Ambros, Lanza, and

Robbes 2012).

In cases where the lack of supporting information (e.g., undescriptive ticket and /

or commit message) prevents us from classifying a certain commit with satisfactory

confidence, that commit is dropped from the dataset. Overall, we dropped 11% (3670), of

the defect commits. We repeat this routine until we cover all commits involved in the period

under consideration. Further in classification, we excluded any commit for fixing a broken

unit test since these are not the ones that matter for the users of a program. Once we know

that a transaction contains a fix, we first list files changed in the transaction and then check

out the files prior to the fix in order to extract the slicing metrics. Additionally, files are

filtered to remove non-source code (e.g., XML, html, log, documentation files, etc.) and

unit-test files that are part of the bug-fix commit.

5.2 Cognitive Complexity Metrics

At this point we have a model including source code information over several

versions, change history, and defects data. This step is to enrich the model with the metrics

we want to evaluate. For each retrieved file, we use the srcslice tool (Alomari et al. 2014;

 72

Newman et al. 2016) to compute the slicing metrics at the file level in every repository we

had selected to be part of the dataset. To extract slicing metrics, we check out each file of

the preceding revision that fixed specific bug (i.e. revision hash~1). In this manner, we can

compute slicing metrics prior of fixing the bug to evaluate the nature of defect-prone files.

We calculate slice metrics exactly before fixing the bug instead of the common way that

calculate the metrics at the end or beginning of the release. The reason for choosing this

method is that files could undergo through massive changes through the same release, so

metrics could not be representative and thus less accurate. We applied this method to

extract all slicing metrics through the revision history as described in Chapter 0.

5.3 Baseline Metrics

In order to quantify the contribution of slice-based metrics, we selected traditional

code metrics and process metrics as a control set for providing a comparison. The aim of

our study is to investigate five new metrics that demonstrate features of cognitive

complexity and then to validate the efficacy of these metrics in defect prediction. To fulfil

this, we choose five baseline metrics to perform balanced (5 vs. 5) analysis which avoid

the possibility of diluting the effect of the new metrics if compared with large number

baseline metrics. This approach in addition ensures that our analysis overcome any

overfitting or multidimensionality problem that commonly happened with large number of

variables.

Prior research on defect modeling found that product metrics are good indicators of

defects (Menzies, Greenwald, and Frank 2007). Similarly, these code metrics are widely

used to measure programmer’s comprehension effort in research studies related to program

 73

readability and understandability (Scalabrino et al. 2017; A. Rahman 2018). Table 5.3.1

describes the included baseline code metrics, which consist of size metric (i.e., NLOC),

structural complexity metric (i.e., McCabe’s (McCabe 1976)), and software science metric

(i.e., Halstead’s Program Length (Halstead 1977)).

The size metric NLOC simply counts the non-commentary source lines of code in

a function. There is evidence that a larger size function tends to be more defect prone

(Basili and Perricone 1984; Moller and Paulish 1993; Fenton and Ohlsson 2000). The

structural complexity metric, including the well-known McCabe’s Cyclomatic complexity

metric, assumes that a function with complex control flow structure is likely to be defect-

prone (Munson and Khoshgoftaar 1992; Ohlsson and Alberg 1996; Basili, Briand, and

Melo 1996; Darcy et al. 2005). Halstead’s length metric estimate reading complexity based

on the counts of tokens, in which a function hard to read is assumed to be hard to understand

and defect prone.

Note that we exclude other class-level code metrics such as CK and OO metrics

since the analysis of this work is a file-level granularity. We also do not include the other

Halstead’s metrics because these metrics are fully based on the counts of operators and

operands. Consequently they are highly correlated with each other (Farrar and Glauber

1967).

Additionally, process metrics are found to be powerful indicators in defect

modeling and show improvement when combined with code metrics (Rahman and

Devanbu 2013). Therefore, we include two widely used change metrics in defect

prediction, namely lineChange the number of lines changed (i.e., added and removed) and

 74

funcChange the number of functions changed within a file. By choosing these five baseline

metrics we are able to perform a balanced (5 vs. 5) analysis which ensures that any

overfitting or multidimensionality problem that commonly happened with large number of

variables is avoided.

Category Metric Description

Size NLOC Source lines of code in a function (excluding

comment lines)

Structural complexity CCN Cyclomatic complexity

Software science Program

Length

Total number of operators and operands of a

function

Process lineChange Average number of lines added and deleted

of a function

funcChange Average number of functions changed within

a file

Table 5.3.1: Description of the baseline metrics.

 75

EXPERIMENTAL DESIGN

In this chapter, we introduce the projects used in the study and the research

questions relating slice-based metrics to defect-proneness. Then, we describe the modeling

techniques and the data analysis methods.

6.1 Test Systems

We use 10 datasets of 7 open-source projects to investigate the usefulness of

cognitive complexity metrics in defect prediction. In selecting the systems, we consider

three important criteria:

6.1.1 Different Corpora

To extend the generality of our conclusions, we choose systems from different

corpora and domains. The included systems are non-trivial software that are belonging to

different problem domains and different programming languages.

6.1.2 Sufficient EPV

Prior studies show that the Events Per Variable (EPV) (i.e., the ratio of the

frequency of the least occurring class in the outcome variable to the number of features

that are involved in training of a classifier) has a significant influence on the performance

of defect classifiers (Tantithamthavorn et al. 2017). In particular, defect classifiers trained

with datasets with a low EPV value yield unstable results (Tantithamthavorn et al. 2017;

2016). To ensure the stability of our results, we ensure that included datasets have an EPV

 76

value that is larger than 10 . Particularly, the systems we select have EPV ranging from 14

to 718 (see Table 6.1.1).

6.1.3 Defect Rate

Since it is unlikely that more software modules have defects than are free of defects,

we choose to study datasets that have defective rate ranging from (6%) to (50%). Table

6.1.1 summarizes the details of the projects examined in this dissertation.

 77

Subject Application
type

Prog.
lang. Period #

Revisions
Defect

revision rate
%

Instances

Defective
instances rate

%
EPV

Linux 3.13 Operating
system C 01-19-2014 ~

03-29-2014 13844 30% 35,397 10% 718

Eclipse 3.1
IDE Java

06-27-2005 ~
06-28-2006 2283 29% 1,045 50% 104

Eclipse 3.2 06-29-2006 ~
06-24-2007 1643 35% 1,122 41% 92

Koffice 2.0 Office suite C++ 05-20-2009 ~
11-20-2009 1632 32% 4,424 6% 51

Apache HTTP 2.0 Web server C 04-06-2002 ~
02-07-2005 5919 19% 266 38% 20

Apache HTTP 2.2 Web server C 09-11-2012 ~
11-16-2013 465 15% 402 17% 14

Dolphin 14.11~18.8 File manager C++ 11-08-2014 ~
09-06-2018 709 21% 327 23% 15

Lucene 3.0 Information
retrieval Java 11-25-2009 ~

03-29-2011 2696 21% 4599 14% 129

KDE Krita 3.0~
3.1.3 Graphics

editor C++

05-30-2016 ~
04-28-2017 2396 31% 5,518 10% 111

KDE Krita 3.1.4~
4.0

29-04-2017 ~
08-01-2018 1689 28% 5,166 7% 68

Average - - - 3328 26% 5827 22% -

Table 6.1.1: Revisions, file instances and % of defective files.

 78

6.2 Correlational Analysis

In order to investigate our first research question (RQ1), we apply correlation

coefficient analysis. The correlation coefficient is a bivariate analysis to measure the

strength of the relationship between two variables and the direction of this relationship.

Thus, we determined the correlation between the number of defects and each slice-based

measure.

In statistics, there are several types of correlation coefficients. Widely used types

are Pearson correlation, Spearman correlation, Kendall rank correlation, and Point-Biserial

correlation. Each one has its own definition and formula. They all calculate the values in

the range of -1 to +1, where -1 indicates the strongest negative relationship and +1 indicates

the strongest positive relationship (Boddy and Smith 2009). These values can have the

following meanings:

• A correlation coefficient of 1 means that for every positive increase of 1 unit in the

first variable, there will be a positive increase of 1 unit in the other variable.

• A correlation coefficient of -1 means that for every positive increase of 1 unit in

the first variable, there will be a negative increase of 1 unit in the other variable.

• Zero value means that for any positive or negative increase in the first variable,

there will be no change in the other variable. This means the two variables are

completely unrelated.

In the following subsection, I will discuss the Spearman correlation, as it is the one

used in our analyses.

 79

6.2.1 Spearman Rank Correlation
Spearman rank correlation coefficient, also known as Spearman rho or rs, named

after Charles Spearman, is a non-parametric measure of rank correlation between two

variables. In contrast to Pearson correlation, the Spearman rank correlation is a robust

technique that can be applied even when the association between two variables is non-

linear. This correlation is applicable for continuous and discrete ordinal variables (Lehman

et al. 2013). Spearman correlation coefficient can be defined as the covariance of the two

variables divided by the product of their individual standard deviations. To calculate the

Spearman correlation, the following formula is used:

!!	 = ##$!,#$" =
&'((#$!,#$")
+#$!+#$"

, (6.1)

where:

!!	 = Spearman correlation coefficient

" = the usual Spearman correlation coefficient, but using ranked variables

!## = ranked values of $%

!#$ = ranked values of &%

'()(!## , !#$) = covariance of the ranked variables

-%&!-%&"= standard deviation of the ranked variables

 80

6.2.1.1 Assumptions

Spearman correlation can be used when the association between values is non-

linear. Spearman correlation determines the monotonic association between variables

rather than linear association. This explains why the assumptions, normality, linearity and

homoscedasticity, are not required for Spearman correlation.

6.2.1.2 Statistical significance

The 95% confidence interval (CI) of a Spearman's rank correlation coefficient is

computed by bootstrapping with 1,000 replicates (Hervé 2019). The significance (p-values)

of the correlation are computed using algorithm AS 89 for n<1290 when exact compute

was allowed (Best and Roberts 1975) otherwise Edgeworth series approximation with

cutoff modification from the original (Hollander and Wolfe 1999).

6.3 Modeling Techniques

If slice-based cognitive complexity metrics correlate with defects, can we use them

to predict defects? This question is essential to answer:

RQ2. Do slice-based cognitive complexity metrics contribute to the prediction of the

probability of defects?

Therefore, we build multiple regression models where the number of defects forms

the dependent variable in binary classification, representing whether an instance is

defective or non-defective. We build separate models for two sets of independent variables:

• BMM (baseline metrics model): This set consists of all code and process metrics

section 5.3 and Table 5.3.1.

 81

• SBCCM (slice-based cognitive complexity model): This set of variables includes

the addition of slice-based metrics that were introduced in section 4.1 and Table

4.2.1 to the baseline metrics.

6.4 Model Construction Process

In the following subsections, we present the detail of our model construction process.

6.4.1 Normality Analysis
Regression models expect normality in the outcome and in the predictors. Defect

prediction datasets suffer from high skewed data typically do not follow a normal

distribution (McIntosh et al. 2016; Shihab, Bird, and Zimmermann 2012) (e.g., defects

exist only in a small portion of the files). Therefore, we apply a log transformation log2

(x+1) to reduce the skew and adequate the data to the regression assumption.

6.4.2 Correlation Analysis
Software metrics can be highly correlated to each other (Rajbahadur et al. 2017).

Highly correlated metrics (i.e., |ρ| > 0.7) can lead to an inflated variance in the

estimation of the outcome (Jr 2015). Prior to modeling, we evaluate the correlations

among our extracted metrics. We use Spearman pair-wise rank correlation to better

account for collinearity between predictors in the data. Afterword, we use Principal

Component Analysis (PCA) (Jackson 2003) to build the regression models using sets

of principal components (PC), which are independent instead of the actual independent

variable (i.e., metrics). Therefore, these components do not suffer from

multicollinearity, while at the same time they account for as much sample variance as

 82

possible (i.e., feature selection). We use prcomp function from stats R package. We

include PCs that account for at least 95% of the variance. Across systems, SBCCMs

need an average of 80% of the components to account 95% of the data variance, while

the BMMs need an average of 67% of the components.

6.4.3 Redundancy Analysis
To ensure principal components of the PCA do not include redundant predictors,

the redundancy analysis is performed in an iterative manner in which components are

dropped until no components can be predicted with an R2 or adjusted R2 higher than

0.9. Hence, we use the redun function from Hmisc R package and find no redundant

PCs in all datasets (Jr and others 2018).

6.4.4 Handling Category Imbalance

Table 6.1.1 shows that our dependent variables are imbalanced, e.g., there are more

non-defective instances than defective ones. If left untreated, the models will favor the

majority category, since it offers more predictive power. To combat this bias, we use

the SMOTE technique (Chawla et al. 2002) (provided by the DMwR R package

(“DMwR-Package: Functions and Data for the Book ‘Data Mining with R’ in DMwR:

Functions and Data for ‘Data Mining with R’” n.d.)) which creates artificial data based

on the feature space similarities from the minority modules. The SMOTE technique

has been shown to improve AUC and been used in previous defect prediction studies

(Tantithamthavorn, Hassan, and Matsumoto 2018).

 83

6.4.5 Binary Logistic Regression
We conduct our experiments using binary logistic regression model. This technique

is a standard statistical modeling technique in which the dependent variable can take

two different values. It is suitable for building defect prediction models because the

files under consideration are divided into two categories: defective and non-defective.

Logistic regression predicts likelihoods between 0 and 1, i.e., the likelihood that a file

contains at least one defect. The general form of a binary logistic regression is shown

in the following equation:

.(#%/(0) = log 5 '
()'6 = 7* + 7($(+ 7+$+ +⋯+ 7,$,, (6.2)

where 0 = :!(; = 1), y is the dependent variable, 7 is the regression coefficient

and X is the predictor/independent variable. We choose logistic regression over other

modeling techniques because it is a widely used technique in defect prediction and it

yields the best performance for models that combine both process and code metrics

(Rahman and Devanbu 2013). We use the method lrm from the RMS R package (Jr

2018).

6.4.6 Out-of-Sample Bootstrap

In order to ensure that the conclusions that we draw about our models are robust,

we use the out-of-sample bootstrap validation technique, which has been shown to yield

the best balance between the bias and variance (Tantithamthavorn et al. 2017). Unlike

the ordinary bootstrap, the out-of-sample bootstrap technique fits models using the

bootstrap samples, but rather than testing the model on the original sample, the model

 84

is instead tested using the rows that do not appear in the bootstrap sample

(Tantithamthavorn et al. 2017). Thus, the training and testing corpora do not share

overlapping observations. The fraction of this sampling is 1/3 of the size of the original

data. The entire bootstrap process is repeated 1000 times with the function validate

from the RMS R package (Jr 2018), and the average out-of-sample performance is

reported as the performance estimate.

6.5 Model Analysis

6.5.1 Logistic Regression Model Explanatory Power

6.5.1.1 Area under the ROC curve (AUC)

AUC measures the area under the receiver operating characteristic (ROC) curve.

The ROC curve is plotted by false positive rate (FP) and true positive rate (TP). Figure 6.1

explains about a typical ROC curve. PF and PD vary based on threshold for prediction

probability of each classified instance. By changing the threshold, we can draw a curve as

shown in Figure 6.1. the AUC value characterizes the accuracy of the model across all

possible cutoff values. When the model gets better, the curve tends to be close to the point

of PD=1 and PF=0. Thus, AUC of the perfect model will have “1”. For a random model,

the curve will be close to the straight line from (0,0) to (1,1) (Menzies, Greenwald, and

Frank 2007; Rahman, Posnett, and Devanbu 2012). Other measures such as precision and

recall can vary according to prediction threshold values. However, AUC value

characterizes the accuracy of the model across all possible cutoff values. In this reason,

AUC is a stable measure to compare different prediction models (Rahman, Posnett, and

Devanbu 2012). Larger AUC values indicate better performance (Wu and Flach 2005).

 85

Figure 6.1: A typical ROC curve

6.5.1.2 Nagelkerke R2

Nagelkerke is a specialized R2 typically used for logistic regression models

(Nagelkerke 1991). Nagelkerke R2 with larger values indicating more variability explained

by the model and less unexplained variation—a high Nagelkerke R2 (provided by the lrm

method) value indicates good explanative power, but not predictive power.

6.5.1.3 Influential Observations

To identify influential observations in the models, we employ the Cook's distance

to measure the effect of removing data point on all the predictors combined. If an

observation has a Cook's distance equal to or larger than 1, it is regarded as an influential

observation and is hence excluded for the analysis (Belsley, Kuh, and E. Welsch 2005). In

addition, we examine observations for any unusual high leverage values, i.e., unusual

 86

combination of predictor values. Any point with leverage value greater than 2.5 the average

leverage of a point in the data set is investigated closely.

6.5.2 Logistic Regression Model Prediction Abilities
To assess the models prediction abilities, we use four possible classification

outcomes:

• A file is classified as defective when it is truly defective (true positive, TP)

• It can be classified as defective when it is truly non-defective (false positive, FP)

• It can be classified as non-defective when it is truly defective (false negative, FN)

• It can be classified as non-defective when it is truly non-defective (true negative,

TN).

Based on TP, TN, FP, and FN, we calculate precision, recall, and F1-score as

follows:

• Precision: the proportion of files that are correctly labeled as defective among those

labeled as defective.

P = TP/(TP + FP) (6.3)

• Recall: is also known as true positive rate (TPR). Recall measures correctly predicted

buggy instances among all buggy instances.

R = TP / (TP + FN) (6.4)

 87

• F1-score: is a harmonic mean that combines both precision and recall. It evaluates if

an increase in precision (recall) outweighs a reduction in recall (precision).

F = (2 × P × R) / (P + R) (6.5)

F1 minimizes the trade-off between precision and recall that can cause difficulties to

compare the performance of several prediction models by using only precision or recall

alone. This follows the setting used in many software analytics studies (Kim et al. 2011;

Nam, Pan, and Kim 2013; Tantithamthavorn et al. 2018). In general, the higher the F1-

score is, the better the performance of an approach.

 88

EVALUATION RESULTS

In this chapter, we present our results, broken down by the research questions

presented earlier in Section 1.2.

7.1 Research Question 1

Do Slice-Based Cognitive Complexity Metrics Significantly Correlate to Defects?

7.1.1 Data Distribution
To perform correlational analysis, we need first to examine the distribution of our

datasets in all systems whether they follow normal distribution, where the data are

symmetrically distributed, or not as this will determine the method of for analysis. There

are several graphical and numerical tools for assessing normality of a data, we chose

histogram visualization to test the distribution of our variables. Figure 7.1, Figure 7.2,

Figure 7.3, Figure 7.4, and Figure 7.5 clearly display the asymmetrical distribution of our

metrics in most instances. They suffer from substantial right skew indicating more

clustered data at the left end of the distribution. Therefore, we choose the Spearman rank

correlation coefficient method since it does not require normal distribution and assess

relationship between variables using monotone function even if the relation is not linear.

 89

Figure 7.1: Histograms of slice-based metrics in Linux 3.13 and Eclipse 3.1.

 90

Figure 7.2: Histograms of slice-based metrics in Eclipse 3.2 and Koffice 2.0.

 91

Figure 7.3: Histograms of slice-based metrics in Appache HTTP 2.0 and 2.2.

 92

Figure 7.4: Histograms of slice-based metrics in Dolphin 14.11 and Lucene 3.0.

 93

Figure 7.5: Histograms of slice-based metrics in KDE Krita 3.0 and 3.1.4.

 94

7.1.2 Correlation Analysis
Figure 7.6 and Table 7.1.1 show the Spearman correlations for all systems

computed by bootstrapping with 1,000 replicates. For clarification, the cells in Figure 7.6

distinguish between the correlation value and correlation intensity shown by the color

range. All correlations are significant at 0.95-confidence level (p-value £ 0.05) except the

correlations that are not bolded. From these results, we can make the following

observations.

Most of the investigated slice-based metrics are significantly correlated with

defects. In 94% (i.e., 47 out of 50) of the cases, slice-based metrics have p-value ≤ 0.05

and 95% CI that does not include zero. The SliceCount, sliceSize, and sliceIdentifier, show

a consistent positive relationship with defect counts across all systems, which means that

an increase in the aforementioned metrics leads to an increase in number of defects. This

finding suggests that code that is divided into many parts (i.e., higher sliceCount), have a

higher concentration of method invocations with parameters (i.e., higher sliceIdentifier),

and have more tracing activity (i.e., higher sliceSize) during comprehension process, have

a higher probability of defects. The increase of the aforementioned metrics indeed increases

the cognitive complexity implying that developers should carefully handle files with high

percentage of slice size, slice count and slice identifier.

 95

Figure 7.6: Spearman correlation coefficients between bug counts and metrics.

 96

Subject

sliceCount sliceSize sliceCoverage sliceIdentifier sliceSpatial

rs
95%CI

rs
95%CI

rs
95%CI

rs
95%CI

rs
95%CI

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Linux 3.13 0.31 0.29 0.33 0.19 0.17 0.21 -0.28 -0.30 -0.26 0.17 0.15 0.19 -0.16 -0.18 -0.14

Eclipse 3.1 0.33 0.26 0.4 0.31 0.24 0.37 -0.36 -0.43 -0.3 0.23 0.16 0.30 -0.03 -0.1 0.04

Eclipse 3.2 0.45 0.38 0.52 0.36 0.29 0.43 -0.39 -0.45 0.32 0.26 0.19 0.33 -0.02 -0.11 0.06

Koffice 2.0 0.24 0.17 0.31 0.1 0.02 0.16 -0.26 -0.32 -0.19 0.1 0.03 0.16 -0.15 -0.22 -0.07

Apache HTTP 2.0 0.48 0.37 0.58 0.20 0.1 0.32 -0.50 -0.6 -0.4 0.24 0.12 0.36 -0.33 -0.44 -0.22

Apache HTTP 2.2 0.32 0.18 0.46 0.2 0.05 0.34 -0.27 -0.4 -0.13 0.2 0.05 0.34 -0.16 -0.31 -0.0005

Dolphin 14.11 0.45 0.27 0.60 0.2 0.06 0.35 -0.47 -0.61 -0.29 0.24 0.09 0.38 -0.25 -0.41 -0.08

Lucene 3.0 0.28 0.24 0.33 0.16 0.11 0.21 -0.25 -0.30 -0.20 0.1 0.03 0.14 0.02 -0.03 0.07

KDE Krita 3.0 0.31 0.26 0.36 0.13 0.07 0.18 -0.32 -0.37 -0.26 0.14 0.1 0.19 -0.15 -0.20 -0.1

KDE Krita 3.1 0.29 0.23 0.34 0.16 0.1 0.21 -0.26 -0.3 -0.21 0.13 0.07 0.19 -0.11 -0.17 -0.04

Average 0.35 0.27 0.42 0.20 0.12 0.28 -0.34 -0.40 -0.19 0.18 0.10 0.26 -0.13 -0.22 -0.05

Table 7.1.1: Spearman correlation coefficient rs, p-value and confidence interval (CI) between defect counts and cognitive
complexity metrics. All correlation coefficient values are statistically significant except values not bolded.

 97

Conversely, sliceCoverage shows an expected consistent negative relationship

across systems, which means an increase in sliceCoverage comes with a decrease in

number of defects. sliceCoverage measures the average sliceSize relative to file LOC (i.e.,

sliceSize/sliceCount*file LOC). Thus, an increase in the file LOC and sliceCount decreases

the sliceCoverage, leading to more cognitive complexity and eventually defects.

We find that sliceSpatial has a negative relationship with the probability of defects.

This suggests that being in large and scattered slices do not necessarily result in a high

number of defects. While, this correlation is very weak (i.e., -0.12) and all of the

insignificant correlation cases (i.e., 3 out of 3) occurred in relation to sliceSpatial, one

would expect a high slice spatial to increase the cognitive complexity leading to more

defects. This might be due to the file level granularity of the analysis by taking the average

of sliceSpatial within a file. A highly scattered slice might be hidden in a large block of

unite code resulting in a low value for the large block. Therefore, sliceSpatial might

provide a higher and positive correlation with defects if a finer granularity of analysis is

used (e.g., at slice-level). However, without further investigation to support this analysis,

we cannot claim such argument. For more details about the Spearman correlation and how

do they look, the scatterplots for each relationship assessment are highlighted in

APPENDIX A.

Overall, the individual correlations of each cognitive complexity metrics indicate a

weak/moderate monotonic relationship with number of defects in most of the cases. The

metrics with the highest observed correlations are sliceCount and sliceCoverage. These

metrics are more related to defects than finer grained metrics (sliceIdentifier, sliceSize, and

 98

sliceSpatial). This finding suggests that handling files with high slice coverage and slice

count is more challenging and requires better understanding of the source code by

developers. The results in addition suggest that these metrics might have more association

if used together in relation to defects which is the analysis to be done in RQ2.

In summary, the characteristics of cognitive complexity captured by slice-based

metrics express a statistically significant relationship with the probability of defects,

suggesting that slice based cognitive complexity metrics can be used as defects indicators.

Slice count, slice size and slice identifier metrics have a consistent and significant positive

relationship with the probability of defects across systems, while slice coverage and slice

spatial have a significant negative relationship, suggesting that handling files with higher

cognitive complexity captured by slice-based metrics is more challenging and requires a

better understanding of the source code by developers.

7.2 Research Question 2

Do Slice-Based Cognitive Complexity Metrics Contribute to the Prediction of the

Probability of Defects?

To address RQ2, we apply the preprocessing techniques on the metrics as described in

sections 6.4.1, 6.4.2, 6.4.3, and 6.4.4. After that, we follow the modeling process described

in sections 6.4.5 and 6.4.6 to train multiple regression models for two different sets of

predictors:

• SBCCM (slice based cognitive complexity model) and

• BMM (baseline metrics model).

 99

7.2.1 Metrics Preprocessing

7.2.1.1 Normalization of the Data

We use the log2(x+1) transformation method to deal with the asymmetrical

distribution in the data. It helps in reducing the right skew distribution before performing

the modeling. Most variables show a marked correction of the asymmetrical pattern and

the rest show a reduction of the right skew distribution.

7.2.1.2 Collinearity and Redundancy Analysis

We perform PCA to deal with collinearity between predictors. APPENDIX B

shows the PCA aspects (loadings, communalities, contributions to PCs, eigenvalues, and

proportion of variance) of SBCCM and BMM. We include PCs that account for at least

95% of the variance, and on the same time do not suffer from multicollinearity. We after

that ensure by the redundancy analysis that the PCs do not include redundant predictors in

all datasets. In addition, to ensure that the models are not overfitted with any PCs, we

calculate Variance Inflation factor (VIF) for all models. Across all systems, VIFs are < 3.5.

7.2.1.3 Category Balancing

As mentioned before, the dependent variables are clearly imbalanced, and this will

lead to bias. Therefore, we use SMOTE technique to create artificial balanced data. Table

7.2.1 highlights the category numbers before and after balancing.

 100

Subject
Before Balancing After Balancing

Buggy Clean Buggy Clean

Linux 3.13 3085 4131 6170 6170

Eclipse 3.1 479 322 644 644

Eclipse 3.2 416 214 428 428

Koffice 2.0 248 518 496 496

Apache HTTP 2.0 99 140 198 198

Apache HTTP 2.2 55 112 110 110

Dolphin 14.11~18.8 57 76 114 114

Lucene 3.0 340 1301 680 680

KDE Krita 3.0~3.1.3 548 814 1096 1096

KDE Krita 3.1.4~4.0 338 658 676 676

Table 7.2.1: The dependent variable counts before and after balancing by SMOTE
technique.

7.2.2 Models Explanatory Power
We measure the explanatory power of models from the bootstrap training samples and

measure the prediction performance of the models on the bootstrap testing samples. This

process is validated by repeating the bootstrapping for 1,000 times.

The generated classifiers are evaluated using the AUC obtained from the training

bootstrap samples. Table 7.2.2, Figure 7.7, Figure 7.8, Figure 7.9, Figure 7.10, and Figure

7.11 report the average AUC for each studied dataset. Overall, we find that SBCCM has

an average AUC of 0.8 while BMM has an average of 0.71. In addition, ROC curves of

 101

SBCCM where closer to the top left corner than BMM throughout different cut off points.

This means SBCCM increases the AUC by 9% on average compared to BMM. In

particular, the SBCCM reveals an increase in the AUC values across all systems by up to

16% and not less than 5%. This indicates that the addition of slice-based metrics certainly

increases the discriminating power of the models. To measure the significance of the AUC

differences between the two models, we use a Wilcoxon signed-rank test (Wilcoxon 1945)

since it does not need the data to follow a normal distribution and it tests paired results.

The test reveals that the differences between SBCCM and BMM are significant in all

datasets.

Figure 7.12 highlights the AUC values distribution of the 1000 iterations of

bootstrap of SBCCM and BMM. Both models have a high level of agreement on the

computed AUCs, as the boxplots are comparatively short, and whiskers do not stretch over

a wider range of values indicating reliable results. We observe a consistent trend of

SBCCM outperforming BMM among all systems. SBCCM have a larger median and mean

than the BMM. Across all systems, the lower whiskers of SBCCM are larger than BMM

median. No sharable Inter-quartile ranges (IQR, i.e., middle box that represents 50% of

AUC distribution) across systems. Moreover, all differences are significant using

Wilcoxon signed-rank test.

Additionally, Nag. R2 values of SBCCM in Table 7.2.2 show improvement in all

datasets that reaches up to 35% with an average increase of 18% over BMM which

indicates an improvement in the fitted model. Thus, SBCCM model has a substantially

better classification performance than the BMM.

 102

Subject
BMM SBCCM

AUC Nag. R2 AUC (*) Nag. R2 (*)

Linux 3.13 0.62 0.04 0.72 (+10%) 0.18 (+14%)

Eclipse 3.1 0.67 0.15 0.78 (+11%) 0.30 (+15%)

Eclipse 3.2 0.73 0.20 0.79 (+6%) 0.32 (+12%)

Koffice 2.0 0.75 0.23 0.80 (+5%) 0.34 (+11%)

Apache HTTP 2.0 0.73 0.20 0.87 (+14%) 0.49 (+29%)

Apache HTTP 2.2 0.74 0.23 0.82 (+8%) 0.41 (+18%)

Dolphin 14.11~18.8 0.71 0.16 0.87 (+16%) 0.51 (+35%)

Lucene 3.0 0.69 0.14 0.78 (+9%) 0.30 (+16%)

KDE Krita 3.0~3.1.3 0.70 0.15 0.76 (+6%) 0.26 (+11%)

KDE Krita 3.1.4~4.0 0.74 0.21 0.80 (+6%) 0.35 (+14%)

Average 0.71 0.17 0.80 (+9%) 0.35 (+18)

* The values between () represent the improvement between BMM and SBCCM.

Table 7.2.2: Logistic regression models average AUC, Nagelkerke R2 values across
systems using 1000 bootstrap validation (Bold font highlights the best performance).

 103

Figure 7.7: ROC curves comparing the models of SBCCM and BMM in Linux 3.13
and Eclipse 3.1

 104

Figure 7.8: ROC curves comparing the models of SBCCM and BMM in Eclipse 3.1
and Koffice 2.0.

 105

Figure 7.9: ROC curves comparing the models of SBCCM and BMM in Appache
HTTP 2.0 and 2.2.

 106

Figure 7.10: ROC curves comparing the models of SBCCM and BMM in Dolphin
14.11 and Lucene 3.0.

 107

Figure 7.11: ROC curves comparing the models of SBCCM and BMM in KDE
Krita 3.0 and 3.1.4.

 108

Figure 7.12: Logistic regression models AUC distribution of the 1000 out of sample bootstrap

(Gray boxplots are SBCCM models, white boxplots are BMM and red triangles indicate mean values).

 109

7.2.3 Models Prediction Power
In order to test the logistic regression model’s prediction ability, we compute

precision, recall and F-measure using the out-of-sample bootstrap validation (1,000 times)

and report them in Table 7.2.3. The comparison between SBCCM and BMM shows that

SBCCM is having higher F-measure in all 10 datasets. SBCCM achieves an improvement

in F-measure up to 14% and not less than 6% (average 9%) over the BMM. Figure 7.13

shows the F-measure values distribution of the 1000 iterations of out-of-sample bootstrap

validation for all datasets of SBCCM and BMM. In all systems, SBCCM has a larger

median and mean than the BMM. In addition, no sharable IQR across systems.

To measure the significance of the differences, we use a Wilcoxon signed-rank test.

The results reveal that the differences are significant (p < 0.001) across all datasets. The

higher F-measure values for SBCCM include an increase in both recall (average 12%,

range 6%-17%) and precision (average 6%, range 2%-13%) in all systems.

In summary, the addition of slice based cognitive complexity metrics significantly

improves AUC and Nag. R2 measures across all systems. Across all systems, slice-based

cognitive complexity features significantly improve defect classification F1, recall and

precision.

 110

Subject
BMM SBCCM

Recall Precision F-1 Recall (*) Precision (*) F-1(*)

Linux 3.13 48 60 54 65 (+17%) 65 (+5%) 65 (+11%)

Eclipse 3.1 54 67 60 65 (+11%) 69 (+2%) 67 (+7%)

Eclipse 3.2 61 67 64 67 (+6%) 73 (+6%) 70 (+6%)

Koffice 2.0 61 68 64 69 (+8%) 72 (+4%) 70 (+6%)

Apache HTTP 2.0 68 65 66 81 (+13%) 78 (+13%) 79 (+13%)

Apache HTTP 2.2 61 67 63 71 (+10%) 70 (+3%) 70 (+7%)

Dolphin 14.11~18.8 61 64 62 75 (+14%) 77 (+13%) 76 (+14%)

Lucene 3.0 58 62 60 71 (+13%) 70 (+8%) 71 (+11%)

KDE Krita 3.0~3.1.3 58 67 62 66 (+8%) 70 (+3%) 68 (+6%)

KDE Krita 3.1.4~4.0 55 68 61 70 (+15%) 73 (+5%) 72 (+11%)

Average 58 66 62 70 (+12%) 72 (+6%) 71 (+9%)

* The values between () represent the improvement between BMM and SBCCMs

Table 7.2.3: Logistic regression models recall, precision and F1 values across
systems using 1000 bootstrap validation (Bold font highlights the best performance).

 111

Figure 7.13: Logistic regression models F-measure distribution of the 1000 out of sample bootstrap

(Gray boxplots are SBCCM models, white boxplots are BMM and red triangles indicate mean values).

 112

7.3 Applying the Cognitive Complexity Measures During Software Inspections

For very large software systems, inspecting and comprehending all code and its

dependencies to identify possible defects is an expensive, time consuming, and often

unrealistic approach. An as-needed reading approach has to be adopted to deal with the

possibly large amounts of de-localized information. The aim of any inspection approach

has to be to limit the number of dependencies that have to be analyzed and comprehended.

Through the combination of slicing with cognitive complexity metrics, the

inspection process can be further enhanced by focusing a developer’s attention on only the

parts that are relevant with respect to a particular function/variable. The criteria for

choosing a function or variable for slicing include, for example, a function with high slice

identifier, or a variable whose computation involves code with a high slice spatial. One

might choose to inspect a code slice either prior to performing maintenance or as part of

code verification prior to the release of a product.

Additionally, identifying the most difficult to comprehend program elements can

be a valuable aid in deciding schedules and choosing appropriate programmers for a

project. It is not always feasible to improve on the cognitive complexity of a difficult

program element, as some domains are inherently complex. In such situations, we should

allocate enough time for individuals to understand the material with minimal error.

Additionally, programmer experience plays a larger role in such situations and the

programmer’s familiarity with the application domain and type of implementation should

be considered when setting time constraints.

 113

Moreover, program slicing allows for fine-grained cognitive complexity driven

inspection of the source code, by focusing and prioritizing the preventive maintenance

activity on these fine-grained parts of the system that might require additional

comprehension and maintenance effort during future system maintenance.

Testing of large software systems and their executions is difficult and a time-consuming

task. A possible application is that we can apply slice-based metrics and defect prediction

results to prioritize or select test cases. In regression testing, executing all test suites for

regression testing is very costly so that many prioritization and selection approaches for

test cases have been proposed (Yoo and Harman 2012). Since defect prediction results

provide bug-prone software artifacts and their ranks, it might be possible to use the results

for test case prioritization and selection.

 114

THREATS TO VALIDITY

Like any empirical study design, experimental design choices may impact the results

of our study. However, we perform a highly controlled experiment to ensure that our results

are robust. Below, we discuss threats that may impact the results of our study.

8.1 Construct Validity

We use an automated bug linking process, which may introduce false positives in

the linked set. This may arise because undetected defects in the considered interval are

labeled clean, as defective commits are detected and fixed in 100-300days (Kim and

Whitehead 2006; Tan et al. 2015). To overcome such issue, we cover a large span of time

period an average of 20 months across systems.

The conclusions are based on a rule-of thumb EPV value that is suggested by

(Peduzzi et al. 1996) and (Tantithamthavorn et al. 2017), who argue that, EPV has a

significant influence on the performance of defect classifiers. In particular, defect

classifiers trained with datasets with a low EPV value yield unstable results

(Tantithamthavorn et al. 2017; 2016). To ensure the stability of our results, we ensure that

included datasets have an EPV value that is larger than 10. Particularly, the systems we

select have EPV ranging from 14 to 718.

The slicing process of srcSlice is performed using the srcML (Collard, Decker, and

Maletic 2011; Collard, Maletic, and Robinson 2010) format for source code which provides

 115

direct access to abstract syntactic information. While this approach is inter procedural and

highly scalable, it might not match the accuracy of generating a complete PDG/SDG.

However, a previous study (Alomari et al. 2014) compared srcSlice’s accuracy with a

heavyweight slicing tool and shows that srcSlice produces reliable accuracy given its speed

and lightweight approach.

Previous research (Arisholm and Briand 2006; Bettenburg and Hassan 2013; Bland

and Altman 1996) suggested mitigating the skewness distribution of defect datasets is

necessary. Indeed, Jiang et al. (Jiang, Cukic, and Menzies 2008) point out that log

transformation rarely affects the performance of defect prediction models. Thus, we

suspect that the use of log transformation poses a threat to the validity of our conclusions.

However, applying other choices of data transformation techniques may yield different

results.

8.2 External Validity

We studied 10 datasets that represent varying application domains and with

different characteristics (defect rates, size, language, #files, etc.) to make our dataset

general and representative. However, it is unclear how well they generalize to closed source

software, which may have different behavior. Our approach only requires software metrics

that can be computed in a standard way by publicly available tools and all our data will be

made publicly available. Replication using closed source systems may prove fruitful.

 116

8.3 Internal Validity

We validate our model stability using out-of-sample bootstrap which been recently

shown to provide the least bias and most stable performance estimates across measures in

defect prediction (Tantithamthavorn et al. 2017). While 100 repetition found to be

sufficient (Tantithamthavorn et al. 2017), we repeated the experiment 1,000 times to ensure

that the results converge, and found consistent result.

 117

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

We empirically examine the usefulness of cognitive complexity slice-based metrics

in the context of defect prediction. The findings from an evaluation of 10 datasets covers

parts of the version histories of open source systems show that 94% of the investigated

metrics are statistically significant in relation to defects. Cognitive complexity metrics have

significant impact on defect classification measured by AUC, R2, F1, recall and precision.

Slice-based metrics allows for fine-grained cognitive complexity driven inspection

of the source code, by focusing and prioritizing the preventive maintenance activity on

these parts of the code that require additional comprehension and maintenance effort during

future maintenance. The approach can also be practically applied, as the slicing approach

used is scalable to large system. Running it on the largest system (Linux) takes less than

10 minutes on a typical desktop machine.

Future effort will be devoted to investigating the metrics performance in a cross-

project prediction and to replicate the analyses on closed source software which might

exhibit different behaviors. Furthermore, we will provide a replication package, which

includes data for both the defects and metrics used for our experiment, to allow other

researchers to compare our results.

 118

9.2 Future Work

There are several directions for the future of this research. Some directions involve the

following:

9.2.1 Cross-Project Prediction
Most of prediction models are trained on historical data. Since most new projects

don’t have historical data, there is interest in cross-project prediction: using data from one

project to predict defects in another. However, most experiments in cross-project defect

prediction report poor performance, using the standard measures of precision, recall and F-

score. It’s been argued that these IR-based measures, while broadly applicable, are not as

well suited for the QA settings in which defect prediction models are used. These measures

are taken at specific threshold. However, in practice, QA processes choose from a range of

time-and-cost vs quality tradeoffs: how many files should we inspect? Thus, measures

based on a variety of tradeoffs, viz., 5%, 10% or 20% of files tested/inspected would be

more suitable (Rahman, Posnett, and Devanbu 2012). A model that works well upon

inspecting 80% of SLOC, may not work as well when inspecting only 20% of SLOC.

Therefore, we want to investigate cross-project defect prediction using slice-based

metrics from this perspective. Since slice-based metrics are of a finer granularity and can

capture more detailed view of the modules, we hypothesize that cross-project prediction

performance is no worse than within-project performance, and substantially better than

state of the art cross-project prediction models.

 119

9.2.2 Churn of Slice-Based Metrics
Using churn of slice-based metrics can have some potential to predict defects. These

measure code churn as deltas of slice-based metrics instead of line-based code churn. The

intuition is that higher-level metrics may better model code churn than simple metrics like

addition and deletion of lines of code. We sample the history of the source code and

compute the deltas of slice metrics for each consecutive pair of samples. For each slice-

based metric, we create a matrix where the rows are the files, the columns are the sampled

versions, and each cell is the value of the metric for the given file at the given version.

9.2.3 Enhance Reliability
Other directions involve building Module-order models for targeting reliability

enhancement. The goal is to target reliability enhancement activities to those modules that

are most likely to have defects. Previous research including our classification models have

focused on classification models to identify defect-prone and not defect-prone modules.

Such models require that defect-prone be defined as a class before modeling, usually via a

threshold on the number of defects. However, due to resource constraints that limit the

amount of reliability enhancement effort, software development managers often cannot

choose an appropriate threshold at the time of modeling. In such cases, with a predicted

rank-order in hand, one can select as many modules from the top of the list for enhancement

for as long as resources allow (Khoshgoftaar and Allen 2003).

9.2.4 Varimax Transformation
Another idea is to use varimax transformation as a post processing technique for

PCA. In this work, we use PCA to best account for multicollinearity. Software metrics can

 120

be highly correlated to each other (Rajbahadur et al. 2017) and highly correlated metrics

(i.e., |ρ| > 0.7) can lead to an inflated variance in the estimation of the outcome.

Ortiz et al. apply varimax transformation for PCA (VPCA) in paleoclimate and

remote sensing studies to address multicollinearity and show improvement in terms of R2

from 0.7 to over 0.9 (Ortiz et al. 2019; Avouris and Ortiz 2019; Judice et al. 2020). In their

work, the values that they use to conduct the VPCA are the derivative of a reflectance

spectra as a function of wavelength, so the variables are wavelength bands. The PCA is

based on the decomposition of the correlation matrix from the derivative transform of the

reflectance values as a function of wavelength. In analogy to this work, these wavelengths

would be the slice-based model variables or the baseline model variables. Then, we will

run the logistic regression modeling against known bugs in each of the systems and

compare these results against PCA results shown in APPENDIX B .

 121

APPENDIX A

SCATTERPLOTS FOR THE RELATIONSHIPS BETWEEN SLICE-BASED

METRICS AND DEFECT COUNTS

Figure 9.1: Scatterplots for the relationships between slice-based metrics and defect
counts in Linux 3.13 and Eclipse 3.1.

 122

Figure 9.2: Scatterplots for the relationships between slice-based metrics and defect
counts in Eclipse 3.2 and Koffice 2.0.

 123

Figure 9.3: Scatterplots for the relationships between slice-based metrics and defect
counts in Apache HTTP 2.0 and 2.2.

 124

Figure 9.4: Scatterplots for the relationships between slice-based metrics and defect
counts in Dolphin 14.11 and Lucene 3.0.

 125

Figure 9.5: : Scatterplots for the relationships between slice-based metrics and
defect counts in KDE Krita 3.0 and 3.1.4.

 126

APPENDIX B

Results of the principal component analysis (PCA)

Model Aspect Metric PC1 PC2 PC3 PC4 PC5

SB
C

C
M

Loadings

sliceCount 0.52 -0.36 0.18 -0.12 0.74
sliceCoverage -0.32 0.59 -0.33 -0.39 0.53
sliceSize 0.54 0.27 0.12 -0.68 -0.39
sliceIdentifier 0.54 0.20 -0.71 0.41 -0.04
sliceSpatial 0.20 0.64 0.58 0.45 0.10

Communalities

sliceCount 0.66 0.22 0.01 0.00 0.10
sliceCoverage 0.25 0.61 0.04 0.05 0.05
sliceSize 0.70 0.12 0.01 0.14 0.03
sliceIdentifier 0.69 0.07 0.19 0.05 0.00
sliceSpatial 0.09 0.72 0.13 0.06 0.00

Contribution to the PCs

sliceCount 27.51 12.74 3.216 1.386 55.14
sliceCoverage 10.54 34.85 11.14 15.17 28.3
sliceSize 29.36 7.066 1.373 46.85 15.35
sliceIdentifier 28.74 4.134 50.3 16.62 0.202
sliceSpatial 3.845 41.21 33.97 19.98 1.005

EigenValue 2.40 1.74 0.38 0.30 0.19
Proportion of Variance % 0.48 0.35 0.08 0.06 0.04
Cumulative Proportion % 0.48 0.84 0.91 0.97 1.00

BM
M

Loadings

NLOC 0.50 0.29 -0.04 0.29 -0.76
CCN 0.49 0.29 0.08 -0.81 0.12
Program Length 0.49 0.32 -0.05 0.50 0.64
lineChange 0.37 -0.60 0.70 0.08 0.00
funcChange 0.37 -0.61 -0.70 -0.07 0.02

Communalities

NLOC 0.87 0.10 0.00 0.01 0.01
CCN 0.85 0.10 0.00 0.05 0.00
Program Length 0.85 0.12 0.00 0.02 0.01
lineChange 0.49 0.44 0.08 0.00 0.00
funcChange 0.48 0.45 0.08 0.00 0.00

Contribution to the PCs

NLOC 24.77 8.62 0.19 8.48 57.93
CCN 23.97 8.46 0.72 65.46 1.39
Program Length 23.98 10.23 0.24 24.91 40.63
lineChange 13.81 35.80 49.68 0.70 0.00
funcChange 13.47 36.88 49.17 0.44 0.04

EigenValue 3.53 1.22 0.15 0.08 0.02
Proportion of Variance % 0.71 0.24 0.03 0.200 0.005
Cumulative Proportion % 0.71 0.95 0.98 0.995 100.00

Table 9.2.1: PCA aspects of Eclipse 3.1.

 127

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.53 -0.35 0.07 0.04 0.77
sliceCoverage -0.34 0.58 -0.22 -0.46 0.54
sliceSize 0.53 0.28 0.50 -0.57 -0.26
sliceIdentifier 0.54 0.22 -0.79 0.01 -0.21
sliceSpatial 0.18 0.65 0.29 0.67 0.11

Communalities

sliceCount 0.68 0.22 0.00 0.00 0.10
sliceCoverage 0.27 0.60 0.02 0.06 0.05
sliceSize 0.67 0.14 0.09 0.10 0.01
sliceIdentifier 0.69 0.09 0.21 0.00 0.01
sliceSpatial 0.07 0.76 0.03 0.13 0.00

Contribution to the PCs

sliceCount 28.54 12.16 0.472 0.188 58.65
sliceCoverage 11.24 33.31 4.754 21.28 29.42
sliceSize 28.1 7.65 24.67 33.04 6.545
sliceIdentifier 29.01 4.867 61.88 0.021 4.224
sliceSpatial 3.113 42.02 8.23 45.47 1.17

EigenValue 2.38 1.82 0.35 0.29 0.17
Proportion of Variance % 0.48 0.36 0.07 0.06 0.03
Cumulative Proportion % 0.48 0.84 0.91 0.97 1.00

BM
M

Loadings

NLOC 0.55 -0.20 0.04 -0.23 0.78
CCN 0.54 -0.19 -0.02 0.80 -0.18
Program Length 0.54 -0.22 0.02 -0.55 -0.60
lineChange 0.26 0.65 -0.71 -0.04 0.01
funcChange 0.23 0.67 0.70 0.01 -0.03

Communalities

NLOC 0.91 0.07 0.00 0.00 0.01
CCN 0.89 0.06 0.00 0.05 0.00
Program Length 0.88 0.08 0.00 0.02 0.01
lineChange 0.21 0.71 0.07 0.00 0.00
funcChange 0.17 0.76 0.07 0.00 0.00

Contribution to the PCs

NLOC 29.87 3.92 0.17 5.46 60.59
CCN 29.00 3.46 0.05 64.12 3.38
Program Length 28.86 4.89 0.05 30.22 35.97
lineChange 6.87 42.47 50.47 0.19 0.00
funcChange 5.40 45.25 49.26 0.02 0.06

EigenValue 3.06 1.68 0.15 0.08 0.02
Proportion of Variance % 0.61 0.34 0.03 0.016 0.005
Cumulative Proportion % 0.61 0.95 0.98 0.995 1.00

Table 9.2.2: PCA aspects of Eclipse 3.2.

 128

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.59 -0.10 0.28 -0.63 0.40
sliceCoverage -0.34 0.52 0.73 0.09 0.26
sliceSize 0.43 0.50 0.12 -0.08 -0.73
sliceIdentifier 0.53 0.33 -0.22 0.62 0.43
sliceSpatial -0.25 0.60 -0.57 -0.45 0.22

Communalities

sliceCount 0.83 0.02 0.03 0.10 0.03
sliceCoverage 0.28 0.50 0.21 0.00 0.01
sliceSize 0.44 0.46 0.01 0.00 0.09
sliceIdentifier 0.66 0.20 0.02 0.10 0.03
sliceSpatial 0.15 0.67 0.13 0.05 0.01

Contribution to the PCs

sliceCount 35.06 1.03 7.97 39.88 16.06
sliceCoverage 11.74 27.27 53.24 0.78 6.97
sliceSize 18.85 24.97 1.50 0.72 53.97
sliceIdentifier 27.98 10.74 4.67 38.26 18.35
sliceSpatial 6.36 35.99 32.63 20.36 4.66

EigenValue 2.35 1.85 0.39 0.25 0.16
Proportion of Variance % 0.47 0.37 0.08 0.05 0.03
Cumulative Proportion % 0.47 0.84 0.92 0.97 1.00

BM
M

Loadings

NLOC 0.59 -0.03 -0.30 -0.02 -0.75
CCN 0.56 -0.04 0.80 0.16 0.12
Program Length 0.58 -0.04 -0.48 -0.10 0.65
lineChange 0.06 0.70 0.13 -0.70 -0.02
funcChange 0.03 0.71 -0.13 0.69 0.03

Communalities

NLOC 0.97 0.00 0.01 0.00 0.01
CCN 0.89 0.00 0.10 0.00 0.00
Program Length 0.95 0.00 0.04 0.00 0.01
lineChange 0.01 0.91 0.00 0.07 0.00
funcChange 0.00 0.92 0.00 0.07 0.00

Contribution to the PCs

NLOC 34.48 0.08 8.78 0.03 56.62
CCN 31.48 0.12 64.45 2.53 1.42
Program Length 33.62 0.18 23.33 1.03 41.83
lineChange 0.33 49.61 1.71 48.32 0.03
funcChange 0.09 50.00 1.73 48.08 0.10

EigenValue 2.83 1.84 0.16 0.15 0.02
Proportion of Variance % 0.56 0.37 0.03 0.03 0.01
Cumulative Proportion % 0.56 0.93 0.96 0.99 1.00

Table 9.2.3: PCA aspects of Linux 3.13.

 129

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount -0.62 0.17 -0.33 -0.17 0.67
sliceCoverage 0.39 -0.52 0.01 0.45 0.61
sliceSize -0.46 -0.43 -0.46 0.46 -0.42
sliceIdentifier -0.50 -0.33 0.80 0.01 0.02
sliceSpatial 0.09 -0.63 -0.19 -0.74 -0.05

Communalities

sliceCount 0.83 0.06 0.04 0.01 0.07
sliceCoverage 0.33 0.57 0.00 0.05 0.06
sliceSize 0.45 0.39 0.08 0.05 0.03
sliceIdentifier 0.54 0.22 0.23 0.00 0.00
sliceSpatial 0.02 0.84 0.01 0.13 0.00

Contribution to the PCs

sliceCount 38.18 2.87 10.90 2.97 45.07
sliceCoverage 15.07 27.36 0.01 20.36 37.20
sliceSize 20.85 18.90 21.23 21.54 17.48
sliceIdentifier 25.15 10.67 64.13 0.01 0.03
sliceSpatial 0.74 40.20 3.73 55.12 0.21

EigenValue 2.16 2.08 0.37 0.24 0.15
Proportion of Variance % 0.43 0.42 0.07 0.05 0.03
Cumulative Proportion % 0.43 0.85 0.92 0.97 1.00

BM
M

Loadings

NLOC -0.55 0.24 -0.29 0.01 -0.74
CCN -0.47 0.27 0.83 0.01 0.11
Program Length -0.54 0.23 -0.47 -0.03 0.66
lineChange -0.30 -0.64 0.05 -0.70 -0.02
funcChange -0.30 -0.64 0.02 0.71 0.03

Communalities

NLOC 0.86 0.09 0.03 0.00 0.02
CCN 0.63 0.12 0.25 0.00 0.00
Program Length 0.82 0.09 0.08 0.00 0.01
lineChange 0.25 0.69 0.00 0.07 0.00
funcChange 0.26 0.67 0.00 0.07 0.00

Contribution to the PCs

NLOC 30.53 5.68 8.49 0.01 55.29
CCN 22.33 7.24 69.17 0.00 1.25
Program Length 29.06 5.40 22.06 0.10 43.38
lineChange 8.78 41.28 0.22 49.70 0.02
funcChange 9.30 40.40 0.05 50.19 0.06

EigenValue 2.82 1.66 0.36 0.13 0.03
Proportion of Variance % 0.56 0.33 0.07 0.03 0.01
Cumulative Proportion % 0.56 0.89 0.96 0.99 1.00

Table 9.2.4: PCA aspects of Koffice 2.0.

 130

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.59 -0.07 0.30 -0.29 0.69
sliceCoverage -0.52 0.34 -0.47 -0.22 0.59
sliceSize 0.34 0.57 -0.19 -0.60 -0.40
sliceIdentifier 0.41 0.49 -0.28 0.71 0.12
sliceSpatial -0.32 0.56 0.76 0.09 0.03

Communalities

sliceCount 0.88 0.01 0.03 0.02 0.07
sliceCoverage 0.67 0.21 0.06 0.01 0.05
sliceSize 0.29 0.59 0.01 0.08 0.02
sliceIdentifier 0.42 0.45 0.02 0.11 0.00
sliceSpatial 0.25 0.58 0.16 0.00 0.00

Contribution to the PCs

sliceCount 35.03 0.49 9.25 8.28 46.95
sliceCoverage 26.66 11.31 21.80 4.98 35.25
sliceSize 11.56 32.33 3.68 36.17 16.26
sliceIdentifier 16.60 24.25 7.92 49.80 1.43
sliceSpatial 10.14 31.62 57.35 0.77 0.11

EigenValue 2.51 1.84 0.28 0.23 0.14
Proportion of Variance % 0.50 0.37 0.06 0.05 0.03
Cumulative Proportion % 0.50 0.87 0.93 0.98 1.00

BM
M

Loadings

NLOC 0.55 -0.19 0.01 -0.27 0.77
CCN 0.54 -0.18 0.05 0.81 -0.15
Program Length 0.55 -0.18 0.03 -0.53 -0.62
lineChange 0.20 0.69 0.70 -0.02 0.01
funcChange 0.26 0.65 -0.71 0.01 -0.01

Communalities

NLOC 0.92 0.06 0.00 0.01 0.01
CCN 0.89 0.06 0.00 0.05 0.00
Program Length 0.91 0.06 0.00 0.02 0.01
lineChange 0.12 0.83 0.05 0.00 0.00
funcChange 0.20 0.75 0.05 0.00 0.00

Contribution to the PCs

NLOC 30.28 3.59 0.01 7.32 58.81
CCN 29.21 3.34 0.22 65.01 2.22
Program Length 29.96 3.40 0.08 27.63 38.94
lineChange 3.93 47.22 48.81 0.02 0.02
funcChange 6.62 42.45 50.89 0.02 0.01

EigenValue 3.04 1.76 0.10 0.08 0.02
Proportion of Variance % 0.61 0.35 0.02 0.016 0.003
Cumulative Proportion % 0.61 0.96 0.98 0.996 1.00

Table 9.2.5: PCA aspects of Apache HTTP 2.0.

 131

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.59 0.06 -0.28 -0.32 -0.68
sliceCoverage -0.59 0.09 0.23 0.26 -0.72
sliceSize 0.15 0.66 -0.39 0.62 0.06
sliceIdentifier 0.12 0.67 0.64 -0.35 0.07
sliceSpatial -0.51 0.32 -0.56 -0.57 0.08

Communalities

sliceCount 0.88 0.01 0.02 0.03 0.07
sliceCoverage 0.88 0.02 0.01 0.02 0.08
sliceSize 0.06 0.80 0.04 0.10 0.00
sliceIdentifier 0.03 0.82 0.12 0.03 0.00
sliceSpatial 0.65 0.19 0.09 0.08 0.00

Contribution to the PCs

sliceCount 35.19 0.41 7.78 10.38 46.23
sliceCoverage 35.17 0.88 5.19 6.50 52.26
sliceSize 2.31 43.92 14.84 38.58 0.35
sliceIdentifier 1.40 44.63 41.26 12.24 0.47
sliceSpatial 25.92 10.16 30.93 32.29 0.69

EigenValue 2.49 1.83 0.28 0.25 0.15
Proportion of Variance % 0.50 0.37 0.06 0.05 0.03
Cumulative Proportion % 0.50 0.87 0.93 0.98 1.00

BM
M

Loadings

NLOC 0.53 -0.25 0.15 -0.22 -0.77
CCN 0.52 -0.24 -0.31 0.74 0.16
Program Length 0.52 -0.25 0.13 -0.52 0.62
lineChange 0.29 0.65 -0.66 -0.25 -0.06
funcChange 0.31 0.63 0.66 0.25 0.06

Communalities

NLOC 0.89 0.10 0.00 0.00 0.01
CCN 0.85 0.10 0.01 0.04 0.00
Program Length 0.87 0.10 0.00 0.02 0.01
lineChange 0.27 0.68 0.04 0.00 0.00
funcChange 0.30 0.65 0.04 0.00 0.00

Contribution to the PCs

NLOC 27.83 6.02 2.20 5.03 58.92
CCN 26.71 5.96 9.38 55.50 2.45
Program Length 27.40 6.06 1.63 27.08 37.83
lineChange 8.51 42.02 43.00 6.09 0.38
funcChange 9.55 39.93 43.79 6.30 0.42

EigenValue 3.19 1.63 0.09 0.08 0.02
Proportion of Variance % 0.64 0.32 0.019 0.015 0.003
Cumulative Proportion % 0.64 0.96 0.979 0.994 1.00

Table 9.2.6: PCA aspects of Apache HTTP 2.2.

 132

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.20 -0.63 0.39 0.24 0.60
sliceCoverage -0.49 0.42 0.11 -0.34 0.68
sliceSize -0.46 -0.43 0.45 -0.50 -0.39
sliceIdentifier -0.38 -0.49 -0.77 -0.04 0.13
sliceSpatial -0.60 0.09 0.18 0.76 -0.14

Communalities

sliceCount 0.09 0.80 0.04 0.01 0.05
sliceCoverage 0.55 0.36 0.00 0.03 0.06
sliceSize 0.49 0.37 0.06 0.06 0.02
sliceIdentifier 0.34 0.48 0.18 0.00 0.00
sliceSpatial 0.85 0.01 0.01 0.13 0.00

Contribution to the PCs

sliceCount 4.02 39.42 14.93 5.94 35.69
sliceCoverage 23.69 17.82 1.12 11.52 45.84
sliceSize 21.21 18.32 20.67 24.93 14.87
sliceIdentifier 14.55 23.71 59.87 0.14 1.74
sliceSpatial 36.52 0.72 3.42 57.47 1.86

EigenValue 2.31 2.04 0.30 0.22 0.13
Proportion of Variance % 0.46 0.41 0.06 0.04 0.03
Cumulative Proportion % 0.46 0.87 0.93 0.97 1.00

BM
M

Loadings

NLOC 0.51 0.26 -0.31 0.11 -0.75
CCN 0.31 0.66 0.66 0.01 0.17
Program Length 0.50 0.17 -0.57 -0.04 0.63
lineChange 0.46 -0.44 0.25 -0.73 -0.06
funcChange 0.43 -0.52 0.28 0.68 0.09

Communalities

NLOC 0.87 0.08 0.03 0.00 0.01
CCN 0.33 0.52 0.15 0.00 0.00
Program Length 0.84 0.03 0.11 0.00 0.01
lineChange 0.70 0.24 0.02 0.04 0.00
funcChange 0.62 0.32 0.03 0.03 0.00

Contribution to the PCs

NLOC 25.89 6.89 9.50 1.23 56.49
CCN 9.68 43.74 43.61 0.01 2.96
Program Length 25.10 2.92 32.50 0.12 39.36
lineChange 20.95 19.67 6.39 52.69 0.31
funcChange 18.38 26.79 8.00 45.95 0.87

EigenValue 3.36 1.20 0.35 0.07 0.03
Proportion of Variance % 0.67 0.24 0.070 0.01 0.01
Cumulative Proportion % 0.67 0.91 0.980 0.99 1.00

Table 9.2.7: PCA aspects of Dolphin 14.11~18.8.

 133

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount -0.53 0.36 -0.28 0.05 -0.72
sliceCoverage 0.35 -0.61 0.12 -0.33 -0.62
sliceSize -0.50 -0.34 -0.38 -0.63 0.31
sliceIdentifier -0.52 -0.11 0.84 -0.04 0.00
sliceSpatial -0.28 -0.62 -0.22 0.70 0.03

Communalities

sliceCount 0.69 0.21 0.03 0.00 0.07
sliceCoverage 0.30 0.62 0.01 0.03 0.05
sliceSize 0.62 0.19 0.06 0.12 0.01
sliceIdentifier 0.68 0.02 0.30 0.00 0.00
sliceSpatial 0.19 0.64 0.02 0.14 0.00

Contribution to the PCs

sliceCount 27.78 12.63 7.77 0.24 51.57
sliceCoverage 11.95 36.66 1.53 10.92 38.95
sliceSize 25.07 11.24 14.52 39.79 9.38
sliceIdentifier 27.44 1.16 71.27 0.13 0.00
sliceSpatial 7.75 38.32 4.91 48.92 0.10

EigenValue 2.48 1.68 0.42 0.29 0.13
Proportion of Variance % 0.50 0.33 0.08 0.06 0.03
Cumulative Proportion % 0.50 0.83 0.91 0.97 1.00

BM
M

Loadings

NLOC 0.58 -0.10 0.08 0.16 0.79
CCN 0.55 -0.16 -0.19 -0.76 -0.25
Program Length 0.57 -0.08 0.12 0.59 -0.56
lineChange 0.14 0.69 -0.70 0.13 0.03
funcChange 0.13 0.69 0.68 -0.21 -0.03

Communalities

NLOC 0.96 0.02 0.00 0.00 0.02
CCN 0.87 0.04 0.01 0.08 0.00
Program Length 0.93 0.01 0.00 0.05 0.01
lineChange 0.06 0.85 0.09 0.00 0.00
funcChange 0.05 0.85 0.09 0.01 0.00

Contribution to the PCs

NLOC 33.41 1.03 0.60 2.52 62.45
CCN 30.36 2.47 3.74 57.05 6.38
Program Length 32.44 0.63 1.49 34.46 30.98
lineChange 1.99 47.73 48.57 1.64 0.08
funcChange 1.80 48.14 45.61 4.34 0.11

EigenValue 2.86 1.77 0.20 0.14 0.03
Proportion of Variance % 0.57 0.35 0.04 0.03 0.01
Cumulative Proportion % 0.57 0.92 0.96 0.99 1.00

Table 9.2.8: PCA aspects of Lucene 3.0.

 134

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount -0.32 -0.57 -0.17 -0.44 0.59
sliceCoverage 0.59 0.27 -0.10 0.22 0.72
sliceSize 0.39 -0.48 -0.69 0.21 -0.29
sliceIdentifier 0.18 -0.60 0.64 0.45 0.03
sliceSpatial 0.61 -0.08 0.27 -0.72 -0.21

Communalities

sliceCount 0.23 0.68 0.01 0.05 0.03
sliceCoverage 0.78 0.16 0.00 0.01 0.05
sliceSize 0.34 0.49 0.15 0.01 0.01
sliceIdentifier 0.07 0.75 0.13 0.05 0.00
sliceSpatial 0.82 0.01 0.02 0.14 0.00

Contribution to the PCs

sliceCount 10.09 32.62 2.79 19.29 35.21
sliceCoverage 34.83 7.49 0.91 5.06 51.71
sliceSize 15.22 23.41 48.17 4.52 8.68
sliceIdentifier 3.11 35.84 41.09 19.87 0.08
sliceSpatial 36.74 0.64 7.04 51.25 4.32

EigenValue 2.23 2.08 0.32 0.27 0.10
Proportion of Variance % 0.45 0.42 0.06 0.05 0.02
Cumulative Proportion % 0.45 0.87 0.93 0.98 1.00

B M
M

Loadings

NLOC -0.53 0.29 -0.30 0.03 -0.74
CCN -0.44 0.29 0.84 -0.01 0.09
Program Length -0.52 0.29 -0.44 0.01 0.67
lineChange -0.35 -0.62 0.04 0.70 0.01
funcChange -0.36 -0.60 0.01 -0.71 0.00

Communalities

NLOC 0.81 0.13 0.04 0.00 0.02
CCN 0.56 0.13 0.31 0.00 0.00
Program Length 0.77 0.13 0.09 0.00 0.01
lineChange 0.35 0.58 0.00 0.07 0.00
funcChange 0.38 0.55 0.00 0.07 0.00

Contribution to the PCs

NLOC 28.34 8.53 8.91 0.06 54.16
CCN 19.53 8.41 71.20 0.02 0.85
Program Length 26.85 8.43 19.72 0.02 44.98
lineChange 12.06 38.47 0.17 49.30 0.02
funcChange 13.23 36.16 0.00 50.60 0.00

EigenValue 2.88 1.52 0.44 0.14 0.03
Proportion of Variance % 0.57 0.30 0.09 0.03 0.01
Cumulative Proportion % 0.57 0.87 0.96 0.99 1.00

Table 9.2.9: PCA aspect KDE Krita 3.0~3.1.3.

 135

Model Aspect Metric PC1 PC2 PC3 PC4 PC5
SB

C
C

M

Loadings

sliceCount 0.62 -0.15 0.17 0.33 -0.67
sliceCoverage -0.46 0.46 0.00 -0.32 -0.69
sliceSize 0.41 0.47 0.63 -0.41 0.23
sliceIdentifier 0.47 0.40 -0.76 -0.22 0.05
sliceSpatial -0.11 0.62 0.05 0.76 0.14

Communalities

sliceCount 0.85 0.05 0.01 0.03 0.06
sliceCoverage 0.47 0.44 0.00 0.03 0.07
sliceSize 0.36 0.46 0.13 0.04 0.01
sliceIdentifier 0.47 0.33 0.19 0.01 0.00
sliceSpatial 0.03 0.81 0.00 0.15 0.00

Contribution to the PCs

sliceCount 39.06 2.17 2.84 10.81 45.11
sliceCoverage 21.49 20.97 0.00 10.27 47.27
sliceSize 16.53 22.05 39.35 16.63 5.44
sliceIdentifier 21.62 15.75 57.58 4.81 0.23
sliceSpatial 1.29 39.06 0.22 57.48 1.96

EigenValue 2.19 2.08 0.32 0.27 0.14
Proportion of Variance % 0.44 0.42 0.06 0.05 0.02
Cumulative Proportion % 0.45 0.87 0.93 0.98 1.00

BM
M

Loadings

NLOC -0.58 0.18 -0.30 0.04 -0.74
CCN -0.48 0.26 0.83 -0.09 0.10
Program Length -0.57 0.16 -0.45 0.08 0.67
lineChange -0.22 -0.67 0.15 0.69 -0.01
funcChange -0.26 -0.65 -0.02 -0.71 0.01

Communalities

NLOC 0.89 0.06 0.03 0.00 0.02
CCN 0.61 0.12 0.27 0.00 0.00
Program Length 0.86 0.05 0.08 0.00 0.01
lineChange 0.13 0.80 0.01 0.06 0.00
funcChange 0.18 0.76 0.00 0.06 0.00

Contribution to the PCs

NLOC 33.35 3.14 8.93 0.17 54.41
CCN 22.88 6.65 68.82 0.73 0.91
Program Length 32.23 2.57 19.88 0.66 44.65
lineChange 4.94 44.90 2.33 47.83 0.01
funcChange 6.60 42.73 0.04 50.62 0.02

EigenValue 2.67 1.79 0.39 0.12 0.03
Proportion of Variance % 0.53 0.36 0.08 0.02 0.01
Cumulative Proportion % 0.53 0.89 0.97 0.99 1.00

Table 9.2.10: PCA aspects of KDE Krita 3.1.4~4.0.

 136

REFERENCES

 Abebe, S. L., V. Arnaoudova, P. Tonella, G. Antoniol, and Y. G. Guéhéneuc. 2012.

“Can Lexicon Bad Smells Improve Fault Prediction?” In 2012 19th Working

Conference on Reverse Engineering, 235–44.

https://doi.org/10.1109/WCRE.2012.33.

Abid, N. J., N. Dragan, M. L. Collard, and J. I. Maletic. 2015. “Using Stereotypes in the

Automatic Generation of Natural Language Summaries for C++ Methods.” In

2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME), 561–65. https://doi.org/10.1109/ICSM.2015.7332514.

Abreu, Fernando Brito e, and Rogério Carapuça. 1994. “Candidate Metrics for Object-

Oriented Software within a Taxonomy Framework.” Journal of Systems and

Software 26 (1): 87–96. https://doi.org/10.1016/0164-1212(94)90099-X.

Agrawal, Hiralal, Richard A. Demillo, and Eugene H. Spafford. 1993. “Debugging with

Dynamic Slicing and Backtracking.” Softw. Pract. Exper. 23 (6): 589–616.

https://doi.org/10.1002/spe.4380230603.

Akiyama, F. 1971. “An Example of Software System Debugging.” In International

Federation of Information Processing Societies Congress, 353–359.

Allen, Frances E. 1970. “Control Flow Analysis.” In Proceedings of a Symposium on

Compiler Optimization, 1–19. New York, NY, USA: ACM.

https://doi.org/10.1145/800028.808479.

 137

Alomari, H. W., M. L. Collard, and J. I. Maletic. 2014. “A Slice-Based Estimation

Approach for Maintenance Effort.” In 2014 IEEE International Conference on

Software Maintenance and Evolution, 81–90.

https://doi.org/10.1109/ICSME.2014.30.

Alomari, H. W., M. L. Collard, J. I. Maletic, N. Alhindawi, and O. Meqdadi. 2014.

“SrcSlice: Very Efficient and Scalable Forward Static Slicing: SRCSLICE:

VERY EFFICIENT AND SCALABLE FORWARD STATIC SLICING.” Journal

of Software: Evolution and Process 26 (11): 931–61.

https://doi.org/10.1002/smr.1651.

Alqadi, Basma. 2019. “The Relationship Between Cognitive Complexity and the

Probability of Defects.” In 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 600–604.

https://doi.org/10.1109/ICSME.2019.00095.

Alqadi, Basma S., and Jonathan I. Maletic. 2020. “Slice-Based Cognitive Complexity

Metrics for Defect Prediction.” In 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 411–22.

https://doi.org/10.1109/SANER48275.2020.9054836.

Androutsopoulos, Kelly, David Clark, Mark Harman, Jens Krinke, and Laurence Tratt.

2013. “State-Based Model Slicing: A Survey.” ACM Comput. Surv. 45 (4): 53:1–53:36.

https://doi.org/10.1145/2501654.2501667.

Arisholm, Erik, and Lionel C. Briand. 2006. “Predicting Fault-Prone Components in a

Java Legacy System.” In Proceedings of the 2006 ACM/IEEE International

 138

Symposium on Empirical Software Engineering, 8–17. ISESE ’06. Rio de Janeiro,

Brazil: Association for Computing Machinery.

https://doi.org/10.1145/1159733.1159738.

Arnaoudova, V., L. Eshkevari, R. Oliveto, Y. G. Guéhéneuc, and G. Antoniol. 2010.

“Physical and Conceptual Identifier Dispersion: Measures and Relation to Fault

Proneness.” In 2010 IEEE International Conference on Software Maintenance, 1–

5. https://doi.org/10.1109/ICSM.2010.5609748.

Avouris, Dulcinea M., and Joseph D. Ortiz. 2019. “Validation of 2015 Lake Erie MODIS

Image Spectral Decomposition Using Visible Derivative Spectroscopy and Field

Campaign Data.” Journal of Great Lakes Research 45 (3): 466–79.

https://doi.org/10.1016/j.jglr.2019.02.005.

Bacchelli, Alberto, Marco D’Ambros, and Michele Lanza. 2010. “Are Popular Classes

More Defect Prone?” In Proceedings of the 13th International Conference on

Fundamental Approaches to Software Engineering, 59–73. FASE’10. Berlin,

Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-12029-9_5.

Bachmann, Adrian, and Abraham Bernstein. 2009. “Software Process Data Quality and

Characteristics: A Historical View on Open and Closed Source Projects.” In

Proceedings of the Joint International and Annual ERCIM Workshops on

Principles of Software Evolution (IWPSE) and Software Evolution (Evol)

Workshops, 119–128. IWPSE-Evol ’09. New York, NY, USA: ACM.

https://doi.org/10.1145/1595808.1595830.

 139

Bae, Jung Ho, and Heung Seok Chae. 2008. “UMLSlicer: A Tool for Modularizing the

UML Metamodel Using Slicing.” In 2008 8th IEEE International Conference on

Computer and Information Technology, 772–77.

https://doi.org/10.1109/CIT.2008.4594772.

Basili, V. R., L. C. Briand, and W. L. Melo. 1996. “A Validation of Object-Oriented

Design Metrics as Quality Indicators.” IEEE Transactions on Software

Engineering 22 (10): 751–61. https://doi.org/10.1109/32.544352.

Basili, Victor R., and Barry T. Perricone. 1984. “Software Errors and Complexity: An

Empirical Investigation0.” Commun. ACM 27 (1): 42–52.

https://doi.org/10.1145/69605.2085.

Bell, Robert M., Thomas J. Ostrand, and Elaine J. Weyuker. 2006. “Looking for Bugs in

All the Right Places.” In Proceedings of the 2006 International Symposium on

Software Testing and Analysis, 61–72. ISSTA ’06. New York, NY, USA: ACM.

https://doi.org/10.1145/1146238.1146246.

Belsley, David, Edwin Kuh, and Roy E. Welsch. 2005. “Detecting Influential

Observations and Outliers.” In , 6–84. https://doi.org/10.1002/0471725153.ch2.

Best, D. J., and D. E. Roberts. 1975. “Algorithm AS 89: The Upper Tail Probabilities of

Spearman’s Rho.” Journal of the Royal Statistical Society. Series C (Applied

Statistics) 24 (3): 377–79. https://doi.org/10.2307/2347111.

Bettenburg, Nicolas, and Ahmed E. Hassan. 2013. “Studying the Impact of Social

Interactions on Software Quality.” Empirical Software Engineering 18 (2): 375–

431. https://doi.org/10.1007/s10664-012-9205-0.

 140

Bieman, J. M., and L. M. Ott. 1994. “Measuring Functional Cohesion.” IEEE Trans.

Softw. Eng. 20 (8): 644–657. https://doi.org/10.1109/32.310673.

Binkley, D., H. Feild, D. Lawrie, and M. Pighin. 2007. “Software Fault Prediction Using

Language Processing.” In Testing: Academic and Industrial Conference Practice

and Research Techniques - MUTATION (TAICPART-MUTATION 2007), 99–

110. https://doi.org/10.1109/TAIC.PART.2007.10.

Binkley, David. 1998. “The Application of Program Slicing to Regression Testing.”

Information and Software Technology 40 (11–12): 583–94.

https://doi.org/10.1016/S0950-5849(98)00085-8.

Binkley, David, Henry Feild, Dawn Lawrie, and Maurizio Pighin. 2009. “Increasing

Diversity: Natural Language Measures for Software Fault Prediction.” J. Syst.

Softw. 82 (11): 1793–1803. https://doi.org/10.1016/j.jss.2009.06.036.

Bird, C., N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. 2009. “Putting It All

Together: Using Socio-Technical Networks to Predict Failures.” In 2009 20th

International Symposium on Software Reliability Engineering, 109–19.

https://doi.org/10.1109/ISSRE.2009.17.

Bird, Christian, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar

Devanbu. 2011. “Don’T Touch My Code!: Examining the Effects of Ownership

on Software Quality.” In Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering, 4–

14. ESEC/FSE ’11. New York, NY, USA: ACM.

https://doi.org/10.1145/2025113.2025119.

 141

Black, S., S. Counsell, T. Hall, and D. Bowes. 2009. “Fault Analysis in OSS Based on

Program Slicing Metrics.” In 2009 35th Euromicro Conference on Software

Engineering and Advanced Applications, 3–10.

https://doi.org/10.1109/SEAA.2009.94.

Black, Sue, Steve Counsell, Tracy Hall, and Paul Wernick. 2006. “Using Program Slicing

to Identify Faults in Software.” In Beyond Program Slicing, edited by David W.

Binkley, Mark Harman, and Jens Krinke. Dagstuhl Seminar Proceedings.

Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum für

Informatik (IBFI), Schloss Dagstuhl, Germany.

http://drops.dagstuhl.de/opus/volltexte/2006/587.

Bland, J. M., and D. G. Altman. 1996. “Transformations, Means, and Confidence

Intervals.” BMJ (Clinical Research Ed.) 312 (7038): 1079.

https://doi.org/10.1136/bmj.312.7038.1079.

Boddy, Richard, and Gordon Smith. 2009. Statistical Methods in Practice: For Scientists

and Technologists. 1 edition. Chichester, U.K: Wiley.

Briand, L. C., J. W. Daly, and J. K. Wust. 1999. “A Unified Framework for Coupling

Measurement in Object-Oriented Systems.” IEEE Transactions on Software

Engineering 25 (1): 91–121. https://doi.org/10.1109/32.748920.

Buse, R. P. L., and W. R. Weimer. 2010. “Learning a Metric for Code Readability.”

IEEE Transactions on Software Engineering 36 (4): 546–58.

https://doi.org/10.1109/TSE.2009.70.

 142

Butler, S., M. Wermelinger, Y. Yu, and H. Sharp. 2009. “Relating Identifier Naming

Flaws and Code Quality: An Empirical Study.” In 2009 16th Working Conference

on Reverse Engineering, 31–35. https://doi.org/10.1109/WCRE.2009.50.

C. Williams, Chadd, and Jeffrey K. Hollingsworth. 2004. “Bug Driven Bug Finders,”

January.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE:

Synthetic Minority Over-Sampling Technique.” Journal of Artificial Intelligence

Research 16 (June): 321–57. https://doi.org/10.1613/jair.953.

Chen, C., S. Lin, M. Shoga, Q. Wang, and B. Boehm. 2018. “How Do Defects Hurt

Qualities? An Empirical Study on Characterizing a Software Maintainability

Ontology in Open Source Software.” In 2018 IEEE International Conference on

Software Quality, Reliability and Security (QRS), 226–37.

https://doi.org/10.1109/QRS.2018.00036.

Chhabra, Jitender Kumar, and Varun Gupta. 2009. “Evaluation of Object-Oriented

Spatial Complexity Measures.” SIGSOFT Softw. Eng. Notes 34 (3): 1–5.

https://doi.org/10.1145/1527202.1527208.

Chidamber, S. R., D. P. Darcy, and C. F. Kemerer. 1998. “Managerial Use of Metrics for

Object-Oriented Software: An Exploratory Analysis.” IEEE Transactions on

Software Engineering 24 (8): 629–39. https://doi.org/10.1109/32.707698.

Chidamber, S. R., and C. F. Kemerer. 1994. “A Metrics Suite for Object Oriented

Design.” IEEE Transactions on Software Engineering 20 (6): 476–93.

https://doi.org/10.1109/32.295895.

 143

Collard, M. L., M. J. Decker, and J. I. Maletic. 2011. “Lightweight Transformation and

Fact Extraction with the SrcML Toolkit.” In Proceedings of the 2011 IEEE 11th

International Working Conference on Source Code Analysis and Manipulation,

173–184. SCAM ’11. Washington, DC, USA: IEEE Computer Society.

https://doi.org/10.1109/SCAM.2011.19.

Collard, M. L., J. I. Maletic, and B. P. Robinson. 2010. “A Lightweight Transformational

Approach to Support Large Scale Adaptive Changes.” In 2010 IEEE International

Conference on Software Maintenance, 1–10.

https://doi.org/10.1109/ICSM.2010.5609719.

Counsell, S., T. Hall, and D. Bowes. 2010. “A Theoretical and Empirical Analysis of

Three Slice-Based Metrics for Cohesion.” International Journal of Software

Engineering and Knowledge Engineering 20 (05): 609–36.

https://doi.org/10.1142/S0218194010004888.

Counsell, S., T. Hall, E. Nasseri, and D. Bowes. 2010. “An Analysis of the

‘Inconclusive’’ Change Report Category in OSS Assisted by a Program Slicing

Metric.’” In 2010 36th EUROMICRO Conference on Software Engineering and

Advanced Applications, 283–86. https://doi.org/10.1109/SEAA.2010.17.

Cowan, N. 2001. “The Magical Number 4 in Short-Term Memory: A Reconsideration of

Mental Storage Capacity.” The Behavioral and Brain Sciences 24 (1): 87–114;

discussion 114-185.

D’Ambros, M., M. Lanza, and R. Robbes. 2010. “An Extensive Comparison of Bug

Prediction Approaches.” In 2010 7th IEEE Working Conference on Mining

 144

Software Repositories (MSR 2010), 31–41.

https://doi.org/10.1109/MSR.2010.5463279.

D’Ambros, Marco, Michele Lanza, and Romain Robbes. 2012. “Evaluating Defect

Prediction Approaches: A Benchmark and an Extensive Comparison.” Empirical

Softw. Engg. 17 (4–5): 531–577. https://doi.org/10.1007/s10664-011-9173-9.

Darcy, David P., Chris F. Kemerer, Sandra A. Slaughter, and James E. Tomayko. 2005.

“The Structural Complexity of Software: An Experimental Test.” IEEE Trans.

Softw. Eng. 31 (11): 982–995. https://doi.org/10.1109/TSE.2005.130.

De Lucia, Andrea, Anna Fasolino, and Malcolm Munro. 1999. “Understanding Function

Behaviors through Program Slicing,” August.

“DMwR-Package: Functions and Data for the Book ‘Data Mining with R’ in DMwR:

Functions and Data for ‘Data Mining with R.’” n.d. Accessed January 14, 2019.

https://rdrr.io/cran/DMwR/man/DMwR-package.html.

Dragan, N., M. L. Collard, and J. I. Maletic. 2006. “Reverse Engineering Method

Stereotypes.” In 2006 22nd IEEE International Conference on Software

Maintenance, 24–34. https://doi.org/10.1109/ICSM.2006.54.

Emam, Khaled El, Walcelio Melo, and Javam C. Machado. 2001. “The Prediction of

Faulty Classes Using Object-Oriented Design Metrics.” J. Syst. Softw. 56 (1): 63–

75. https://doi.org/10.1016/S0164-1212(00)00086-8.

Enslen, E., E. Hill, L. Pollock, and K. Vijay-Shanker. 2009. “Mining Source Code to

Automatically Split Identifiers for Software Analysis.” In 2009 6th IEEE

 145

International Working Conference on Mining Software Repositories, 71–80.

https://doi.org/10.1109/MSR.2009.5069482.

Farrar, Donald E., and Robert R. Glauber. 1967. “Multicollinearity in Regression

Analysis: The Problem Revisited.” The Review of Economics and Statistics 49

(1): 92–107. https://doi.org/10.2307/1937887.

Feng, Tie, and J. I. Maletic. 2006. “Using Dynamic Slicing to Analyze Change Impact on

Role Type Based Component Composition Model.” In 5th IEEE/ACIS

International Conference on Computer and Information Science and 1st

IEEE/ACIS International Workshop on Component-Based Software

Engineering,Software Architecture and Reuse (ICIS-COMSAR’06), 103–8.

https://doi.org/10.1109/ICIS-COMSAR.2006.86.

Fenton, N. E., and N. Ohlsson. 2000. “Quantitative Analysis of Faults and Failures in a

Complex Software System.” IEEE Transactions on Software Engineering 26 (8):

797–814. https://doi.org/10.1109/32.879815.

Fenton, Norman, and James Bieman. 2014. Software Metrics: A Rigorous and Practical

Approach, Third Edition. CRC Press.

Ferrante, Jeanne, Karl J. Ottenstein, and Joe D. Warren. 1987. “The Program Dependence

Graph and Its Use in Optimization.” ACM Trans. Program. Lang. Syst. 9 (3):

319–349. https://doi.org/10.1145/24039.24041.

Gallagher, K. B., and J. R. Lyle. 1991. “Using Program Slicing in Software

Maintenance.” IEEE Transactions on Software Engineering 17 (8): 751–61.

https://doi.org/10.1109/32.83912.

 146

Gold, N. E., A. M. Mohan, and P. J. Layzell. 2005. “Spatial Complexity Metrics: An

Investigation of Utility.” IEEE Transactions on Software Engineering 31 (3):

203–12. https://doi.org/10.1109/TSE.2005.39.

Graves, T. L., A. F. Karr, J. S. Marron, and H. Siy. 2000. “Predicting Fault Incidence

Using Software Change History.” IEEE Transactions on Software Engineering 26

(7): 653–61. https://doi.org/10.1109/32.859533.

Gray, D., D. Bowes, N. Davey, Y. Sun, and B. Christianson. 2011. “The Misuse of the

NASA Metrics Data Program Data Sets for Automated Software Defect

Prediction.” In 15th Annual Conference on Evaluation Assessment in Software

Engineering (EASE 2011), 96–103. https://doi.org/10.1049/ic.2011.0012.

Gupta, R., M. J. Harrold, and M. L. Soffa. 1992. “An Approach to Regression Testing

Using Slicing.” In Proceedings Conference on Software Maintenance 1992, 299–

308. https://doi.org/10.1109/ICSM.1992.242531.

Gyimothy, T., R. Ferenc, and I. Siket. 2005. “Empirical Validation of Object-Oriented

Metrics on Open Source Software for Fault Prediction.” IEEE Transactions on

Software Engineering 31 (10): 897–910. https://doi.org/10.1109/TSE.2005.112.

Hall, T., S. Beecham, D. Bowes, D. Gray, and S. Counsell. 2012. “A Systematic

Literature Review on Fault Prediction Performance in Software Engineering.”

IEEE Transactions on Software Engineering 38 (6): 1276–1304.

https://doi.org/10.1109/TSE.2011.103.

Halstead, Maurice H. 1977. Elements of Software Science (Operating and Programming

Systems Series). New York, NY, USA: Elsevier Science Inc.

 147

Harman, Mark, and Sebastian Danicic. 1995. “Using Program Slicing to Simplify

Testing.” Software Testing, Verification and Reliability 5 (September).

https://doi.org/10.1002/stvr.4370050303.

Hassan, A. E., and R. C. Holt. 2005. “The Top Ten List: Dynamic Fault Prediction.” In

21st IEEE International Conference on Software Maintenance (ICSM’05), 263–

72. https://doi.org/10.1109/ICSM.2005.91.

Hassan, Ahmed E. 2009. “Predicting Faults Using the Complexity of Code Changes.” In

Proceedings of the 31st International Conference on Software Engineering, 78–

88. ICSE ’09. Washington, DC, USA: IEEE Computer Society.

https://doi.org/10.1109/ICSE.2009.5070510.

Hata, Hideaki, Osamu Mizuno, and Tohru Kikuno. 2012. “Bug Prediction Based on Fine-

Grained Module Histories.” In , 200–210. IEEE.

https://doi.org/10.1109/ICSE.2012.6227193.

He, Zhimin, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. 2012. “An Investigation

on the Feasibility of Cross-Project Defect Prediction.” Automated Software

Engineering 19 (2): 167–99. https://doi.org/10.1007/s10515-011-0090-3.

Hervé, Maxime. 2019. RVAideMemoire: Testing and Plotting Procedures for

Biostatistics (version 0.9-71). https://CRAN.R-

project.org/package=RVAideMemoire.

Hindle, Abram, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. 2012.

“On the Naturalness of Software.” In Proceedings of the 34th International

 148

Conference on Software Engineering, 837–847. ICSE ’12. Piscataway, NJ, USA:

IEEE Press. http://dl.acm.org/citation.cfm?id=2337223.2337322.

Hollander, Myles, and Douglas Wolfe. 1999. Nonparametric Statistical Methods, 2nd

Edition. Wiley-Interscience.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

20&path=ASIN/0471190454.

Horwitz, S., T. Reps, and D. Binkley. 1988. “Interprocedural Slicing Using Dependence

Graphs.” In Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, 35–46. PLDI ’88. New

York, NY, USA: ACM. https://doi.org/10.1145/53990.53994.

“IEEE Standard Classification for Software Anomalies.” 2010. IEEE Std 1044-2009

(Revision of IEEE Std 1044-1993), January, 1–23.

https://doi.org/10.1109/IEEESTD.2010.5399061.

Jackson, J. Edward. 2003. A User’s Guide to Principal Components. Hoboken, N.J:

Wiley-Interscience.

Jiang, Yue, Bojan Cukic, and Tim Menzies. 2008. “Can Data Transformation Help in the

Detection of Fault-Prone Modules?” In Proceedings of the 2008 Workshop on

Defects in Large Software Systems, 16–20. DEFECTS ’08. Seattle, Washington:

Association for Computing Machinery. https://doi.org/10.1145/1390817.1390822.

Jr, Frank E. Harrell. 2015. Regression Modeling Strategies: With Applications to Linear

Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd ed. 2015

edition. Cham Heidelberg New York: Springer.

 149

———. 2018. Rms: Regression Modeling Strategies (version 5.1-2). https://CRAN.R-

project.org/package=rms.

Jr, Frank E. Harrell, and with contributions from Charles Dupont and many others. 2018.

Hmisc: Harrell Miscellaneous (version 4.1-1). https://CRAN.R-

project.org/package=Hmisc.

Judice, Taylor, Edith Widder, Warren Falls, Dulcinea Avouris, Dominic Cristiano, and

Joseph Ortiz. 2020. “Field-Validated Detection of Aureoumbra Lagunensis

Brown Tide Blooms in the Indian River Lagoon, Florida Using Sentinel-3A OLCI

and Ground-Based Hyperspectral Spectroradiometers.” Preprint. Earth and Space

Science Open Archive. Earth and Space Science Open Archive. World. May 3,

2020. https://doi.org/10.1002/essoar.10501382.2.

Kamei, Y., S. Matsumoto, A. Monden, K. i Matsumoto, B. Adams, and A. E. Hassan.

2010. “Revisiting Common Bug Prediction Findings Using Effort-Aware

Models.” In 2010 IEEE International Conference on Software Maintenance, 1–10.

https://doi.org/10.1109/ICSM.2010.5609530.

Khoshgoftaar, T. M., E. B. Allen, K. S. Kalaichelvan, and N. Goel. 1996. “Early Quality

Prediction: A Case Study in Telecommunications.” IEEE Software 13 (1): 65–71.

https://doi.org/10.1109/52.476287.

Khoshgoftaar, Taghi M., and Edward B. Allen. 2003. “Ordering Fault-Prone Software

Modules.” Software Quality Journal 11 (1): 19–37.

https://doi.org/10.1023/A:1023632027907.

 150

Kim, S., T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. 2007. “Predicting Faults

from Cached History.” In 29th International Conference on Software Engineering

(ICSE’07), 489–98. https://doi.org/10.1109/ICSE.2007.66.

Kim, Sunghun, and E. James Whitehead Jr. 2006. “How Long Did It Take to Fix Bugs?”

In Proceedings of the 2006 International Workshop on Mining Software

Repositories, 173–174. MSR ’06. New York, NY, USA: ACM.

https://doi.org/10.1145/1137983.1138027.

Kim, Sunghun, Hongyu Zhang, Rongxin Wu, and Liang Gong. 2011. “Dealing with

Noise in Defect Prediction.” In , 481. ACM Press.

https://doi.org/10.1145/1985793.1985859.

Kintsch, Walter. 2005. “Toward a Model of Text Comprehension and Production.” In .

Klemola, Tom. 2000. “A Cognitive Model for Complexity Metrics.” In 4th International

ECOOP Workshop on Quantitative Approaches in Object-Oriented Software

Engineering (ECOOP 2000), Sophia Antipolis, 12–16.

Korel, B., and J. Rilling. 1997. “Dynamic Program Slicing in Understanding of Program

Execution.” In , Fifth Iternational Workshop on Program Comprehension, 1997.

IWPC ’97. Proceedings, 80–89. https://doi.org/10.1109/WPC.1997.601269.

———. 1998. “Program Slicing in Understanding of Large Programs.” In , 6th

International Workshop on Program Comprehension, 1998. IWPC ’98.

Proceedings, 145–52. https://doi.org/10.1109/WPC.1998.693339.

 151

Korel, B., I. Singh, L. Tahat, and B. Vaysburg. 2003. “Slicing of State-Based Models.” In

International Conference on Software Maintenance, 2003. ICSM 2003.

Proceedings., 34–43. https://doi.org/10.1109/ICSM.2003.1235404.

Lee, Taek, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In. 2011.

“Micro Interaction Metrics for Defect Prediction.” In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, 311–321. ESEC/FSE ’11. New York, NY, USA: ACM.

https://doi.org/10.1145/2025113.2025156.

Lehman, Ann, Norm O’Rourke, Larry Hatcher, and Edward Stepanski. 2013. JMP for

Basic Univariate and Multivariate Statistics: Methods for Researchers and Social

Scientists, Second Edition. SAS Institute.

Lessmann, S., B. Baesens, C. Mues, and S. Pietsch. 2008. “Benchmarking Classification

Models for Software Defect Prediction: A Proposed Framework and Novel

Findings.” IEEE Transactions on Software Engineering 34 (4): 485–96.

https://doi.org/10.1109/TSE.2008.35.

Li, Wei, and Sallie Henry. 1993. “Object-Oriented Metrics That Predict Maintainability.”

J. Syst. Softw. 23 (2): 111–122. https://doi.org/10.1016/0164-1212(93)90077-B.

Li, Zhenmin, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai.

2006. “Have Things Changed Now?: An Empirical Study of Bug Characteristics

in Modern Open Source Software.” In Proceedings of the 1st Workshop on

Architectural and System Support for Improving Software Dependability, 25–33.

 152

ASID ’06. New York, NY, USA: ACM.

https://doi.org/10.1145/1181309.1181314.

Li, Zhenmin, and Yuanyuan Zhou. 2005. “PR-Miner: Automatically Extracting Implicit

Programming Rules and Detecting Violations in Large Software Code.” In

Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 306–315. ESEC/FSE-13. New York, NY, USA: ACM.

https://doi.org/10.1145/1081706.1081755.

Liang, D., and M. J. Harrold. 1998. “Slicing Objects Using System Dependence Graphs.”

In Proceedings of the International Conference on Software Maintenance, 358–.

ICSM ’98. Washington, DC, USA: IEEE Computer Society.

http://dl.acm.org/citation.cfm?id=850947.853342.

Lucia, A. De. 2001. “Program Slicing: Methods and Applications.” In Proceedings First

IEEE International Workshop on Source Code Analysis and Manipulation, 142–

49. https://doi.org/10.1109/SCAM.2001.972675.

Marcus, A., D. Poshyvanyk, and R. Ferenc. 2008. “Using the Conceptual Cohesion of

Classes for Fault Prediction in Object-Oriented Systems.” IEEE Transactions on

Software Engineering 34 (2): 287–300. https://doi.org/10.1109/TSE.2007.70768.

McCabe, T. J. 1976. “A Complexity Measure.” IEEE Transactions on Software

Engineering SE-2 (4): 308–20. https://doi.org/10.1109/TSE.1976.233837.

McIntosh, Shane, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016. “An

Empirical Study of the Impact of Modern Code Review Practices on Software

 153

Quality.” Empirical Software Engineering 21 (5): 2146–89.

https://doi.org/10.1007/s10664-015-9381-9.

Mende, Thilo, and Rainer Koschke. 2010. “Effort-Aware Defect Prediction Models.” In

Software Maintenance and Reengineering (CSMR), 2010 14th European

Conference On, 107–116. IEEE.

Menzies, T., J. Greenwald, and A. Frank. 2007. “Data Mining Static Code Attributes to

Learn Defect Predictors.” IEEE Transactions on Software Engineering 33 (1): 2–

13. https://doi.org/10.1109/TSE.2007.256941.

Menzies, Tim, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe Bener.

2010. “Defect Prediction from Static Code Features: Current Results, Limitations,

New Approaches.” Automated Software Engineering 17 (4): 375–407.

https://doi.org/10.1007/s10515-010-0069-5.

Meyers, T. M., and D. Binkley. 2004. “Slice-Based Cohesion Metrics and Software

Intervention.” In 11th Working Conference on Reverse Engineering, 256–65.

https://doi.org/10.1109/WCRE.2004.34.

———. 2007. “An Empirical Study of Slice-Based Cohesion and Coupling Metrics.”

ACM Trans. Softw. Eng. Methodol. 17 (1): 2:1–2:27.

https://doi.org/10.1145/1314493.1314495.

Mizuno, O., S. Ikami, S. Nakaichi, and T. Kikuno. 2007. “Spam Filter Based Approach

for Finding Fault-Prone Software Modules.” In Fourth International Workshop on

Mining Software Repositories (MSR’07:ICSE Workshops 2007), 4–4.

https://doi.org/10.1109/MSR.2007.29.

 154

Moller, K. H., and D. J. Paulish. 1993. “An Empirical Investigation of Software Fault

Distribution.” In [1993] Proceedings First International Software Metrics

Symposium, 82–90. https://doi.org/10.1109/METRIC.1993.263798.

Moser, R., W. Pedrycz, and G. Succi. 2008. “A Comparative Analysis of the Efficiency

of Change Metrics and Static Code Attributes for Defect Prediction.” In 2008

ACM/IEEE 30th International Conference on Software Engineering, 181–90.

https://doi.org/10.1145/1368088.1368114.

Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. 2008. “A Comparative Analysis

of the Efficiency of Change Metrics and Static Code Attributes for Defect

Prediction.” In Proceedings of the 30th International Conference on Software

Engineering, 181–190. ICSE ’08. New York, NY, USA: ACM.

https://doi.org/10.1145/1368088.1368114.

Munson, J. C., and T. M. Khoshgoftaar. 1992. “The Detection of Fault-Prone Programs.”

IEEE Transactions on Software Engineering 18 (5): 423–33.

https://doi.org/10.1109/32.135775.

Nagappan, N., and T. Ball. 2005. “Use of Relative Code Churn Measures to Predict

System Defect Density.” In Proceedings of the 27th International Conference on

Software Engineering, 284–292. ICSE ’05. New York, NY, USA: ACM.

https://doi.org/10.1145/1062455.1062514.

Nagappan, N., A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. 2010. “Change

Bursts as Defect Predictors.” In 2010 IEEE 21st International Symposium on

 155

Software Reliability Engineering, 309–18.

https://doi.org/10.1109/ISSRE.2010.25.

Nagappan, Nachiappan, Thomas Ball, and Andreas Zeller. 2006. “Mining Metrics to

Predict Component Failures.” In , 452. ACM Press.

https://doi.org/10.1145/1134285.1134349.

Nagelkerke, N. J. D. 1991. “A Note on a General Definition of the Coefficient of

Determination.” Biometrika 78 (3): 691–92.

https://doi.org/10.1093/biomet/78.3.691.

Nam, J., W. Fu, S. Kim, T. Menzies, and L. Tan. 2017. “Heterogeneous Defect

Prediction.” IEEE Transactions on Software Engineering, 1–1.

https://doi.org/10.1109/TSE.2017.2720603.

Nam, J., S. J. Pan, and S. Kim. 2013. “Transfer Defect Learning.” In 2013 35th

International Conference on Software Engineering (ICSE), 382–91.

https://doi.org/10.1109/ICSE.2013.6606584.

Nam, Jaechang. 2015. “Software Defect Prediction on Unlabeled Datasets.” 2015.

Newman, Christian D., Tessandra Sage, Michael L. Collard, Hakam W. Alomari, and

Jonathan I. Maletic. 2016. “SrcSlice: A Tool for Efficient Static Forward Slicing.”

In Proceedings of the 38th International Conference on Software Engineering

Companion, 621–624. ICSE ’16. New York, NY, USA: ACM.

https://doi.org/10.1145/2889160.2889173.

Nguyen, Anh Tuan, and Tien N. Nguyen. 2015. “Graph-Based Statistical Language

Model for Code.” In Proceedings of the 37th International Conference on

 156

Software Engineering - Volume 1, 858–868. ICSE ’15. Piscataway, NJ, USA:

IEEE Press. http://dl.acm.org/citation.cfm?id=2818754.2818858.

Nucci, D. Di, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia. 2018. “A

Developer Centered Bug Prediction Model.” IEEE Transactions on Software

Engineering 44 (1): 5–24. https://doi.org/10.1109/TSE.2017.2659747.

Nucci, D. Di, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and A. De Lucia. 2015. “On

the Role of Developer’s Scattered Changes in Bug Prediction.” In 2015 IEEE

International Conference on Software Maintenance and Evolution (ICSME), 241–

50. https://doi.org/10.1109/ICSM.2015.7332470.

Ohlsson, N., and H. Alberg. 1996. “Predicting Fault-Prone Software Modules in

Telephone Switches.” IEEE Transactions on Software Engineering 22 (12): 886–

94. https://doi.org/10.1109/32.553637.

Ortiz, Joseph D., Dulci M. Avouris, Stephen J. Schiller, Jeffrey C. Luvall, John D. Lekki,

Roger P. Tokars, Robert C. Anderson, Robert Shuchman, Michael Sayers, and

Richard Becker. 2019. “Evaluating Visible Derivative Spectroscopy by Varimax-

Rotated, Principal Component Analysis of Aerial Hyperspectral Images from the

Western Basin of Lake Erie.” Journal of Great Lakes Research 45 (3): 522–35.

https://doi.org/10.1016/j.jglr.2019.03.005.

Ostrand, T. J., E. J. Weyuker, and R. M. Bell. 2005. “Predicting the Location and

Number of Faults in Large Software Systems.” IEEE Transactions on Software

Engineering 31 (4): 340–55. https://doi.org/10.1109/TSE.2005.49.

 157

Ott, L. M., and J. J. Thuss. 1993. “Slice Based Metrics for Estimating Cohesion.” In

[1993] Proceedings First International Software Metrics Symposium, 71–81.

https://doi.org/10.1109/METRIC.1993.263799.

Ottenstein, Karl J., and Linda M. Ottenstein. 1984. “The Program Dependence Graph in a

Software Development Environment.” In Proceedings of the First ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments, 177–184. SDE 1. New York, NY, USA: ACM.

https://doi.org/10.1145/800020.808263.

Pádua, Guilherme B. de, and Weiyi Shang. 2018. “Studying the Relationship Between

Exception Handling Practices and Post-Release Defects.” In Proceedings of the

15th International Conference on Mining Software Repositories, 564–575. MSR

’18. New York, NY, USA: ACM. https://doi.org/10.1145/3196398.3196435.

Palomba, F., M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto. 2016. “Smells Like

Teen Spirit: Improving Bug Prediction Performance Using the Intensity of Code

Smells.” In 2016 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 244–55. https://doi.org/10.1109/ICSME.2016.27.

Palomba, F., M. Zanoni, F. Arcelli Fontana, A. De Lucia, and R. Oliveto. 2017. “Toward

a Smell-Aware Bug Prediction Model.” IEEE Transactions on Software

Engineering, 1–1. https://doi.org/10.1109/TSE.2017.2770122.

Pan, K., S. Kim, and E. J. Whitehead Jr. 2006. “Bug Classification Using Program

Slicing Metrics.” In 2006 Sixth IEEE International Workshop on Source Code

Analysis and Manipulation, 31–42. https://doi.org/10.1109/SCAM.2006.6.

 158

Peduzzi, P., J. Concato, E. Kemper, T. R. Holford, and A. R. Feinstein. 1996. “A

Simulation Study of the Number of Events per Variable in Logistic Regression

Analysis.” Journal of Clinical Epidemiology 49 (12): 1373–79.

https://doi.org/10.1016/s0895-4356(96)00236-3.

Pennington, Nancy. 1987. “Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs.” Cognitive Psychology 19 (3): 295–341.

https://doi.org/10.1016/0010-0285(87)90007-7.

Petrić, Jean, and Tihana Galinac Grbac. 2014. “Software Structure Evolution and

Relation to System Defectiveness.” In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, 34:1–34:10.

EASE ’14. New York, NY, USA: ACM.

https://doi.org/10.1145/2601248.2601287.

Podgurski, A., and L. A. Clarke. 1990. “A Formal Model of Program Dependences and

Its Implications for Software Testing, Debugging, and Maintenance.” IEEE

Transactions on Software Engineering 16 (9): 965–79.

https://doi.org/10.1109/32.58784.

Pressman, Roger S. 2015. Software Engineering: A Practitioner’s Approach. Eighth

edition. New York, NY: McGraw-Hill Education.

Purushothaman, R., and D. E. Perry. 2005. “Toward Understanding the Rhetoric of Small

Source Code Changes.” IEEE Transactions on Software Engineering 31 (6): 511–

26. https://doi.org/10.1109/TSE.2005.74.

 159

Rahman, Akond. 2018. “Comprehension Effort and Programming Activities: Related? Or

Not Related?” In Proceedings of the 15th International Conference on Mining

Software Repositories, 66–69. MSR ’18. New York, NY, USA: ACM.

https://doi.org/10.1145/3196398.3196470.

Rahman, F., and P. Devanbu. 2013. “How, and Why, Process Metrics Are Better.” In

2013 35th International Conference on Software Engineering (ICSE), 432–41.

https://doi.org/10.1109/ICSE.2013.6606589.

Rahman, Foyzur, and Premkumar Devanbu. 2011. “Ownership, Experience and Defects:

A Fine-Grained Study of Authorship.” In Proceedings of the 33rd International

Conference on Software Engineering, 491–500. ICSE ’11. New York, NY, USA:

ACM. https://doi.org/10.1145/1985793.1985860.

Rahman, Foyzur, Daryl Posnett, and Premkumar Devanbu. 2012. “Recalling the

‘Imprecision’ of Cross-Project Defect Prediction.” In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, 61:1–61:11. FSE ’12. New York, NY, USA: ACM.

https://doi.org/10.1145/2393596.2393669.

Rajbahadur, Gopi Krishnan, Shaowei Wang, Yasutaka Kamei, and Ahmed E. Hassan.

2017. “The Impact of Using Regression Models to Build Defect Classifiers.” In

Proceedings of the 14th International Conference on Mining Software

Repositories, 135–145. MSR ’17. Piscataway, NJ, USA: IEEE Press.

https://doi.org/10.1109/MSR.2017.4.

 160

Rilling, Juergen, and Tuomas Klemola. 2003. “Identifying Comprehension Bottlenecks

Using Program Slicing and Cognitive Complexity Metrics.” In Proceedings of the

11th IEEE International Workshop on Program Comprehension, 115–. IWPC ’03.

Washington, DC, USA: IEEE Computer Society.

http://dl.acm.org/citation.cfm?id=851042.857047.

Rosenberg, J. 1997. “Some Misconceptions about Lines of Code.” In Proceedings Fourth

International Software Metrics Symposium, 137–42.

https://doi.org/10.1109/METRIC.1997.637174.

Scalabrino, S., M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. 2016. “Improving

Code Readability Models with Textual Features.” In 2016 IEEE 24th

International Conference on Program Comprehension (ICPC), 1–10.

https://doi.org/10.1109/ICPC.2016.7503707.

Scalabrino, Simone, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez,

Denys Poshyvanyk, and Rocco Oliveto. 2017. “Automatically Assessing Code

Understandability: How Far Are We?” In Proceedings of the 32Nd IEEE/ACM

International Conference on Automated Software Engineering, 417–427. ASE

2017. Piscataway, NJ, USA: IEEE Press.

http://dl.acm.org/citation.cfm?id=3155562.3155617.

Schröter, Adrian, Thomas Zimmermann, and Andreas Zeller. 2006. “Predicting

Component Failures at Design Time.” In Proceedings of the 2006 ACM/IEEE

International Symposium on Empirical Software Engineering, 18–27. ISESE ’06.

New York, NY, USA: ACM. https://doi.org/10.1145/1159733.1159739.

 161

Shang, Weiyi, Meiyappan Nagappan, and Ahmed E. Hassan. 2015. “Studying the

Relationship between Logging Characteristics and the Code Quality of Platform

Software.” Empirical Software Engineering 20 (1): 1–27.

https://doi.org/10.1007/s10664-013-9274-8.

Sharif, Bonita, and Jonathan I. Maletic. 2010. “An Eye Tracking Study on CamelCase

and Under_Score Identifier Styles.” In Proceedings of the 2010 IEEE 18th

International Conference on Program Comprehension, 196–205. ICPC ’10.

Washington, DC, USA: IEEE Computer Society.

https://doi.org/10.1109/ICPC.2010.41.

Shepperd, Martin, and D.C. Ince. 1994. “A Critique of Three Metrics.” Journal of

Systems and Software 26 (September): 197–210. https://doi.org/10.1016/0164-

1212(94)90011-6.

Shihab, Emad, Christian Bird, and Thomas Zimmermann. 2012. “The Effect of

Branching Strategies on Software Quality.” In Proceedings of the ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement,

301–310. ESEM ’12. New York, NY, USA: ACM.

https://doi.org/10.1145/2372251.2372305.

Shihab, Emad, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.

2011. “High-Impact Defects: A Study of Breakage and Surprise Defects.” In ,

300. ACM Press. https://doi.org/10.1145/2025113.2025155.

Siegmund, Janet, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,

Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.

 162

“Measuring Neural Efficiency of Program Comprehension.” In Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, 140–150.

ESEC/FSE 2017. New York, NY, USA: ACM.

https://doi.org/10.1145/3106237.3106268.

Silva, Josep. 2012. “A Vocabulary of Program Slicing-Based Techniques.” ACM

Comput. Surv. 44 (3): 12:1–12:41. https://doi.org/10.1145/2187671.2187674.

Śliwerski, Jacek, Thomas Zimmermann, and Andreas Zeller. 2005. “When Do Changes

Induce Fixes?” In Proceedings of the 2005 International Workshop on Mining

Software Repositories, 1–5. MSR ’05. New York, NY, USA: ACM.

https://doi.org/10.1145/1082983.1083147.

Storey, M.-. 2005. “Theories, Methods and Tools in Program Comprehension: Past,

Present and Future.” In 13th International Workshop on Program Comprehension

(IWPC’05), 181–91. https://doi.org/10.1109/WPC.2005.38.

Storey, M. -A. D., K. Wong, and H. A. Müller. 2000. “How Do Program Understanding

Tools Affect How Programmers Understand Programs?” Science of Computer

Programming 36 (2): 183–207. https://doi.org/10.1016/S0167-6423(99)00036-2.

Subramanyam, R., and M. S. Krishnan. 2003. “Empirical Analysis of CK Metrics for

Object-Oriented Design Complexity: Implications for Software Defects.” IEEE

Transactions on Software Engineering 29 (4): 297–310.

https://doi.org/10.1109/TSE.2003.1191795.

 163

Taba, S. E. S., F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan. 2013. “Predicting

Bugs Using Antipatterns.” In 2013 IEEE International Conference on Software

Maintenance, 270–79. https://doi.org/10.1109/ICSM.2013.38.

Tan, Ming, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. “Online Defect Prediction

for Imbalanced Data.” In Proceedings of the 37th International Conference on

Software Engineering - Volume 2, 99–108. ICSE ’15. Piscataway, NJ, USA:

IEEE Press. http://dl.acm.org/citation.cfm?id=2819009.2819026.

Tantithamthavorn, C., A. E. Hassan, and K. Matsumoto. 2018. “The Impact of Class

Rebalancing Techniques on the Performance and Interpretation of Defect

Prediction Models.” IEEE Transactions on Software Engineering, January, 1.

https://doi.org/10.1109/TSE.2018.2876537.

Tantithamthavorn, C., S. McIntosh, A. E. Hassan, and K. Matsumoto. 2016. “Automated

Parameter Optimization of Classification Techniques for Defect Prediction

Models.” In 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE), 321–32. https://doi.org/10.1145/2884781.2884857.

———. 2017. “An Empirical Comparison of Model Validation Techniques for Defect

Prediction Models.” IEEE Transactions on Software Engineering 43 (1): 1–18.

https://doi.org/10.1109/TSE.2016.2584050.

———. 2018. “The Impact of Automated Parameter Optimization on Defect Prediction

Models.” IEEE Transactions on Software Engineering, 1–1.

https://doi.org/10.1109/TSE.2018.2794977.

 164

Tip, Frank. 1994. “A Survey of Program Slicing Techniques.” Amsterdam, The

Netherlands, The Netherlands: CWI (Centre for Mathematics and Computer

Science).

Tricentis. 2017. “Software Fail Watch: 2016 in Review.” Software Testing Tools for

Continuous Testing | Tricentis (blog). January 4, 2017.

https://www.tricentis.com/resource-assets/software-fail-watch-2016/.

Tu, Zhaopeng, Zhendong Su, and Premkumar Devanbu. 2014. “On the Localness of

Software.” In Proceedings of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 269–280. FSE 2014. New York, NY,

USA: ACM. https://doi.org/10.1145/2635868.2635875.

Turhan, Burak, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. 2009. “On the

Relative Value of Cross-Company and within-Company Data for Defect

Prediction.” Empirical Software Engineering 14 (5): 540–78.

https://doi.org/10.1007/s10664-008-9103-7.

Wang, Song, Taiyue Liu, and Lin Tan. 2016. “Automatically Learning Semantic Features

for Defect Prediction.” In , 297–308. ACM Press.

https://doi.org/10.1145/2884781.2884804.

Weiser, M. 1984. “Program Slicing.” IEEE Transactions on Software Engineering SE-10

(4): 352–57. https://doi.org/10.1109/TSE.1984.5010248.

Weiser, Mark. 1981. “Program Slicing.” In Proceedings of the 5th International

Conference on Software Engineering, 439–449. ICSE ’81. Piscataway, NJ, USA:

IEEE Press. http://dl.acm.org/citation.cfm?id=800078.802557.

 165

———. 1982. “Programmers Use Slices When Debugging.” Commun. ACM 25 (7):

446–452. https://doi.org/10.1145/358557.358577.

Weiser, Mark, and Jim Lyle. 1986. “Experiments on Slicing-Based Debugging Aids.” In

Papers Presented at the First Workshop on Empirical Studies of Programmers on

Empirical Studies of Programmers, 187–197. Norwood, NJ, USA: Ablex

Publishing Corp. http://dl.acm.org/citation.cfm?id=21842.28894.

Weyuker, Elaine J., Thomas J. Ostrand, and Robert M. Bell. 2006. “Adapting a Fault

Prediction Model to Allow Widespread Usage.” In Proceedings of the Second

International Promise Workshop, 1.

———. 2010. “Comparing the Effectiveness of Several Modeling Methods for Fault

Prediction.” Empirical Softw. Engg. 15 (3): 277–295.

https://doi.org/10.1007/s10664-009-9111-2.

White, Martin, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk.

2015. “Toward Deep Learning Software Repositories.” In Proceedings of the 12th

Working Conference on Mining Software Repositories, 334–345. MSR ’15.

Piscataway, NJ, USA: IEEE Press.

http://dl.acm.org/citation.cfm?id=2820518.2820559.

Wilcoxon, Frank. 1945. “Individual Comparisons by Ranking Methods.” Biometrics

Bulletin 1 (6): 80–83. https://doi.org/10.2307/3001968.

Wu, Fangjun, and Tong Yi. 2004. “Slicing Z Specifications.” SIGPLAN Not. 39 (8): 39–

48. https://doi.org/10.1145/1026474.1026481.

 166

Wu, Shaomin, and Peter Flach. 2005. A Scored AUC Metric for Classifier Evaluation

and Selection.

Xu, Baowen, J. Qian, X. Zhang, Zhongqiang Wu, and Lin Chen. 2005. “A Brief Survey

of Program Slicing.” SIGSOFT Softw. Eng. Notes 30 (2): 1–36.

https://doi.org/10.1145/1050849.1050865.

Yang, Y., Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung, and Z. Zhang. 2015. “Are

Slice-Based Cohesion Metrics Actually Useful in Effort-Aware Post-Release

Fault-Proneness Prediction? An Empirical Study.” IEEE Transactions on

Software Engineering 41 (4): 331–57. https://doi.org/10.1109/TSE.2014.2370048.

Yoo, S., and M. Harman. 2012. “Regression Testing Minimization, Selection and

Prioritization: A Survey.” Software Testing, Verification & Reliability 22 (2): 67–

120. https://doi.org/10.1002/stv.430.

Zhang, F., F. Khomh, Y. Zou, and A. E. Hassan. 2012. “An Empirical Study of the Effect

of File Editing Patterns on Software Quality.” In 2012 19th Working Conference

on Reverse Engineering, 456–65. https://doi.org/10.1109/WCRE.2012.55.

Zhang, Feng, Audris Mockus, Iman Keivanloo, and Ying Zou. 2014. “Towards Building

a Universal Defect Prediction Model.” In Proceedings of the 11th Working

Conference on Mining Software Repositories, 182–191. MSR 2014. New York,

NY, USA: ACM. https://doi.org/10.1145/2597073.2597078.

Zhang, Feng, Quan Zheng, Ying Zou, and Ahmed E. Hassan. 2016. “Cross-Project

Defect Prediction Using a Connectivity-Based Unsupervised Classifier.” In

Proceedings of the 38th International Conference on Software Engineering, 309–

 167

320. ICSE ’16. New York, NY, USA: ACM.

https://doi.org/10.1145/2884781.2884839.

Zhang, H. 2009. “An Investigation of the Relationships between Lines of Code and

Defects.” In 2009 IEEE International Conference on Software Maintenance, 274–

83. https://doi.org/10.1109/ICSM.2009.5306304.

Zhang, Xiangyu, Neelam Gupta, and Rajiv Gupta. 2007. “A Study of Effectiveness of

Dynamic Slicing in Locating Real Faults.” Empirical Softw. Engg. 12 (2): 143–

160. https://doi.org/10.1007/s10664-006-9007-3.

Zhao, Jianjun. 1998. “Applying Slicing Technique to Software Architectures.” In

Proceedings. Fourth IEEE International Conference on Engineering of Complex

Computer Systems (Cat. No.98EX193), 87–98.

https://doi.org/10.1109/ICECCS.1998.706659.

Zimmermann, T., and N. Nagappan. 2008. “Predicting Defects Using Network Analysis

on Dependency Graphs.” In 2008 ACM/IEEE 30th International Conference on

Software Engineering, 531–40. https://doi.org/10.1145/1368088.1368161.

