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INTRODUCTION 

Given the centrality of software in modern life, defective software code can have 

negative impact on company stock and brand. Tricentis, a software-testing company 

analyzed 606 software fails from 314 companies to better understand the business and the 

financial impact of software failures. The report shows that these software failures affected 

3.6 billion people and caused $1.7 trillion in financial losses in 2017 (Tricentis 2017). From 

a brand value perspective, software defects can affect a customer’s confidence in a system 

or product. For example, there are many stories about how every Microsoft product is 

released with a list of known issues. Microsoft could have avoided the problems before 

shipping the product to the customer. However, this would have taken considerable time, 

and cost a large amount of money and personnel. 

Software defect prediction approaches are of tremendous interest both in academia 

and industry. Early identification of defects helps reduce the costs associated with locating 

and fixing defects. As expected, the relative costs to find and repair defect increase 

dramatically as system maturity increases (Pressman 2015). Figure 1.1 illustrates this issue. 

The industry average cost to correct a defect during code generation is approximately $977 

per error. The industry average cost to correct the same defect if it is discovered during 

system testing is $7,136 per defect while the cost of the same defect in the maintenance 
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phase is $14,102. For software organization, the cost savings associated with early quality 

control and assurance activities are compelling. 

 

Figure 1.1: Relative cost of correcting defects. Source (Pressman 2015) 

Therefore, the driving scenario of defect prediction is the limitation of resources 

for software Quality Assurance (QA), which may include manual code inspections, 

technical review meetings, and intensive testing. Such resources are always limited by time 

and by cost, e.g., the deadlines that development teams face to release the product or not 

enough personnel are available for QA. When managers want to spend resources more 

effectively, they would typically allocate them on the parts where they expect most defects 

or at least the most severe ones, which is usually based on their experience of the product 

and hence make further decisions on testing, inspections, etc. 

Defect prediction uses machine-learning algorithms to build models. These models 

predict the areas of software code where defects are likely to occur. That provides the list 
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of defect-prone software modules, which can represent a system, a software component (or 

package), a source code file, a class, a function (or method), and/or a code line according 

to prediction granularity. Accordingly, QA can effectively allocate limited resources by 

spending more effort on the modules that are likely to be defective (contains at least one 

defect). As the size of software projects becomes larger, defect prediction techniques will 

play an important role to support developers as well as to speed up time to market with 

more reliable software products. 

Models for defect prediction rely on independent and dependent variables. 

Independent variables are normally software quality metrics collected from software 

systems. Researchers identified several metrics using different information, such as code 

metrics and process metrics. Software code metrics (SCMs) used in the models include 

Lines of Code (LOC) (Fenton and Bieman 2014; Weyuker, Ostrand, and Bell 2010; Nam 

et al. 2017), Halstead size metrics (Halstead 1977), object oriented metrics (Bird et al. 

2009; D’Ambros, Lanza, and Robbes 2010; Khoshgoftaar et al. 1996; Wang, Liu, and Tan 

2016) and complexity measures (Turhan et al. 2009; Menzies, Greenwald, and Frank 2007; 

Mende and Koschke 2010; Zhang et al. 2016). Process metrics include code churn 

(Nagappan and Ball 2005), revision control histories (Bell, Ostrand, and Weyuker 2006; 

Graves et al. 2000; Moser, Pedrycz, and Succi 2008; Ostrand, Weyuker, and Bell 2005; 

Bird et al. 2011; Rahman and Devanbu 2013; Nucci et al. 2018) and number of previous 

faults identified (Hassan and Holt 2005; Kim et al. 2007; D’Ambros, Lanza, and Robbes 

2010). The dependent variables in the models are normally defect variables (e.g. the 

number of defects predicted in a module, or if a defect has been predicted in the module). 
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1.1 Motivations 

This dissertation is motivated by several factors. First is that existing defect 

prediction approaches lack metrics to estimate program understandability effort of the 

source code. It has been shown that software defects are often the result of the incomplete 

or incorrect comprehension of a program segment (Chen et al. 2018). Therefore, finding 

sections of code that  presents a comprehension challenge to the developer can be the basis 

for isolating code that has a greater risk of defects. Existing metrics for understandability 

are often tied to readability or syntactic features of source code such as structural 

complexity. However, understandability is a cognitive and semantic aspect; a developer 

can find a piece of code readable, but still difficult to understand (Scalabrino et al. 2017). 

Much of the research on cognitive models explains how programmers comprehend code 

using a bottom-up approach (Storey, Wong, and Müller 2000; Storey 2005). The 

programmer analyzes the source code statement by statement and gradually develop 

control-flow and data-flow abstractions through the process of chunking (Pennington 

1987). Program chunks are grouped together to form larger chunks, until the entire program 

is understood. In this way a hierarchical semantic representation of the program is built 

from the bottom-up. Thus, assessing the cognitive complexity of program semantic chunks 

can be a criterion for characterizing defects for defect prediction. Specifically, in order to 

make accurate predictions, the metrics need to be discriminative: capable of distinguishing 

one instance of code region from another of different cognitive complexity. 

Second, most of existing metrics, for defect prediction, focus on syntactic aspects 

of software modules, such as lines of code (LOC), number of declarations, number of 
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functions, etc. It is known that software systems have well-defined syntax, which can be 

represented by Abstract Syntax Trees (ASTs) (Hindle et al. 2012) and at the same time 

have semantics, which is hidden deeply in source code (White et al. 2015). It has been 

shown that such semantic information is useful for tasks such as code completion, effort 

estimation and bug detection (Li and Zhou 2005; Nguyen and Nguyen 2015; Alomari, 

Collard, and Maletic 2014; Tu, Su, and Devanbu 2014; Hindle et al. 2012). Such semantic 

information should also be useful for characterizing defects to improve defect prediction. 

Specifically, most existing metrics only focus on single elements and rarely take the 

interactions between elements into account. However, with the emergence of static and 

dynamic bug localization techniques, the nature of defects has changed and today most 

defects in bug databases are of semantic nature (Li et al. 2006). 

Third, most of the traditional metrics suffer from being very coarse grained with 

low capability that measure only a small sub-set of code features. Gray et al. advocate that 

the coarse grained nature of such metrics prevents machine learning algorithms from 

effectively differentiate between defective and non-defective modules: if two modules 

have the same metric values, e.g., LOC, but they have not been labeled the same in terms 

of their defectiveness, this will obstruct the algorithm’s ability to learn (Gray et al. 2011). 

Gray et al. identify many modules that have identical values across number of metrics but 

different defectiveness labels. This highlights that commonly used metrics are not 

sufficient enough for defect prediction. 

Lastly, defect predictors based on static code attributes are calculated using static 

analysis, since they do not require the execution of code. An advantage of static code 
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attributes is that they can be easy, quickly and automatically collected from the source 

code, even if no other information is available (Turhan et al. 2009). By contrast, process 

metrics that are widely introduced and based on information extracted from software 

archives are among the most expensive ones to collect. These process metrics quantify 

aspects of software development process such as changes of source code, and ownership 

of source code files that may be unavailable or hard to characterize especially in new 

projects and projects without perfect historical records. In practice, employing defect 

prediction technique should not be expensive in term of time for both data collection and 

constructing the prediction models themselves (Moser, Pedrycz, and Succi 2008).  

To bridge the gap between program understandability and features used for defect 

prediction, this dissertation proposes a novel set of cognitive complexity metrics by 

utilizing program slicing to predict defects. Program slicing is a reduction technique that 

traces the data and control dependencies for determining only those parts of the original 

program that are relevant to the computation of a given feature of interest (Weiser 1984). 

Program slicing has been successfully employed for program comprehension during 

different maintenance tasks such as testing and debugging (Alomari, Collard, and Maletic 

2014; Meyers and Binkley 2007; Counsell, Hall, and Bowes 2010). A program slice 

consists of all the statements that may influence the value of a specific variable at a given 

program point (Horwitz, Reps, and Binkley 1988; Ferrante, Ottenstein, and Warren 1987). 

Specifically, we compute program-slicing metrics based on forward, static, non-

executable, inter-procedural program slice for each variable in a system and then utilize 

these features to train a defect prediction model. 
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Unlike straightforward code metrics based on line counts and statement counts, 

slice-based cognitive complexity metrics have the potential to consider more insightful 

code properties based on program behaviors, as captured by program slices and obtained 

from program analysis and points-to analysis. The slice-based metrics give different 

weights to each statement based on their significance in the control dependence and flow 

dependence in the program. For example, a while predicate that encloses multiple 

statements will contribute more than one control dependence in slice-based cognitive 

complexity metrics, while in code metrics it typically contributes only one source code 

line. 

Previous work on the computation of program slices is most often been based on 

the notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984) or one 

of its variants, e.g., a System Dependence Graph (SDG) (Liang and Harrold 1998). 

Unfortunately, all these approaches suffer from scalability and computational issues due to 

the fact that building the PDG is complicated in terms of time, space, and data related 

operations. Consecutively, the use of program slicing approaches in academia and industry 

has been somewhat limited over years. However, with the emergence of the lightweight 

and highly scalable slicing tool namely srcslice (Alomari et al. 2014; Newman et al. 2016), 

program slicing can be used to address a number of applications and problems that in 

practice cannot be (or are extremely costly) addressed with other heavyweight slicing 

approaches. srcslice eliminates the time and effort needed to build the entire PDG of the 

program by combining a text-based approach with a lightweight static analysis 

infrastructure that only computes dependence information as needed (aka on-the fly) while 
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computing the slice for each variable in the program (Alomari et al. 2014; Newman et al. 

2016). 

In this dissertation, an empirical investigation is performed to determine if 

cognitive complexity correlates with, and predict defects, on parts of the version history of 

10 datasets extracted from 7 open-source systems.  That is, to determine their effectiveness 

in helping practitioners find defects when taking into account the effort needed to test or 

inspect the code.  Like other work on defect prediction, machine learning techniques are 

used to build regression models from the metric data applied to older versions of a system.  

This allows evaluation of the prediction models on more recent versions of the system. 

Additionally, we adapt the most commonly used code metrics and process metrics, 

including size, structural complexity, Halstead’s, line changed, and function changed as 

the baseline metrics. We first employ correlation analysis to analyze the relationships 

between slice-based metrics and defect proneness. Then, build multivariate prediction 

models to investigate the prediction ability of slice-based metrics in defect-proneness 

(regression models). Finally, we build multivariate prediction models using baseline 

metrics to examine the effectiveness of slice-based metrics compared to the baseline code 

and process metrics. In order to obtain comprehensive performance evaluations and ensure 

that the conclusions that we draw about our models are robust, we evaluate the 

effectiveness of prediction using the out-of-sample bootstrap validation technique, which 

has been shown to yield the best balance between the bias and variance (Tantithamthavorn 

et al. 2017). 
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1.2 Research Questions  

To achieve the goal of this dissertation, we attempt to answer the following two 

research questions: 

RQ1. Do slice-based cognitive complexity metrics significantly correlate to 

defects? 

RQ2. Do slice-based cognitive complexity metrics contribute to the prediction of 

the probability of defects? 

The purpose of these questions is to investigate whether cognitive complexity 

metrics can effectively lead to significant relationship to defect prediction. These questions 

are critically important to both software researchers and practitioners, as they help to 

answer whether slice-based cognitive complexity metrics are of practical value. We choose 

to use defects as one widely used indicator of software quality and known as a result of 

comprehension difficulty. 

1.3 Contributions 

The contributions of this research are relevant for academic and practical activities 

as follow: 

- A new set of slice-based cognitive complexity metrics that capture more fine-

grained program properties and pay special attention to interactions between source 

code elements. These metrics measure static code attributes that can be collected in 

an easy, quickly and automatically process, even if no other information is 

available. While others have proposed slicing as a means for defect prediction 

(Black et al. 2009; Pan, Kim, and Jr 2006; Black et al. 2006), there is no other work 
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that provides empirical results of the use on realistically sized software systems and 

indicates evidence of cognitive complexity. 

- This work is one of the first that empirically studies the relationship between 

program understandability and the probability of defects. We validate the 

correlations between slice-based cognitive complexity metrics and defect-

proneness. Results show that most slice-based metrics are statistically related to 

defect-proneness in an expected direction. 

- In a thorough large-scale empirical investigation, we compare slice-based metrics 

with the most commonly used code and process metrics including size, structural 

complexity, Halstead’s metrics, line changed, and function changed. Results show 

that slice-based metrics measure essentially different quality information than the 

baseline code metrics measure and the metrics in general outperform the most 

commonly used code and process metrics in defect proneness prediction. 

- The study provides valuable data in an important area for which there is limited 

experimental data available. For our analysis, we collect data from industry and 

made it publicly available for the use of other researchers and practitioners. 

- As a practical contribution, we believe that our analysis and the proposed 

methodology allow the construction of defect predictors even for projects with no 

local defect data is available. 

- Lastly, practitioners can easily adopt the proposed metrics for defect prediction as 

computing them is scalable to large systems. Generally, program slicing time 

consuming to compute, however here we take advantage of a lightweight high 
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scalable and publicly available program slicing approach to compute the necessary 

information. 

1.4 Organization 

The following is an overview of the chapters that appear in this dissertation: 

CHAPTER 2 provides an overview of what defects are, why they are a problem 

and how they are currently predicted. It gives the background of common process of 

software defect prediction that relies on machine learning models.  

CHAPTER 3 describes program slicing in more detail and how this relates to the 

work carried out in this research. 

CHAPTER 4 introduces the proposed slice-based cognitive complexity metrics and 

describes the methodology for the work undertaken in computing the metrics. It discusses 

the use of srcSlice tool to collect analysis data and extract slice-based metrics. 

CHAPTER 5 discusses the process used to create the corpus and how we extract 

defects data, baseline metrics and slice-based metrics. 

CHAPTER 6 explains the experimental design and the techniques used to build 

various statistical prediction models and identify the statistical measures for validating the 

association between program slicing and defective modules. 

CHAPTER 7 provides statistical results to the research questions from applying 

different models and discusses the potential impact of these results across defect prediction. 

CHAPTER 8 discusses the research threats to validity and looks at specific types 

of validity threats and ways used to avoid them. 
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CHAPTER 9 concludes this dissertation and highlights future directions of this 

research. 

1.5 Publication Notes 

CHAPTER 4 is published at the 35th IEEE International Conference on Software 

Maintenance and Evolution (ICSME) (Alqadi 2019). CHAPTER 5, CHAPTER 6, and 

CHAPTER 7 are published at the 27th IEEE International Conference on Software 

Analysis, Evolution and Reengineering (SANER) (Alqadi and Maletic 2020). 

 



 

 13 

 

BACKGROUND AND RELATED WORK 

This chapter defines the term defect, describes process of defect prediction, and 

summarizes the methods and metrics have been used for prediction. It highlights the current 

limitations present in defect prediction and how this can potentially be overcome. 

2.1 Software Defect Prediction 

IEEE defines a defect within software as “an imperfection in a software product 

where the product does not meet its requirements or specifications”. Defects appear as the 

result of errors made during software creation. For a defect to be known as a fault the error 

must be discovered during software execution. A defect is not known as a fault if it is 

detected during testing, or inspection before executing the software (“IEEE Standard 

Classification for Software Anomalies” 2010). Figure 2.1 is a diagram taken from (“IEEE 

Standard Classification for Software Anomalies” 2010) that presents the relationship 

between problems, errors, defects and faults as a UML class diagram. The diagram shows 

that a failure could be the result of problem with the system and a failure could cause one 

or many problems. A fault is a specific type of defect that is discovered during the software 

execution and could cause one or more failures. 
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Figure 2.1: A diagram depicting the relationship between problems, failures, faults, 

and defects (“IEEE Standard Classification for Software Anomalies” 2010). 

 

Within the context of the software process, there is no distinction between fault and 

defect. Both terms imply a quality shortcoming that is encountered after the software has 

been delivered to end-users (or to another activity in the software process) (Pressman 

2015). These different issues are interdependent and connected to each other. Usually, 

occurrence of one leads to the introduction of other, which together impacts the 

functionality of the software. Additionally, in the general consensus within the software 

engineering community, the point in time that the problem is discovered has no effect on 

the term used to describe the shortcoming. This means that defects, errors, faults, and bugs 

are all synonymous.  This same nomenclature is followed in this dissertation. 

There are many reasons why defects arise in software. A software defect can be the 

result of inadequate planning and specifications, poor design or coding practice, use of 

immature technology, or incompatibilities with an underlying level. While some defects 

are trivial, some other defects can cause major consequences. Software failures can be 

devastating to company value and reputation. Pressman pointed out in his book “Software 

Engineering” that the earlier a defect is fixed, the less cost involved in fixing said defect. 

He shows that once a piece of software makes it into the field, the cost of fixing a defect 

can be up to 100 times as high as it would have been during the development stage 
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(Pressman 2015). Defective code can also arise the cost of litigation from irate customers 

suing suppliers for poorly implemented systems.  

Defect prediction is therefore important as it indicates potential artifacts that could 

contain defects, allowing resources to be assigned to these artifacts of a software system 

that have a greater propensity to defects.  Defect prediction models use software metrics 

on which to base their decisions. Software metrics are a measure of some property of 

particular software modules that can represent a system, a software component (or 

package), a source code file, a class, a function (or method), and/or a code change 

according to prediction granularity. 

2.2 Software Defect Prediction Process 

The common process of software defect prediction relies on machine learning 

models. Figure 2.2 shows a typical prediction process commonly used in the literature 

(Bacchelli, D’Ambros, and Lanza 2010; Bird et al. 2011; D’Ambros, Lanza, and Robbes 

2012; Nam 2015). The key insight behind these models is learning from software evolution 

history. Most software uses software configuration management (SCM) systems to record 

the evolution of a software project. Recorded data includes change history, change log 

messages, and bug fixes that cover years of data and can be a useful resource for learning 

from previous defects and predicting the new ones. 

Software defect prediction relies on three main components; dependent variables, 

independent variables and a model. The first step in building a prediction model is to collect 

instances and history information from software archives such as version control systems 

(commit messages), issue tracking systems, email archives, and so on. Instances can 
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represent different granularity such as system, a software component (or package), a source 

code file, a class, a function (or method), or a code change level. Processing the raw data 

falls into two folds: 

 

Figure 2.2: Common process of software defect prediction. 

 

1. Labeling instances as buggy/clean or defects count. Defects data are the 

model dependent variables. 

2. Extracting metrics (features) to determine useful patterns in bug fix or 

occurrence that can be applied for prediction. Metrics are the independent 

variables, which can describe the software code, how it has changed or who 

changed it. Independent variables come mostly in two forms, software code 

metrics; those that can be derived from the software artifact, and process 

metrics; metrics that measure the change process of software artifact over 

time. 

After generating the corpus, i.e., instances with metrics and labels, preprocessing 

techniques can be applied which are common in machine learning. Such techniques used 

in defect prediction studies include feature selection, data normalization, and noise 
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reduction (Zhang et al. 2014; Nam et al. 2017; Tantithamthavorn et al. 2018). 

Preprocessing is an optional step and were not applied on all defect prediction studies, e.g., 

(D’Ambros, Lanza, and Robbes 2010; Zimmermann and Nagappan 2008). The final step 

is training a prediction model, so the model can predict whether a new instance has a bug 

or not. The prediction for defect-proneness (buggy/clean) of an instance is based on binary 

classification, while that for the defects count in an instance is based on ranking. 

The model contains the rule(s) or algorithm(s) that predict the dependent variable 

from the independent variables. These rules can be as simple as the number of independent 

variables in the model or be as complicated as decision trees and regression techniques. 

Decision tree creates a graph of decisions based on the chance of an event happening while 

regression technique seeks to determine best fit of independent value(s) based on a 

dependent value(s). Defect prediction modeling is an important area of research and the 

subject of many previous studies. A study by Hall et al. identified over 200 defect 

prediction studies published and the models/metrics used to carry out defect prediction 

(Hall et al. 2012). 

2.3 Dependent Variables (Defects Data) 

In defect prediction, the dependent variables are the variables that indicate whether 

an artifact is defective or not. The dependent variables can be counts (i.e. the number of 

defects in an artifact) or categorical (i.e. an artifact is defective or not). A defect can come 

in two forms - a pre-release or a post-release defect (“IEEE Standard Classification for 

Software Anomalies” 2010). A pre-release defect is one that is found and fixed during 
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development and testing before a product is released while a post release defect manifests 

itself when a customer experiences a failure with the product. 

Machine learning models can predict the dependent variables to forecast if a 

module is defective or not. This result can then be tested to examine the power of the 

forecast by determining different kinds of statistical measures such as the recall and 

precision of the model. Precision and recall are measures of relevance of the data used. 

Precision is a measure of the accuracy of the model used to predict defects (i.e. of all the 

instances predicted defective, how many are actually defective). Recall is the measure of 

relevant retrieval of instances (i.e. how many instances are identified by the model as 

defective out of all those defective instances that should have been returned). Since 

precision and recall have trade-offs, f-measure, which is a harmonic mean of precision and 

recall, can be used to compare different prediction models. It is one of the most frequent 

measures used in defect prediction classification to compare between different 

classification models.  

2.4 Independent Variables (Software Metrics) 

Many research studies in a decade have focused on proposing new metrics to build 

statistical prediction models. Widely studied metrics can be categorized into two kinds: 

code metrics and process metrics. Sections 2.4.1, 2.4.2, and 2.4.3 detail these independent 

variables, describing which have been used, why they were used and how effective they 

have been. 
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2.4.1 Source Code Metrics (SCM) 

Source code metrics (SCM) measure how source code is complex and are directly 

collected from existing source code. The main assumption of the code metrics is that code 

with higher complexity can be more bug prone. To measure code complexity, researchers 

proposed various metrics. These metrics and the studies they appear in are described below. 

2.4.1.1 Source Lines of Code (SLOC)  

SLOC was introduced as a simple size measure that might represent the complexity 

of software system and indicate potential defective areas. There are two major types of 

SLOC measures: physical SLOC (LOC) and logical SLOC (LLOC). LOC measures the 

size of a software program by counting the number of lines in the text of the program's 

source code. Specific definitions of physical SLOC measure vary, some studies include 

comment lines, some include blank lines and others omit one or both of these lines. 

However, Rosenberg showed that the format of the LOC was irrelevant as they all correlate 

with each other (Rosenberg 1997). Other studies use logical lines of code (LLOC), but their 

definitions are tied to specific computer languages, e.g., for C-like programming languages 

LLOC is the number of statement-terminating semicolons. Unfortunately, SLOC measures 

are often stated without giving their definition, and LLOC can often be significantly 

different from LOC. 

 One of the first defect prediction models proposed by Akiyama was built on SLOC 

in 1971 (Akiyama 1971). Akiyama built a simple regression model using (SLOC) for 

determining the number of defects in the system. Using SLOC has some advantages; it is 

very quick to calculate and easily transferred across different languages. Fenton and 
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Ohlsson analyzed pre and post release defects of a large communications system (Fenton 

and Ohlsson 2000). They found that LOC was good at ranking the most fault-prone 

modules. Zhang confirmed the ranking ability of LOC discovered by Fenton and Ohlsson 

and showed that LOC can be useful predictors of defects at both package and file level 

(Zhang 2009). Ostrand et al. proposed a simple LOC based model to predict defect density 

in a large industrial system (Ostrand, Weyuker, and Bell 2005). Their results reveal that a 

model based on LOC was a good indicator for predicting defects, with the model finding 

around 75% of defects. 

Bell et al. conducted a case study by using the Ostrand et al. model on a different 

software system, an automated voice response system (Bell, Ostrand, and Weyuker 2006). 

In this study, LOC model was not effective as it had been for the other system: 55% versus 

75%. Gyimothy et al. found that LOC was a very significant indicator of defects by 

performing regression analysis on open source web and e-mail suite called Mozilla 

(Gyimothy, Ferenc, and Siket 2005). Subramanyan and Krishnan also found that LOC was 

significant when they analyzed a commercial Java/C++ system (Subramanyam and 

Krishnan 2003). Afterwards, LOC was used in most defect prediction papers to build a 

model (D’Ambros, Lanza, and Robbes 2012; Hata, Mizuno, and Kikuno 2012; Lessmann 

et al. 2008; Shihab et al. 2011; Wang, Liu, and Tan 2016; Nam et al. 2017). 

Hall et al. reviewed 17 studies that used LOC for building defect prediction models 

(Hall et al. 2012). While LOC is very easy to collect, a disadvantage is that it measures 

only one dimension of the code and may only show limited insight into potential sources 

of defects. Measuring just the size is a coarse-grained feature and does not take into account 
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the finer detail involved, for example how complex the code is or how the code interacts 

with the system. 

2.4.1.2 Complexity Metrics 

Complexity metrics were introduced to provide a measure of how difficult software 

code may be to understand and maintain. Halstead metrics and McCabe’s complexity 

measure (Halstead 1977; McCabe 1976) were two of the first complexity measures 

introduced. McCabe’s cyclomatic complexity (CC) is based on the number of decisions in 

a program (McCabe 1976). CC measures the human comprehension of the code by 

identifying the number of distinct logical paths through a given unit. As the number of 

paths increase, it increases the difficulty of testing a module - more test cases are required 

to cover the various conditional logic paths through the system. High cyclomatic 

complexity tends to indicate high code complexity and therefore high probability of defects 

being present. 

It is calculated by developing a control flow graph of a particular module. A control 

flow graph is a representation of all linearly independent paths that could be traversed 

through a program during its execution (Allen 1970). The nodes are the collection of 

instructions and edges indicate the direction of flow that which set of instructions is to be 

executed next. Figure 2.3 shows some examples of control flow graphs in which the nodes 

represent basic blocks and the edges represent control flow paths. The number of nodes in 

a program (N), the number of edges (E), and the number of exit node, i.e., the number of 

disconnected parts of the flow graph (P), are the main components used to calculate the 
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cyclomatic complexity. Equation 2.1 shows the cyclomatic complexity (V(G)) of any 

control flow graph (G). 

 

!(#) = & − ( + 2+																												(2.1) 

 

Ohlsson and Alberg adopted McCabe’s cyclomatic metric to predict defect-prone 

modules in a telecommunications system and wanted to predict which modules could be 

faulty before coding had already begun (Ohlsson and Alberg 1996). Ohlsson and Alberg’s 

results showed that the metrics could predict the most fault prone modules in the design 

phase. Other defect prediction studies (Menzies, Greenwald, and Frank 2007; Moser, 

Pedrycz, and Succi 2008; Kim et al. 2011; Nam, Pan, and Kim 2013; Nam et al. 2017) also 

used McCabe’s cyclomatic metric to build a prediction model. 

 

 (a) A simple control graph    (b) If-then-else control flow  graph      (c) A more complicated control flow  

           graph (As seen in (McCabe 1976))  

V(G) =  1 - 2 +  2  = 1  V(G) =  4 - 4 +  2 =  2           V(G) =  9 - 6 +  2 =  5 

Figure 2.3 : Examples of control graphs and their calculated complexity scores. 
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Halstead created a set of metrics that measures how much “information” is in the 

source code (Halstead 1977). Theses metrics consider the source code as a collection of 

tokens, which can be classified as either operators or operands, and look at how many 

tokens are used and how often they are used. By counting the tokens and classifying, which 

are operators, and which are operands, the following base measures can be collected: 

n1= Number of unique operators 

n2= Number of unique operands 

N1= Total number of operators 

N2= Total number of operands 

These four measures form the basis of Halstead metrics shown in Table 2.4.1. 

Halstead metrics have been used popularly in many studies (Menzies, Greenwald, and 

Frank 2007; Lessmann et al. 2008; Turhan et al. 2009; Zhang et al. 2016). Turhan et al. 

used McCabe’s and Halstead alongside many other metrics to create a defect prediction 

approach using cross-company and within-company data (Turhan et al. 2009). 

There are lots of debates about the usefulness of code metrics as defect predictors 

(Shepperd and Ince 1994; Fenton and Ohlsson 2000). Contrary, Menzies et al. confirmed 

that code metrics are useful to build a defect prediction model (Menzies, Greenwald, and 

Frank 2007). They also showed that how the attributes are used to build models is more 

important than which particular attributes are used. However, according to Rahman et al.’s 

study comparing code and process metrics, code metrics is less useful than process metrics 

because of stagnation of source code metrics (Rahman and Devanbu 2013). 

 



 

  

2.4.1.3 Object-Oriented (OO) Metrics  

OO metrics emerged following the introduction of object-oriented programming 

languages. One of the most popular and highly cited suites for measuring Object-Oriented 

(OO) characteristics is Chidamber and Kemerer (CK) metrics suite (Chidamber and 

Kemerer 1994). The authors developed a suite originally consists of 6 metrics calculated 

for each class and focused on understanding object-oriented design complexity and how 

complexity can impact on the development process. For the notion of defects prediction, 

Metric Equation  Description 

Length ! = !1 + !2 
The total number of operator occurrences and the total 
number of operand occurrences. A size metric that is an 
alternative to LOC. 

Vocabulary & = &1 + &2 
The total number of unique operator and unique operand 
occurrences. High values indicate harder to read the code 
and therefore difficult to maintain. 

Volume ' = ! log! & A size metric that represents the size in bits. 

Difficulty + = &1
2 	×	

!2
&2  

Measures how difficult to handle the program, thus how 
error prone it may be.  

Level . = 1
+ 

A low-level score increases the program difficulty. 

Effort / = + × ' 
Measures the amount of mental activity needed to 
understand the program. The higher the metric the more 
difficult the code is to maintain. 

Content 0 = . − ' Language independent complexity metric. 

Error 
Estimate 2 = '

300	 
This metric aims to predict the number of validation 
bugs. 300 is the proportion of defects within the system. 

Programming 
Time 5 = /

18 

The time (in minutes) needed to program a particular 
module. 18 is a constant that reflects the number of 
decisions a programmer will have to make per second. 

Table 2.4.1: Halstead complexity metrics (Halstead 1977). 
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the higher the complexity of a certain method and/or its class, the higher the potential for 

errors presents in the certain method and/or its class. The six OO metrics described are 

outlined below (Chidamber and Kemerer 1994): 

1. Weighted Methods per Class (WMC) - WMC is a weighted sum of all the 

methods defined in a class. The number of methods and the weight of these 

methods indicate the amount of maintenance needed for the class. As of the 

inheritance feature of OO, an increase in the number of methods and their 

weight leads to increase in the impact on the children. Classes with high 

number of methods are more likely to be application specific thus limiting 

their reuse potential. 

2. Depth of Inheritance Tree (DIT) - The DIT metric is the maximum length 

from a given class to the root class in the inheritance hierarchy. High DIT 

means high number of inherited methods thus increases the design 

complexity and difficulty to predict behavior. 

3. Number of Children (NOC) - NOC is the number of immediate subclasses 

that have inherited from a given class. The greater the number of children, 

the greater the likelihood of improper abstraction of the parent class. 

4. Coupling Between Object classes (CBO) – CBO is a count of the number 

of other classes to which a given class is coupled. It denotes the dependency 

of one class on other classes in the design.  A large amount of couples 

reduces the reusability of a class and complicates modifications and testing. 
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5. Response for a Class (RFC) - This is the count of methods that can be 

invoked in response to a message received by an object in a given class. A 

high RFC increase the testing effort and the overall design complexity of 

the given class. 

6. Lack of Cohesion in Methods (LCOM) - LCOM is a count of the number 

of method pairs whose similarity is zero minus the count of method pairs 

whose similarity is not zero within a class. The greater the amount of similar 

methods, the more cohesive is the class. A lack of cohesion increases design 

complexity, thereby increase the likelihood of errors. 

 

Besides the CK metrics, other object-oriented metrics based on volume and 

quantity of source code, have been proposed as well (Abreu and Carapuça 1994). As size 

metrics, D’Ambros et al. identified number of metrics that simply counts the number of 

instance variables, methods and then build defect prediction models. Table 2.4.2 shows 

OO metrics proposed by (D’Ambros, Lanza, and Robbes 2010). 

Basili et al. investigated OO metrics on eight information management systems 

written in C++ to see how effective they were as predictors (Basili, Briand, and Melo 

1996). Basili et al. concluded that five out of the six CK metrics were useful predictors 

during the early phase of development. Similar types of analysis have been performed by 

(Briand, Daly, and Wust 1999; Chidamber, Darcy, and Kemerer 1998; Li and Henry 1993). 

Each of the studies was performed on industrial C++ projects, except for Li and Henry’s 

study, which was done in Ada. Studies concluded that at least one or more of the metrics 
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is good at predicting defects. Emam et al. used CK metrics along with metrics from the 

(Briand, Daly, and Wust 1999) to investigate different defect prediction models on a 

commercial Java application (Emam, Melo, and Machado 2001). Emam et al. results 

showed that their model had high accuracy and that the coupling metrics had the strongest 

association with fault proneness. 

 

Metric Description 

FanIn Number of other classes that reference the class 

FanOut Number of other classes references by the class 

NOA Number of attributes 

NOPA  Number of public attributes 

NOPRA  Number of private attributes 

NOAI  Number of attributes inherited 

NOM Number of methods 

NOPM  Number of public methods 

NOPRM  Number of private methods 

NOMI Number of methods inherited 

Table 2.4.2: Class level OO metrics described in (D’Ambros, Lanza, and Robbes 

2010). 

Afterward, many defect prediction studies for object-oriented programs have used 

the OO metrics to build prediction models (Zimmermann and Nagappan 2008; Kamei et 

al. 2010; Lee et al. 2011; He et al. 2012; Nam et al. 2017). Hall et al. surveyed 42 studies 
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that utilized OO metrics in defect prediction (Hall et al. 2012). Compared to LOC, the OO 

metrics measure some finer grained code features and identify more of those features. 

2.4.2 Process Metrics 

Process metrics are extracted from software archives such as version control 

systems and issue tracking systems that manage all development histories. Process metrics 

quantify many aspects of software development process such as changes of source code, 

ownership of source code files, developer interactions, etc. Usefulness of process metrics 

for defect prediction has been proved in many studies (Rahman and Devanbu 2013). Main 

process metrics include: 

2.4.2.1 Change Metrics  

Change metrics are to measure the extent of changes in the history recorded in 

version control systems. For example, we can count the number of revisions/bug-fix 

changes/refactorings of a file and the number of authors editing a file. Graves et al. 

investigated a telephone switching system that consisted of over 1.5 million LOC (Graves 

et al. 2000). The authors proposed seven new measures derived from the revision history - 

number of past faults, number of deltas (i.e. the amount of previous changes), the average 

age of the code, the development organization, number of developers, how modules are 

changed together, and a weighted time damp model. The weighted time damp model 

computes a module’s fault potential by adding contributions from each change. A 

contribution is the level of fault potential, if the change is recent and large then a large fault 

potential is computed. Graves et al. concluded that the sum of the contributions (the 

weighted time damp) was the best predictor of faults in a system while the number of 
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developers and the extent to which a module is connected with another module have no 

influence on the defect potential (Graves et al. 2000). 

Ostrand et al. created a negative binomial regression model that predicts number of 

faults for each file of a release (Ostrand, Weyuker, and Bell 2005). The model predictors 

are based on characteristics such as the file size, whether the file was new to the release, or 

changed or unchanged from the previous release, the age of the file, the number of faults 

in the previous release, and the programming language. The model was analyzed on 15 

different releases of an industrial system. The evaluation showed the model to be very 

efficient with the top 20% of the files identified as most defective containing at least 84% 

of the faults (Ostrand, Weyuker, and Bell 2005). Bell et al. used the model described by 

Ostrand et al. to investigate an automated voice system and attained similar results to the 

previous study (Bell, Ostrand, and Weyuker 2006). Later, Weyuker et al. tried to generalize 

Ostrand et al. model to be able to apply to different software systems without extensive 

statistical modeling expertise and effort (Weyuker, Ostrand, and Bell 2006). 

Hassan and Holt presented a top-ten list approach, which validated heuristics about 

the defect proneness of the most frequently/recently modified areas and the most 

frequently/recently fixed areas to show the top 10 subsystems that are susceptible to a fault 

(Hassan and Holt 2005). They used a cache system to track the location of such areas, thus 

managers can focus testing resources to the subsystems suggested by the list (Hassan and 

Holt 2005). Kim et al. followed the work of Hassan and Holt and wanted to show that bugs 

occur in bursts of related faults (Kim et al. 2007). The authors’ analysis includes seven 

different software systems and used a BugCache to hold the locations of the last known 
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faults and FixCache to hold the locations of where the bug has been fixed. Kim et al. claim 

that when a fault is fixed in a location, there is a high chance that a bug will appear there 

in the future (Kim et al. 2007). 

Schröter et al. conducted empirical study on 52 Eclipse plug-ins and used 

information of past and post-release failures to predict future failures at both file and 

package level (Schröter, Zimmermann, and Zeller 2006). Schröter et al.’s results showed 

that usage relationships between components can predict failure-prone components, i.e., 

information of specific use of packages in one failed file/package could be used to predict 

future failures in another file/package. However, the results on file level were not as good 

as on package level (Schröter, Zimmermann, and Zeller 2006). 

2.4.2.2 Code Churn  

Code churn (i.e. the number of modified lines in a file or module per commit) has 

been researched extensively by a number of researchers. Nagappan and Ball proposed 8 

relative code churn metrics measuring the amount of code changes (Nagappan and Ball 

2005). For example, one of the metrics is calculated by churned LOC (the accumulative 

number of added and deleted lines between a base version and a new version of a source 

file) divided by total LOC. Other metrics consider various normalized changes such as 

deleted LOC divided by total LOC and the number of changed files in a component divided 

by files count and so on. In case study, Nagappan and Ball proved that the relative churn 

metrics are good predictors to explain the defect density of a binary and bug-proneness 

(Nagappan and Ball 2005). 
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Moser et al. extracted 18 churn metrics (Table 2.4.3) from three different releases 

of Eclipse (2.0, 2.1 and 3.0) to conduct a comparative analysis between code and change 

metrics (Moser, Pedrycz, and Succi 2008). Moser et al.’s change metrics include added and 

deleted LOC similar to relative code change churn. However, Moser et al.’s change churn 

metrics did not consider any relativeness by the total LOC and the files count but consider 

average and maximum values of change churn metrics. Moser et al. results support their 

hypothesis that change metrics are better predictors than code metrics to predict the 

presence/absence of bugs in files. 

Their conclusion also showed that files  with a high number of revisions and files 

with a high number of bug fixing activities are the best indicators of potential defects while 

heavily edited files or files committed in a large CVS transaction are less likely to be faulty 

(Moser, Pedrycz, and Succi 2008). 

 

 



 

  

Metric  Description 

REVISIONS  Number of revisions of a file 

REFACTORINGS  Number of times a file has been refactored 

BUGFIXES  Number of times a file was involved in bug-fixing 

AUTHORS  Number of distinct authors that have committed the file into 

the repository 

LOC_ADDED  Sum over all revisions of the lines of code added to a file 

MAX_LOC_ADDED  Maximum number of lines of code added for all revisions 

AVG_LOC_ADDED  Average number of lines of code added for all revisions 

LOC_DELETED  Sum over all revisions of the lines of code deleted from a file 

MAX_LOC_DELETED  Maximum number of lines of code deleted for all revisions 

AVG_LOC_DELETED  Average number of lines of code deleted for all revisions 

CODECHURN  Sum of (added lines of code - deleted lines of code) over all 

revisions 

MAX_CODECHURN  Maximum CODECHURN for all revisions 

AVG_CODECHURN  Average CODECHURN for all revisions 

MAX_CHANGESET  Maximum number of files committed together to the 

repository 

AVG_CHANGESET  Average number of files committed together to the repository 

AGE  Age of the file in weeks 

Table 2.4.3: List of change metrics used in (Moser, Pedrycz, and Succi 2008). 
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2.4.2.3 Change Burst  

Change burst which is a sequence of consecutive changes, have been investigated 

as predictors of defects by looking at code churn over a set number of days with a specified 

gap size. Sliwerski et al. showed that the larger the change to a file, the more likely that 

change is going to need fixing in the future (Śliwerski, Zimmermann, and Zeller 2005). 

The study findings also revealed that it is three times more likely that a fix in an Eclipse 

project induces a further fix in the future compared to an enhancement. This finding was 

also observed by Purushothaman and Perry as they showed that nearly 40% of the changes 

made to correct code introduced a defect into the software (Purushothaman and Perry 

2005). Similarly, the authors found that small changes to code were unlikely to introduce 

fault in the module as a one-line change has less than 4% probability of causing a fault. 

Nagappan et al. investigated 3,404 Windows Vista binaries exceeding 50 million LOC. 

Change bursts were shown to have high predictive power in terms of precision and recall 

(Nagappan et al. 2010). 

2.4.2.4 Change Entropy  

This metric was investigated by applying Shannon’s entropy to capture how 

changes are complex (Hassan 2009). Hassan measures the complexity of the change 

process (HCM) by assessing how much modifications are scattered across space and time. 

The metrics derived from the location of the changes made; scattered changes could be 

more complex to manage, and thus more likely to induce defects. To validate the HCM, 

Hassan built statistical linear regression models based on HCM, the number of previous 

modifications, and previous faults. The evaluations on six open-source projects showed 
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that prediction models build using HCM outperform those using the other two change 

metrics (Hassan 2009). 

A recent work that considers to what extent developers apply scattered changes in 

the system is by Di Nucci et al. (Nucci et al. 2015; 2018). The authors exploited the role of 

structural and semantic scattering of changes performed by a developer in bug prediction. 

Their findings demonstrate the superiority of the bug prediction model built using 

scattering metrics with respect to other baseline models including the change entropy by 

Hassan (Hassan 2009). Moreover, they show that the proposed metrics are orthogonal with 

respect to other predictors. 

2.4.2.5 Code Metrics Churn (CHU) and Code Entropy (HH)  

These two metrics are proposed by D’Ambros et al. (D’Ambros, Lanza, and Robbes 

2010). The authors conducted an extensive comparisons study of the newly proposed 

metrics and number of existing bug prediction approaches using source code metrics, 

change history metrics, past defects and entropy of change metrics. These approaches have 

been studied and introduced in previous subsections (Nagappan and Ball 2005; Hassan 

2009). In contrast to code churn metrics based on the amount of lines (Nagappan and Ball 

2005), CHU measures the change in biweekly basis of code metrics such as CK metrics 

and OO metrics. Thus, CHU captures the extent of changes more precisely than code 

change churn that computes the amount of changes between a base revision and a new 

revision. 

While change Entropy is computed based on the count of file changes (Hassan 

2009), code entropy (HH) is computed based on the count of involved files when a certain 
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code metric is changed. In the comparison evaluation, D’Ambros et al. concluded that CHU 

and HH metrics led to good prediction results on all subjects used in their experiments. 

However, these novel metrics are limited since they require heavy computation resources 

and data because they track biweekly changes from version control systems (D’Ambros, 

Lanza, and Robbes 2010). 

 

Metric  Description  

POP-NOM  The number of e-mails discussing a class. 

POP-NOCM  The number of characters in all e-mail discussing a class.  

POP-NOT  The number of e-mail threads discussing different topics for a class. 

POP-NOMT  The number of e-mails in a thread discussing a class in at least one of e-

mails in a thread.  

POP-NOA  The number of authors motioning about the same class.  

Table 2.4.4: Popularity metrics (Bacchelli, D’Ambros, and Lanza 2010). 

 

2.4.2.6 Popularity Metrics 

This group of metrics were proposed by Bacchelli et al. by analyzing e-mail 

archives by developers in a group mailing list (Bacchelli, D’Ambros, and Lanza 2010). 

The intuition is that problematic classes are more often discussed in email conversations 

than classes that have fewer problems. Table 2.4.4lists the popularity metrics. The 

extracting metrics from e-mail archives is novel but their evaluation of the metrics shows 
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that popularity metrics themselves did not outperform other code and process metrics 

(Bacchelli, D’Ambros, and Lanza 2010). 

2.4.2.7 Ownership and Authorship Metrics 

Ownership and authorship were discussed by Bird et al. who examined the 

relationship between ownership and quality. They examined the effects of ownership on 

Windows Vista and Windows 7 (Bird et al. 2011). They proposed four ownership metrics: 

the number of minor contributors, the number of major contributors, the total number of 

contributors, and the proportion of ownership for the contributor with the highest 

proportion of ownership. They concluded that a high ratio of ownership leads to less 

defects. A similar study by Rahman and Devanbu examined the effects of ownership and 

experience on quality in several open-source projects, using a fine-grained level of analysis 

based on fix-inducing code-fragments (Rahman and Devanbu 2011). The interesting 

finding is that QA should be focused on code files touched by less experienced developers 

and that a developer’s specialized experience in a target file is more important than general 

experience. 

2.4.3 Finer Grained Techniques 

2.4.3.1 Text Analysis  

Apart from code and process metrics, some defect prediction studies have used less 

traditional independent variables that focused on finer grained details of the source code. 

Some of these independent variables have been based on analyzing the text of the code. 

Mizuno et al. used spam-filtering techniques to create a fault detection technique (Mizuno 

et al. 2007). Mizuno et al.’s approach considered source code files as text files and used 
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text-mining techniques used in spam filtering to identify problematic patterns in the text 

files. This framework is based on the fact that spam e-mails usually include particular 

patterns of words or sentences. From a viewpoint of source code, similar situation usually 

occurs in faulty software modules. That is, similar faults may occur in similar contexts. 

they guessed that faulty software modules have similar pattern of words or sentences like 

spam e-mail messages. Their result showed that the technique was able to classify more 

than 75% of modules correctly (Mizuno et al. 2007). 

Binkley et al. used an information retrieval based defect prediction technique, 

known as the QALP score to help identify potential defects (Binkley et al. 2007). The 

QALP score measures the similarity between a module’s comments and its source code 

using a cosine similarity. The results showed that, when used alongside LOC, the QALP 

score improves fault prediction (Binkley et al. 2007). Later, Binkley et al. combined the 

QALP score with two other metrics based on natural language processing of program’s 

identifiers and found them helpful in predicting defects in files (Binkley et al. 2009). 

Marcus et al. also proposed an information retrieval technique - latent semantic 

indexing (LSI) (Marcus, Poshyvanyk, and Ferenc 2008). They used LSI to analyze the text 

of source code to develop a class cohesion measure called C3. C3 measures how strongly 

the methods of a class related to each other based on the analysis of the unstructured 

information embedded in the source code, such as comments and identifiers. The measure 

is inspired by the mechanisms used to measure textual coherence in cognitive psychology 

and linguistics.  The case study shows that the novel measure captures different aspects of 

class cohesion compared to any of the existing cohesion measures. Marcus et al. were able 
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to combine C3 alongside existing structural cohesion metrics to attain better defect 

prediction than with structural cohesion metrics alone (Marcus, Poshyvanyk, and Ferenc 

2008). 

2.4.3.2 Code Smells 

Abebe et al. used lexicon bad smells (LBS) in conjunction with software structure 

metrics to improve defects detection (Abebe et al. 2012). Examples of poor-quality lexicon 

are short terms identifiers (e.g., abbreviation or acronym) and meaningless terms (e.g., foo 

and bar). Lexicon bad smells for identifiers has been shown to be associated with the 

introduction of errors (Butler et al. 2009). Taba et al. proposed four anti-pattern metrics 

(Taba et al. 2013). Antipatterns are specific design and implementation styles that can 

identify poor system. They are usually introduced in software systems due to the lack of 

knowledge or experience of developers when solving a particular problem. In their 

evaluation with two open source projects, they found that design smells can be used to 

predict faults as files that have design smells tend to have a higher density of faults than 

other files and anti-pattern metrics could improve prediction performance in terms of f-

measure (Taba et al. 2013). A study by Palomba et al. proposed a smell-aware bug 

prediction model. Their results indicated that the accuracy of a bug prediction model 

increases by adding the code smell intensity as predictor (Palomba et al. 2016; 2017). 

Padua and Shang investigated the exception handling anti-patterns and found them to have 

significant relationship with defects (Pádua and Shang 2018). 
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2.4.3.3 Network Analysis 

Zimmermann and Nagappan presented a study with the Microsoft Windows 2003 

server project (Zimmermann and Nagappan 2008). They applied network centrality 

measures such as centralness, closeness, and betweenness to the static dependency graph 

of Windows Server 2003 binaries to predict the probability and number of post-release 

failures. The authors compared their model to models constructed by code and process 

metrics. In their evaluation, network measure could predict more bug-prone binaries than 

code and process metrics (Zimmermann and Nagappan 2008). 

Petric and Grbac investigated finer grained software code structure that represented 

with help of graph representations (Figure 2.4) , and subgraph frequencies (Petrić and 

Grbac 2014). Through an empirical study of more than 30 releases of three open source 

software systems, Petric and Grbac identified that the same set of sub-graphs of software 

system is present across the system version, but different sets are present in different 

software systems. Petric and Grbac were able to find some evidence between certain 

subgraphs and defects (Petrić and Grbac 2014). 

Various researches proposed metrics quantifying other aspects of software 

engineering in order to model software quality. For example, Shihab et al. (Shihab, Bird, 

and Zimmermann 2012) consider branching activities; Shang et al. (Shang, Nagappan, and 

Hassan 2015) investigate logging characteristics, Zhang et al. (Zhang et al. 2012) examine 

editing patterns, and McIntosh et al. (McIntosh et al. 2016) study code reviews. 
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Figure 2.4: The three node subgraphs examined by (Petrić and Grbac 2014). 

 

2.4.4 The Problem with Traditional Independent Variables 

Most of the traditional independent variables (as described above) have been 

extensively used in defect prediction techniques and showed metrics to correlate with the 

number of defects. Despite all this research, Menzies et al. reported that existing defect 

prediction models are thought to have reached a predictive performance ceiling and new 

approaches are needed (Menzies et al. 2010). 

One possible reason for the limit power could be that most of the metrics introduced 

suffer from being very coarse grained with low capability that measure only a small sub-

set of code features. Gray et al. advocated that the coarse grained nature of such metrics 

prevents machine learning algorithms from effectively differentiate between defective and 

non-defective modules: if two modules have the same metric values, e.g., LOC, but they 

have not been labeled the same in terms of their defectiveness, this will obstruct the 

learning algorithm’s ability to learn (Gray et al. 2011). Gray et al. identified many modules 

in the NASA datasets that have identical values across number of metrics but different 

defectiveness labels. Kim et al. showed that the amount of noise in the data set affects the 
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predictive power of a technique. Kim et al. highlighted that the current commonly used 

metrics are not sufficient enough to differentiate modules for defect prediction (Kim et al. 

2011). 

Another problem with most of existing metrics is that metrics focus on syntactic 

aspects of software modules, such as LOC, number of declarations, number of functions, 

etc. It is known that software systems have well-defined syntax, which can be represented 

by Abstract Syntax Trees (ASTs) (Hindle et al. 2012) and at the same time have semantics, 

which is hidden deeply in source code (White et al. 2015). It has also been shown that such 

semantic information is useful for tasks such as code completion, effort estimation and bug 

detection (Li and Zhou 2005; Nguyen and Nguyen 2015; Alomari, Collard, and Maletic 

2014; Tu, Su, and Devanbu 2014; Hindle et al. 2012). This semantic information should 

also be useful for characterizing defects for improving defect prediction. Specifically, in 

order to make accurate predictions, the metrics need to be discriminative: capable of 

distinguishing one instance of code region from another. Additionally, most of these 

metrics only focus on single elements, but rarely take the interactions between elements 

into account (Zimmermann and Nagappan 2008). However, with the emergence of static 

and dynamic bug localization techniques, the nature of defects has changed and today most 

defects in bug databases are of semantic nature (Li et al. 2006).  
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PROGRAM SLICING 

One of the goals for this research is to investigate the use of slice-based metrics for 

defect prediction as a mean of semantic view of the source code. Thus, this chapter outlines 

how program slicing works, how it motivates the work in this dissertation and how it is in 

favor for defect prediction. In general, slicing techniques are associated with different areas 

of software engineering including system specifications (Wu and Yi 2004), software 

architectures (Zhao 1998), and UML and state-based models (Bae and Chae 2008; Korel 

et al. 2003). The key aspect of slicing in all these areas is when given a particular criterion, 

all other elements of the domain, whether it is extraneous source code, or architecture 

specifications or UML models, are eliminated, leaving just that portion that is relevant to 

some specific element of that domain under study. 

Program slicing in particular is the computation of the set of programs statements, 

the program slice, which may affect or affected by the values computed at some point of 

interest, referred to as a slicing criterion (Weiser 1984; Horwitz, Reps, and Binkley 1988). 

Program slicing is a reduction technique that can reduce the total amount of source code to 

be analyzed to a more manageable level without eliminating relevant pieces. The reason 

for introducing program slicing by Weiser was to model the behavior that programmers 

exercised during debugging task (Weiser 1981, 1982; Weiser 1984). It was observed that 

many expert programmers when debugging start at the location where the fault is identified 
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and then work backwards to consider what earlier statements might have led to this faulty 

state. While working backwards, the programmer focuses attention only on statements that 

could impact the errant line creating a "slice" of the program for analysis. Program slicing 

supports this technique by eliminating any code statement not affecting the values 

computed at a specified point in the program. 

Weiser defined the slice as an executable program that preserved the behavior of 

the original program. The algorithm traces the data and control dependencies by solving 

data-flow equations for determining the direct and indirect relevant variables and 

statements (Weiser 1981, 1982; Weiser 1984). Based on Weiser algorithm, a static program 

slice S consists of all statements in program P that could influence the value of variable v 

at point of interest p. The slice is defined for a slicing criterion – a pair <i, v>, where “i” is 

a point of interest for slicing typically specified by a location in the program, and “v” is a 

subset of program’s variables to be observed at statement “i”. The starting point is a specific 

statement in the program and a variable state at that point in the program. Based on data 

flow analysis, relevant statements are recursively processed working backwards in the 

source code to extract the slice. 

3.1 Slicing Example 

 Figure 3.1 shows an example of program (a) and a valid slice (b) of the program 

with respect to criterion <11, product>. The statements in the backward slice of the output 

statement write (product) in line 11, are shown in (b). The value of variable product 

impacted by lines 1, 2, 4, 5, 7, 8, and 9 in the example code. 
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Figure 3.1: (a) An example program (b) A slice of the program w.r.t. criterion<11, 

product> 

3.2 Program Slicing Techniques 

Program slicing has motivated a large body of research for different applications in 

software engineering, and has been proposed to guide programmers during many aspects 

of the software development life cycle, including software maintenance (Gallagher and 

Lyle 1991; Feng and Maletic 2006), debugging (Agrawal, Demillo, and Spafford 1993; 

Weiser and Lyle 1986), program comprehension (Korel and Rilling 1997; 1998; Lucia, 

Fasolino, and Munro 1999),  testing (Binkley 1998; Korel and Rilling 1998; Binkley 1998; 

Harman and Danicic 1995; Gupta, Harrold, and Soffa 1992), and bug classification (Pan, 

Kim, and Jr 2006). 

These applications require different properties of slices; thus, a number of different 

slicing definitions have been proposed after Weiser’s. Various surveys of the slicing 

literature (Tip 1994; Lucia 2001; Xu et al. 2005; Silva 2012; Androutsopoulos et al. 2013) 

covered these definitions in detail. Interestingly, each survey presents the definitions from 

Original program 
1  read(n); 
2  i = 1; 
3  sum  = 0; 
4  product = 1; 
5  While i < = n { 
6   sum = sum + i; 
7 product = product * i; 
8 i = i + 1; 
9  } 
10 write(sum); 
11 write(product);  

 
(a) 

 

Criterion: <11, product> 
1  read(n); 
2  i = 1; 

4  product = 1; 
5  While i < = n { 
 
7 product = product * i; 
8 i = i + 1; 
9  } 
 
11 write(product); 

 
(b) 
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a slightly different perspective. These techniques can be broadly distinguished according 

to the type of slices such as the following: 

3.2.1 Static and Dynamic Slicing 

Static slice is computed without making assumptions regarding a program’s inputs. It 

includes all statements that potentially affect/affected by the value of a variable at a 

particular point of interest in the program (Tip 1994; Xu et al. 2005). This captures all 

possible executions of the value of a variable. Contrary, dynamic slice is a set of statements 

that affect the value of a variable for one specific input. Dynamic data dependence 

information is traversed to compute the slices. This information is constructed using an 

execution trace of the program, thus only the dependencies that occur in a specific 

execution of the program are taken into account (Tip 1994; Xu et al. 2005). Dynamic slice 

gives a better understanding of programs and their executions for a particular input that is 

useful for applications such as debugging and testing (Feng and Maletic 2006; X. Zhang, 

Gupta, and Gupta 2007). 

3.2.2 Direction of Program Traversal 

Program slicing can be either backward or forward (Xu et al. 2005). A forward slice 

contains all the statements and control predicates dependent on the slicing criterion, a 

statement being “dependent” on the slicing criterion if the values computed at the statement 

depend on the values computed at the slicing criterion, or if the values computed at the 

slicing criterion determine the fact if the statement under consideration is executed or not. 

Thus, a forward slice includes all statements affected by changing the value of the slicing 

variable. In contrast, a backward slice is computed by gathering statements and control 
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predicates by way of a backward traversal of the program’s control flow graph (CFG) or 

program dependence graph (PDG), starting at the slicing criterion. Technically, these slices 

are called backward static slices and contains all the statements in the program that may 

affect the value of variable (Xu et al. 2005). 

3.2.3 Inter-Procedural Versus Intra-Procedural 

The slice can be characterized in how it handles slicing across procedure boundaries 

called inter-procedural slicing, or locally, called intra-procedural slicing slicing (Horwitz, 

Reps, and Binkley 1988). Weiser (Weiser 1984) introduced inter-procedural program 

slicing, and extended his previous intra-procedural work proposed in (Weiser 1981).  

3.2.4 Executable Slice  

A slice is executable if the statements in the slice form a syntactically correct 

program that can be executed (Xu et al. 2005). Based on slice definition stated earlier, if 

the slice is computed correctly (safely), the result of running the executable slice produces 

the same result for variables in V at p for all inputs. 

3.3 Program Dependence Analysis 

All slicing approaches share a common factor that is they are based on the notion 

of a Program Dependence Graph (PDG), or one of its variants, e.g., Control-Flow Graph 

(CFG) and Def/Use Graph, to compute the slice. Statement s2 statically control-depends 

on s1 if s1 is a conditional statement and can influence whether s2 is executed (Podgurski 

and Clarke 1990). Statement s2 statically data-depends on s1 if there is a sequence of 

variable assignments that potentially propagate data from s1 to s2 (Podgurski and Clarke 

1990). The Control-Flow Graph (CFG) (Allen 1970) models the static control-flow 
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between the statements in the program. Statements are represented as nodes. Arcs pointing 

away from a node represent possible transfers of control to subsequent nodes. A program’s 

entry and exit points are represented by initial and final vertices. So, a program can 

potentially be executed along paths leading from an initial to a final vertex. The Def/Use 

Graph extends the CFG and labels every node n by the variables defined and used in n. 

 

 

Figure 3.2: (a) An example program. (b) Program Dependency Graph. 

 

In Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984), every 

statement s2 is a node that has an outgoing arc to another statement s1 if s2 directly (not 

transitively) data- or control-depends on s1. A statement s2 syntactically depends on s1 if 

int main( ) { 
int sum = 0; 
int i = 1; 
while(i <= 11) { 

sum = sum + i; 
i++ ;  

} 
cout<< sum; 

} 
(a) 

(b) 
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in PDG s1 is reachable from s2. An example of a program and its program dependence 

graph is shown in Figure 3.2. The graph is directed as represented by the arrows pointing 

from one node to the next. It does not distinguish data- or control-dependence. 

3.4 Slice-Based Metrics 

The origin of slice-based metrics can be traced back to Weiser, who used backward 

slicing to describe the concepts of coverage, overlap, and tightness (Weiser 1984). For a 

given module, Weiser first sliced on every variable where it occurred in the module. Then, 

Weiser computed Coverage as the ratio of average slice size to program size, Overlap as 

the average ratio of non-unique to unique statements in each slice, and Tightness as the 

percentage of statements common in all slices. 

Ott and Thuss improved the behavior of slice-based metrics through the use of 

metric slices on output variables (Ott and Thuss 1993). A metric slice takes into account 

both the uses and used by data relationships. More specifically, a metric slice with respect 

to variable v is the union of the backward slice and the forward slice. Ott and Thuss 

introduced two new metrics for program slicing, supplementing the existing slicing metric 

introduced by Weiser: MinCoverage and MaxCoverage. MinCoverage and MaxCoverage 

are respectively the ratio of the size of the smallest slice and the ratio of the size of the 

largest slice to the module size. Consequently, the slice-based metrics suite proposed by 

Ott and Thuss consists of five metrics: Coverage, Overlap, Tightness, MinCoverage, and 

MaxCoverage. Note that these metrics are computed at the statement level, i.e. statements 

are the basic unit of slicing metrics. Table 3.4.1 summarizes the descriptions of the slice-

based metrics introduced by Weiser and ott and thuss (Weiser 1984; Ott and Thuss 1993). 
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Metric Description 

Coverage The extent to which the slices cover the module 

MaxCoverage The extent to which the largest slice covers the module 

MinCoverage The extent to which the smallest slice covers the module 

Overlap The extent to which slices are interdependent 

Tightness The extent to which all the slices in the module belong together 

Table 3.4.1: Slice-based metrics by (Weiser 1984; Ott and Thuss 1993). 

 

Later, Ott and Bieman used program slicing in the context of tokens rather than 

statements, in which the number of tokens that are shared by multiple slices are used to 

represent cohesion (Bieman and Ott 1994). They called such slices data slices. More 

specifically, a data slice for a variable v is the sequence of all data tokens in the statements 

that comprise the metric slice of v. Consequently, this leads to five slice-based data-token-

level metrics. 

Although Weiser introduced program slicing as a comprehension method used by 

programmers while debugging (Weiser 1981), many slice-based metrics have been 

developed to quantify the degree of cohesion in a module. Such metrics calculated in which 

the numbers of statements that are shared by multiple slices represent cohesion (Meyers 

and Binkley 2007; Black et al. 2006; Bieman and Ott 1994; Meyers and Binkley 2004; 

Counsell, Hall, and Bowes 2010; Counsell et al. 2010). 
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3.5 The Use of Slice-Based Metrics for Code Quality 

Although slice-based metrics have been proposed for many years, to date little work 

has been performed to empirically relate them to code quality and program propensity for 

faults. Meyers and Binkley undertook a large-scale empirical study of five slice-based 

metrics and analyzed the relations between these metrics and code size metrics (Meyers 

and Binkley 2004; 2007). They found that slice-based metrics provided a unique view of a 

program. The research also showed that the same set of metrics could be used to identify 

degraded modules and guide software reconstruction. However, a major difference 

between their study and our study is that they did not relate slice-based metrics to defect-

proneness nor to cognitive complexity. 

Black et al. empirically investigated the ability of two slice-based metrics, 

Tightness and Overlap, to distinguish between faulty and not-faulty functions (Black et al. 

2009). In their study, they combined the nineteen versions of a small program called 

Barcode to obtain a single data set. Black et al. (Black et al. 2006) had planned to test the 

hypotheses relating three slice-based metrics (Tightness, Overlap, and Coverage) and 

defect-proneness. However, they failed to do this due to lack of data. Compared with their 

work, we perform an in-depth and comprehensive empirical study on the relationships 

between new and different set of slice-based metrics and defect-proneness. Work by Pan 

and Kim used C language slicing metrics to compare the classification of defects with code 

metrics for C++ (Pan, Kim, and Jr 2006). The calculation of their metrics is based on the 

notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein 1984) such as 

edge count and vertices count (Liang and Harrold 1998). 
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Yang et al. (Yang et al. 2015) studied the usefulness of Weiser (Weiser 1981) and 

Ott and Thuss (Ott and Thuss 1993) cohesion metrics in effort aware defect prediction. The 

metrics leverage program slices with respect to the output variables of a module to quantify 

the strength of functional relatedness of the elements within the module. 

Yet we still know very little about software semantic and their cognitive 

complexity. Very few studies have investigated the concept of program slicing from an 

evolutionary viewpoint. To the best of our knowledge, this is the first work that applies 

program slicing to measure characteristics of cognitive complexity and investigate their 

relationship to defect propensity from an evolutionary viewpoint. In this dissertation, we 

use a novel set of slice-based metrics and form a relationship between these slicing metrics 

and defect propensity through the evolution of the system. In particular, we use forward 

slicing technique to calculate slice-based metrics at the statement level. The reason for 

choosing the statement is that previous studies suggested that software metrics at a finer 

granularity would accordingly have a higher discriminative power and hence may be more 

useful for fault-proneness prediction. 
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SLICE-BASED COGNITIVE COMPLEXITY METRICS  

For years researchers have devoted their efforts trying to understand how 

programmers comprehend code and several cognitive model have been proposed (Storey, 

Wong, and Müller 2000; Storey 2005). Much of the research explains how programmers 

comprehend complex code using a bottom-up approach (Storey, Wong, and Müller 2000; 

Storey 2005). The programmer analyzes the source code statement by statement and 

gradually develops control-flow and data-flow abstractions through the process of 

chunking (Pennington 1987). Program chunks are grouped together to form larger chunks, 

until the entire program is understood. In this way a hierarchical semantic representation 

of the program is built from the bottom-up. Thus, assessing the cognitive complexity of 

program semantic chunks can be a criterion for characterizing defects for defect prediction. 

Specifically, in order to make accurate predictions, the metrics need to be discriminative: 

capable of distinguishing one instance of code region from another of different cognitive 

complexity. 

A study by Siegmund et al. looked at the process of bottom-up program 

comprehension with (fMRI), a technique used by to understand brain regions activated by 

cognitive tasks, and  found a network of brain areas activated that are related to natural-

language comprehension, problem solving, and working memory (Siegmund et al. 2017).  
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Klemola argues that measuring complexity should reflect attributes of human 

comprehension since complexity is relative to human cognitive characteristics. They focus 

on aspects of cognition which involves both short-term and long-term memory. 

Overloading over a short period of time affects short-term memory (STM) while long term 

memory (LTM) is affected by the frequency of exposure to a concept over time (Klemola 

2000). 

Researchers theorize that all information processed for comprehension must at 

some time occupy short-term memory (STM). For the purposes of natural-language 

comprehension, the capacity of STM has been measured at 4 concepts (Cowan 2001). This 

suggests that any code segment that is using more than 4 concepts to make a point 

unfamiliar to the reader might not be immediately understood. 

In coping with these demands and limitations, the programmer must have mental 

capacity for dealing with large workloads for short periods of time and cognitive 

mechanisms for locating the code relevant to a particular feature. Program slicing was 

introduced by Weiser (Weiser 1984) after noticing programmers try to identify program 

bugs by using slices of the program composed of statements, which affect the computation 

of interest (Weiser 1982). Thus, slicing process removes from consideration parts of the 

program that are determined to have no effect upon the semantics of interest in a similar 

way as it would be perceived by developer during the process of comprehension (Weiser 

1982).  

A slice is a cognitive chunk of the program that preserves control flow and data 

flow dependences relevant to a specific point of interest. It is possible to determine the 
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parts with different behaviors by comparing the slices of two artifacts. With slice 

granularity, a hierarchical internal semantic representation of the whole program can be 

measured in addition to a detailed analysis of the comprehension effort required to retrace 

and inspect particular function. In the following we define four categories of slice-based 

cognitive complexity measures. 

4.1 Definitions of Slice-Based Cognitive Complexity Metrics 

4.1.1 sliceCount 

The count of slices focuses on the overall cognitive complexity of source code 

parts. Program segment that has a high number of slices will have high number of features 

leading to a higher concentration of identifiers, method invocations and relevant control 

and data dependencies. When there are many possible paths to be taken within a module 

the time spent tracing references increases and at the same time the use of identifiers must 

be carefully observed and retained in human memory to arrive at a correct understanding. 

When time is limited, a program segment with a high value of slice count can be difficult 

to interpret. sliceCount is defined as number of slices within a module and more formally 

as follow:  

 

sliceCount(x) = K,  (4.1) 

 

where k is the number of slices in x. 
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4.1.2 sliceSize 

This measure provides an indicator of the cognitive effort required to comprehend 

a particular slice. As stated earlier, program slice consists of all the statements that may 

influence the values of a variable at a program point (Weiser 1984). It includes program 

artifacts that are data and control dependent to the function or variable of interest. A study 

by Alomari et al. shows that the growth of the slice size over time in Linux kernel is related 

to the maintenance activity being made (Alomari, Collard, and Maletic 2014). An increase 

in the slice size requires increase in the cognitive effort in analyzing the code related to the 

slice. Failing in uncovering the causal interactions between components force programmer 

to make unverified assumptions and eventually introducing defects (Chen et al. 2018; 

Klemola 2000). 

The granularity of the slice for the computation of this metric is relevant. A single 

slice with highly dense dependencies may be buried in a large block of simple code 

resulting in a low value for the large block. The single dense slice will be more difficult to 

correctly interpret than the overall measure would suggest. Consequently, the best use of 

the metric is to locate system artifacts with high concentrations of identifiers, and 

dependencies to inspect or refactor. sliceSize is the mean count of statements per slice 

within a module. sliceSize for a module x can be defined as: 

 

/01234153(6) = ∑ 4!"
!#$ 8⁄ ,																					(4.2) 

 

where S is the number of statements in slice i, and k is the number of slices in module x. 
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4.1.3 sliceIdentifier 

Identifiers play a crucial role in program comprehension, since developers express 

domain knowledge through the names that they assign to the code entities at different levels 

(i.e., packages, classes, methods, variables) (Arnaoudova et al. 2010; Enslen et al. 2009; 

Abebe et al. 2012). Thus, source code lexicon impacts the psychological complexity of a 

program (Scalabrino et al. 2016; Sharif and Maletic 2010). For the purpose of cognitive 

complexity metrics, a high identifier density may overload STM and lead to error. The risk 

of comprehension error has been observed to rise with the increase of general identifier 

density metric in program code (Klemola 2000; Buse and Weimer 2010) and the increase 

of concept density in text as well (Kintsch 2005). However, the problem with calculating 

a general identifier density metric is that it only represents a general view on the system 

under investigation (Rilling and Klemola 2003). A small block with highly dense identifier 

may be buried in a large block of simple code resulting in a low value for the large block. 

Therefore, it is essential to refine identifier density metric to reflect a more realistic 

assessment based on the development task on hand. Program slicing allows for such 

refinement, by focusing the metric only on these parts that are relevant with respect to a 

particular feature or variable. sliceIdentifier can be defined as the mean distinct 

occurrences of programmer defined labels within a slice in a module. For a module x it 

can be formally defined as: 

 

/0123<=3>?1@13A(6) 	= 	∑ 4<!"
!#$ 8⁄ ,               (4.3) 
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where SI is the number of identifiers in slice i, and k is the number of slices in module x. 

4.1.4 sliceSpatial  

This measures account for the difficulty of reading the source code of a program 

for understanding, in terms of the lexical distance (measured in lines of code) that the 

maintainer is required to traverse to follow control and/or data dependencies as they build 

a mental model (Gold, Mohan, and Layzell 2005; Chhabra and Gupta 2009). This type of 

complexity was based on the spatial distance between the definition and direct use of 

various program elements. However, understanding of the use of a program element also 

requires knowledge of control and data flow in which the program element has been used 

(Gold, Mohan, and Layzell 2005). More details about the elements are understood through 

its use in a particular sequence and the use of other artifacts that influence the behavior of 

the element of interest. Without program slicing, it would be impossible to find all relevant 

uses that might affect or affected by the element value. The greater the distance in lines of 

code, the more is the cognitive effort required to understand the purpose and data flow of 

that slice. If a program element is defined and then used after, (e.g., 500) lines of source 

code, the element details would be overwritten in the working memory by more recently 

defined/used elements. Thus, we define sliceDistance as the spatial distance in LOC 

between the definition and the last use of the slice divided by the module size.  

 

40123B1/?C>23	(1) 	= 4D! −	4>! E⁄ ,                     (4.4) 
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where Sm is the line number of the first statement in slice i, Sn is the line number 

of the last statement in slice i, and q is the module size in LOC. Accordingly, for module 

x, sliceSpatial measured as the mean of the individual slice distance in x. 

 

/01234FC?1C0	(6) =G
/0123B1/?C>23(1)

8

"

!#$
,																							(4.5) 

 

where sliceDistance is the scatter measure of slice i measured as in equation (3.4), and k is 

the number of slices in module x. 

4.2 Extracting Slice-Based Cognitive Complexity Metrics 

We use the srcSlice tool (Alomari et al. 2014; Newman et al. 2016) to compute the 

slicing metrics. In the following subsections, we provide an overview description of the 

theory and implementation of srcSlice tool and the computation of proposed slice-based 

cognitive complexity metrics. 

4.2.1 The srcSlice Tool 

The srcSlice tool (Newman et al. 2016) is a fast and scalable, slicing approach. It 

has practical means to estimate the source code semantic for very large systems within 

practical time frames which makes it suitable for this work. Program slicing is typically 

based on the notion of a Program Dependence Graph (PDG) (Ottenstein and Ottenstein 

1984) or one of its variants. Unfortunately, building the PDG is quite costly in terms of 

computational time and space. As such, slicing approaches generally do not scale well and 

while there are some (costly) workarounds, generating slices for a very large system can 
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often take days of computing time. srcSlice addresses this limitation by eliminating the 

time and effort needed to build the entire PDG. As a result, srcSlice is very fast and scalable 

on large systems. It clocks in at about 274K identifiers per minute on Linux Kernel 

(Newman et al. 2016). The approach was first introduced in (Alomari, Collard, and Maletic 

2014), and then evaluated to a total of 18 open source systems through a comparison study 

to the CodeSurfer tool from GrammaTech (Alomari et al. 2014). 

The srcSlice tool implements a forward, static slicing technique. Forward static 

program slicing refers to the computation of program points that are affected by other 

program points (Horwitz, Reps, and Binkley 1988). The forward slice from program point 

p includes all the program points in the forward control flow affected by the computation 

at p. srcSlice uses the initial variable declaration as the starting point. It combines a text-

based approach with a lightweight static analysis infrastructure that only computes 

dependence information as needed (aka on-the fly) while computing the slice for each 

variable in the program. Specifically, srcSlice computes a forward, static, non-executable, 

inter- procedural program slice for each variable in a system. 

The tool is enabled by the srcML (Collard, Decker, and Maletic 2011; Collard, 

Maletic, and Robinson 2010) infrastructure (see srcML.org). Source code is first converted 

to srcML and then a stream-oriented approach to compute the slice is performed. srcML 

(SouRce-Code Markup Language) augments source code with abstract syntactic 

information from the AST to add explicit structure to program source code. This syntactic 

information is used to identify program dependencies as needed when computing the slice. 

srcML format has been previously used for different maintenance tasks, lightweight fact 
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extraction (Collard, Decker, and Maletic 2011), pattern matching of complex code 

(Dragan, Collard, and Maletic 2006), and software artifacts summarization (Abid et al. 

2015). 

The srcML format is supported with a toolkit, including src2srcml and srcml2src, 

which supports conversion between source code (in multiple languages such as C, C++, 

and Java) and the format. Then, a system dictionary instead of PDG/SDG represents the 

program slice is generated by the srcSlice. Given a system (in the srcML format), srcSlice 

gathers data about every file, function, and variable throughout the system, storing it all in 

a three-tier dictionary. 

4.2.2 Running Example 

An example of a slice computed by srcSlice on a small program is given in Figure 

4.1. The first portion of the figure (a) presents a small program constructed to show how 

srcSlice computes the profile. The second part of the figure (b) is the slice profile for the 

program in (a). The example is taken from (Newman et al. 2016). 
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Figure 4.1: (a) Sample source code, (b) System dictionary with all slice profiles for 

the source code in (a). 

1  int fun(int z){ 
2    z++; 
3    return z; 
4  } 
5  void foo(int &x, int *y){ 
6    fun(x); 
7    y++; 
8  } 
9  int main(){ 
10   int abc = 0; 
11   int i = 1; 
12   while (I <= 10) { 
13     foo(abc, &i); 
14   } 
15   std::cout<<"i:"<<i<<"abc:"<<abc<<std::endl; 
16   std::cout<<fun(i); 
17   abc = abc + i; 
18 } 

(a) 
 

srcslicetest.cpp,main,i,def{11},use{1,2,5,7,12,13,15,16,17},dvars{abc},pointers{},cfuncs{f
un{1},foo{2}} 
 
srcslicetest.cpp,main,abc,def{10,17},use{1,2,5,6,13,15},dvars{},pointers{},cfuncs{fun{1},f
oo{1}} 
 
srcslicetest.cpp,fun,z,def{1},use{2},dvars{},pointers{},cfuncs{} 
 
srcslicetest.cpp,foo,y,def{5},use{7},dvars{},pointers{i},cfuncs{} 
 
srcslicetest.cpp,foo,x,def{5},use{1,2,6},dvars{},pointers{abc},cfuncs{fun{1}} 

 (b) 
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4.2.3 Slice Profile 

Each entry of the system dictionary is a single slice profile for an identifier, which 

contains all data gathered about that identifier during the slicing process. The following is 

a list of that information: 

• File, function, and variable name– the file/function the variable is in and its name. 

• Def – the line a variable is defined or redefined on. Def is used to differentiate 

between variables with the same name but in differing scopes. 

• Use – the line a variable is used. This refers to a variable’s value being used in a 

computation with no modification to its value. This can be used to construct def-

use chains. 

• Slines – all lines that a variable is defined or used on. This is the union of def and 

use. 

• Cfunctions - a list of functions called using the slicing variable. 

• Dvariables - a list of variables that are data dependent on the slice variable. 

• Pointers - a list of aliases of the slicing variable. The elements of this list are 

variables to which the slicing variable is a pointer. 

srcSlice produces a system dictionary of all the slice profiles of all variables. It is three-

tiered and consists of three maps. On the first level is a map from files to functions, on the 

second level is a map from functions to variable names, and on the third level is a map 

from variable names to slice profiles.  
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4.2.4 Slice-Based Metrics Computation 

By using semantic approaches that depend on static-program analysis we can 

extract facts and other information focusing on semantic aspects of the system. Slicing 

process removes from consideration parts of the program that are determined to have no 

effect upon the semantics of interest. It is possible to determine the parts with different 

behaviors by comparing the slices of two artifacts. The assumption here is that if the slice 

of artifact x differs from the slice of artifact y, then by the mean of the slicing definition, 

artifact x potentially exhibits different behavior than artifact y. Thus, program slices have 

the additional advantage of capturing program behavior, and hence the slice-based metrics 

are more directly related to the program behavior. Additionally, unlike most other metrics, 

slice-based metrics are based on program slice information, which is of finer granularity 

than the measures of many other metrics. 

Using the output generated from srcSlice, we parse it into a data structure and then 

calculate the metrics. The first metric is sliceCount, it measures the file slices, which is 

equivalent to the number of paths in the code representation model (e.g., program 

dependence graph). This simply counts the number of entries in the system dictionary 

produced by srcSlice for each file. Using the information stored in each slice profile, we 

can easily retrieve the size of the slice for each variable in the system, identifier density, 

and slice spatial. 

sliceSize represents the mean size of a variable slice in a file, measured in number 

of lines of code. It indicates how much the slice profiles depend on each other by intra-

procedural or inter-procedural control or data dependencies. sliceSize counts all lines that 
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a variable is defined or used. This is the union between def and use in the slice profile. 

Therefore, the sliceSize is the ratio of all slice sizes to the sliceCount. 

Dvars, pointers and cfunc fields in the slice profile capture the distinct identifiers 

appeared in the slice including variable names and methods invocation. For individual 

slice, number of identifiers is the count of items in dvars, pointers, and cfunc fields. 

Accordingly, file sliceIdentifier is the mean of all slice identifiers to the sliceCount. 

sliceSpatial is the extent to which the slice scatter within a file. For an individual 

slice, we calculate sliceDistance as the distance in LOC between the definition and the last 

use of the slicing variable divided by the file size. As stated earlier, Def and use list all the 

line numbers in ascending order where the slicing variable is defined or used. Thus, 

sliceDistance is the subtraction of the first use from the last use divided by file size. 

sliceSpatial of the file is then measured as the mean of the individual sliceDistance. 

We also include sliceCoverage metric similar to the one proposed by Weiser 

(Weiser 1981). However, srcSlice is a static slicing technique, which consider subsets of 

the program with respect to all possible executions/behaviors, while Weiser uses dynamic 

slicing that is suitable to identify code fragment with respect to one execution (Weiser 

1981). We include sliceCoverage because of its relation to comprehension as it represents 

the active portion of the file that the programmer needs to traverse and comprehend (Weiser 

1981). By comparing the slice size to the file size, we can measure the sliceCoverage, 

which is the mean slice size relative to file size. 
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Table 4.2.1 lists the definitions of these slice-based metrics. Generally, high file-

level values of these metrics indicate more logically complex code and potentially more 

complex behaviors that are difficult to understand, inspect and trace in maintenance 

activities and hence exhibit more system defects. Note that slice metrics can be calculated 

at different level of granularity (i.e., system, file, method, and variable), however, due to 

the file-based nature of Git, a file-level granularity is used in this dissertation. 

Table 4.2.2 shows the computations of the slice-based metrics of the running 

example. In this table, the first rows are the computations for slice-level while the last row 

shows the computations for file-level. 

 

Metric Description 

sliceCount Number of slices within a file 

sliceSize Average slice size measured in LOC 

sliceIdentifier Average of distinct occurrences of programmer defined labels within a 

slice 

sliceSpatial Average of spatial distance in LOC between the definition and the last 

use of the slice divided by the file size 

sliceCoverage Average slice size relative to LOC  

Table 4.2.1: Description of file level slice-based metrics. 
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Granularity level Metric Computation Value 

Slice-
level 

abc sliceCount 1 1 
 sliceSize 8 8 
 sliceCoverage 8 / 18  0.44 
 sliceIdentifier 3 3 
 sliceSpatial 16 / 18  0.89 

i sliceCount 1 1 
sliceSize 10 10 
sliceCoverage 10 / 18  0.56 
sliceIdentifier 3 3 
sliceSpatial 16 / 18  0.89 

z sliceCount 1 1 
 sliceSize 2 2 
sliceCoverage 2 / 18  0.11 
sliceIdentifier 0 0 
sliceSpatial 1 / 18  0.06 

y sliceCount 1 1 
 sliceSize 2 2 
 sliceCoverage 2 / 18  0.11 
 sliceIdentifier 1 1 
 sliceSpatial 2 / 18  0.11 

x sliceCount 1 1 
 sliceSize 4 4 
 sliceCoverage 4 / 18 0.22 
 sliceIdentifier 2 2 
sliceSpatial 5 / 18 0.28 

File-level sliceCount 1+1+1+1+1 5 
sliceSize (8+10+2+2+4) / 5 5.2 
sliceCoverage (0.44+0.56+0.11+0.11+0.22) / 5 0.29 
sliceIdentifier (3+3+0+1+2) /5 1.8 
sliceSpatial (0.89+0.89+0.06+0.11+0.28) / 5 0.45 

Table 4.2.2: Slice-based metrics computations of running example. 
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SOFTWARE DEFECT PREDICTION PROCESS 

The common process of software defect prediction relies on machine learning 

models. The key insight behind these models is learning from software evolution history. 

Most software uses software configuration management (SCM) systems such as SVN or 

Git to record the evolution of a software project. Recorded data includes change history, 

log messages, and bug fixes that cover years of data. This information can be a useful 

resource for learning from previous defects and predicting the new ones. 

Software defect prediction relies on three main components; dependent variables, 

independent variables and a model. The first step in building the model is to collect 

instances and history information from software archives. Instances can represent different 

granularity such as system, a software component (or package), a source code file, or a 

class. Due to the file-based nature of Git, a file-level granularity is used in this work. 

Processing the raw data falls into two folds: 

1. Labeling instances as defective/non-defective or defects count. Defect data are the 

model for the dependent variables. 

2. Extracting metrics to determine useful patterns in a bug-fix occurrence can be used 

for prediction. Metrics are the independent variables. 

After generating the corpus, i.e., instances with metrics and labels, preprocessing 

techniques can be applied which are common in machine learning. Such techniques used 
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in defect prediction studies include feature selection, data normalization, and noise 

reduction (Zhang et al. 2014; Nam et al. 2017; Tantithamthavorn et al. 2018). 

Preprocessing is an optional step and are not applied on all defect prediction studies, e.g., 

(D’Ambros, Lanza, and Robbes 2010; Zimmermann and Nagappan 2008). 

The final step is training a prediction model, so the model can predict whether a 

new instance has a defect or not. The prediction for defect-proneness (defective/non-

defective) of an instance is based on binary classification, while that for the defects count 

in an instance is based on regression (ranking). Figure 5.1 shows the file-level defect 

prediction process used in this dissertation. Following subsections provide details of our 

process steps.
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Figure 5.1: Overview of the study design. 
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5.1 Creating a Labeled Dataset 

Source code management systems (SCM) contain a rich version history of every 

file in software projects. This information includes the full history of commits to each file: 

timestamps, authorship, change content, and the commit log. Since we will evaluate the 

performance of bug prediction using program slicing metrics, we need to determine 

whether a file actually contains bugs and how many times a file is included in a bug fixing 

task. Typically, bugs are discovered and reported to an issue tracking system such as 

Bugzilla and later on fixed by the developers. In order to link files with bugs, for each 

system we download (clone) the repositories from Git, and for each repository r, we created 

a series of patch files {"!}!"#$ , where n is the latest revision number for repository r at 

specific release. Each patch file "! 	was responsible for transforming repository r from 

revision ri-1 to revision ri, where r1 is the initial revision for specific release. By initially 

setting repository r to revision 1 (i.e. the initial revision) and then applying all patches 

{"!}!"#$  in a sequential manner, the revision history for that repository r was essentially 

replayed. Conceptually, this was equivalent to the case of all developers performing their 

commits sequentially one by one according to their chronological order. To perform bug 

labeling, we assume that a file has a bug if it is involved in a bug fixing transaction along 

the whole history for the period under consideration. 

The labeling begins with links between bugs reported in the issue tracking system 

and the specific revision that fixes the bug- we call this a bug-fixing revision. Additionally, 

we should note that not all bugs are maintained in a bug-tracking database as described by 

Williams and Hollingsworth (Williams and Hollingsworth 2004). Therefore, we use 
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several different heuristics to derive our data. Various key words such as “bug”, “fixed” 

etc. in the git commit log are used to flag bug-fixing transaction. Also, numerical bug ids 

mentioned in the commit log, are extracted using regular expression and linked back to the 

issue tracking system’s identifiers. Finally, manual inspection is used to remove spurious 

linking as much as possible. These heuristic was introduced and used in many bug 

prediction studies (Śliwerski, Zimmermann, and Zeller 2005; Nagappan, Ball, and Zeller 

2006; Bachmann and Bernstein 2009; Rahman and Devanbu 2011; D’Ambros, Lanza, and 

Robbes 2012). 

In cases where the lack of supporting information (e.g., undescriptive ticket and / 

or commit message) prevents us from classifying a certain commit with satisfactory 

confidence, that commit is dropped from the dataset. Overall, we dropped 11% (3670), of 

the defect commits. We repeat this routine until we cover all commits involved in the period 

under consideration. Further in classification, we excluded any commit for fixing a broken 

unit test since these are not the ones that matter for the users of a program. Once we know 

that a transaction contains a fix, we first list files changed in the transaction and then check 

out the files prior to the fix in order to extract the slicing metrics. Additionally, files are 

filtered to remove non-source code (e.g., XML, html, log, documentation files, etc.) and 

unit-test files that are part of the bug-fix commit. 

5.2 Cognitive Complexity Metrics 

At this point we have a model including source code information over several 

versions, change history, and defects data. This step is to enrich the model with the metrics 

we want to evaluate. For each retrieved file, we use the srcslice tool (Alomari et al. 2014; 
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Newman et al. 2016) to compute the slicing metrics at the file level in every repository we 

had selected to be part of the dataset. To extract slicing metrics, we check out each file of 

the preceding revision that fixed specific bug (i.e. revision hash~1). In this manner, we can 

compute slicing metrics prior of fixing the bug to evaluate the nature of defect-prone files. 

We calculate slice metrics exactly before fixing the bug instead of the common way that 

calculate the metrics at the end or beginning of the release. The reason for choosing this 

method is that files could undergo through massive changes through the same release, so 

metrics could not be representative and thus less accurate. We applied this method to 

extract all slicing metrics through the revision history as described in Chapter 0. 

5.3 Baseline Metrics 

In order to quantify the contribution of slice-based metrics, we selected traditional 

code metrics and process metrics as a control set for providing a comparison. The aim of 

our study is to investigate five new metrics that demonstrate features of cognitive 

complexity and then to validate the efficacy of these metrics in defect prediction. To fulfil 

this, we choose five baseline metrics to perform balanced (5 vs. 5) analysis which avoid 

the possibility of diluting the effect of the new metrics if compared with large number 

baseline metrics. This approach in addition ensures that our analysis overcome any 

overfitting or multidimensionality problem that commonly happened with large number of 

variables.   

Prior research on defect modeling found that product metrics are good indicators of 

defects (Menzies, Greenwald, and Frank 2007). Similarly, these code metrics are widely 

used to measure programmer’s comprehension effort in research studies related to program 
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readability and understandability (Scalabrino et al. 2017; A. Rahman 2018). Table 5.3.1 

describes the included baseline code metrics, which consist of size metric (i.e., NLOC), 

structural complexity metric (i.e., McCabe’s (McCabe 1976)), and software science metric 

(i.e., Halstead’s Program Length (Halstead 1977)). 

The size metric NLOC simply counts the non-commentary source lines of code in 

a function. There is evidence that a larger size function tends to be more defect prone 

(Basili and Perricone 1984; Moller and Paulish 1993; Fenton and Ohlsson 2000). The 

structural complexity metric, including the well-known McCabe’s Cyclomatic complexity 

metric, assumes that a function with complex control flow structure is likely to be defect-

prone (Munson and Khoshgoftaar 1992; Ohlsson and Alberg 1996; Basili, Briand, and 

Melo 1996; Darcy et al. 2005). Halstead’s length metric estimate reading complexity based 

on the counts of tokens, in which a function hard to read is assumed to be hard to understand 

and defect prone. 

Note that we exclude other class-level code metrics such as CK and OO metrics 

since the analysis of this work is a file-level granularity. We also do not include the other 

Halstead’s metrics because these metrics are fully based on the counts of operators and 

operands. Consequently they are highly correlated with each other (Farrar and Glauber 

1967). 

Additionally, process metrics are found to be powerful indicators in defect 

modeling and show improvement when combined with code metrics (Rahman and 

Devanbu 2013). Therefore, we include two widely used change metrics in defect 

prediction, namely lineChange the number of lines changed (i.e., added and removed) and 
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funcChange the number of functions changed within a file. By choosing these five baseline 

metrics we are able to perform a balanced (5 vs. 5) analysis which ensures that any 

overfitting or multidimensionality problem that commonly happened with large number of 

variables is avoided. 

Category Metric Description 

Size NLOC Source lines of code in a function (excluding 

comment lines) 

Structural complexity CCN Cyclomatic complexity 

Software science Program 

Length 

Total number of operators and operands of a 

function 

Process lineChange Average number of lines added and deleted 

of a function 

funcChange Average number of functions changed within 

a file 

Table 5.3.1: Description of the baseline metrics. 
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EXPERIMENTAL DESIGN 

In this chapter, we introduce the projects used in the study and the research 

questions relating slice-based metrics to defect-proneness. Then, we describe the modeling 

techniques and the data analysis methods. 

6.1 Test Systems 

We use 10 datasets of 7 open-source projects to investigate the usefulness of 

cognitive complexity metrics in defect prediction. In selecting the systems, we consider 

three important criteria: 

6.1.1 Different Corpora 

To extend the generality of our conclusions, we choose systems from different 

corpora and domains. The included systems are non-trivial software that are belonging to 

different problem domains and different programming languages. 

6.1.2 Sufficient EPV 

Prior studies show that the Events Per Variable (EPV) (i.e., the ratio of the 

frequency of the least occurring class in the outcome variable to the number of features 

that are involved in training of a classifier) has a significant influence on the performance 

of defect classifiers (Tantithamthavorn et al. 2017). In particular, defect classifiers trained 

with datasets with a low EPV value yield unstable results (Tantithamthavorn et al. 2017; 

2016). To ensure the stability of our results, we ensure that included datasets have an EPV 
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value that is larger than 10  . Particularly, the systems we select have EPV ranging from 14 

to 718 (see Table 6.1.1). 

6.1.3 Defect Rate 

Since it is unlikely that more software modules have defects than are free of defects, 

we choose to study datasets that have defective rate ranging from (6%) to (50%). Table 

6.1.1 summarizes the details of the projects examined in this dissertation.
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Subject Application 
type 

Prog. 
lang. Period # 

Revisions 
Defect 

revision rate 
% 

# 
Instances 

Defective 
instances rate 

% 
EPV 

Linux 3.13 Operating 
system C 01-19-2014 ~ 

03-29-2014 13844 30% 35,397 10% 718 

Eclipse 3.1 
IDE Java 

06-27-2005 ~ 
06-28-2006 2283 29% 1,045 50% 104 

Eclipse 3.2 06-29-2006 ~ 
06-24-2007 1643 35% 1,122 41% 92 

Koffice 2.0 Office suite C++ 05-20-2009 ~ 
11-20-2009 1632 32% 4,424 6% 51 

Apache HTTP 2.0 Web server C 04-06-2002 ~ 
02-07-2005 5919 19% 266 38% 20 

Apache HTTP 2.2 Web server C 09-11-2012 ~ 
11-16-2013 465 15% 402 17% 14 

Dolphin 14.11~18.8 File manager C++ 11-08-2014 ~ 
09-06-2018 709 21% 327 23% 15 

Lucene 3.0 Information 
retrieval Java 11-25-2009 ~  

03-29-2011 2696 21% 4599 14% 129 

KDE Krita 3.0~ 
3.1.3 Graphics 

editor C++ 

05-30-2016 ~ 
04-28-2017 2396 31% 5,518 10% 111 

KDE Krita 3.1.4~ 
4.0 

29-04-2017 ~ 
08-01-2018 1689 28% 5,166 7% 68 

Average - - - 3328 26% 5827 22% - 

Table 6.1.1: Revisions, file instances and % of defective files.
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6.2 Correlational Analysis 

In order to investigate our first research question (RQ1), we apply correlation 

coefficient analysis. The correlation coefficient is a bivariate analysis to measure the 

strength of the relationship between two variables and the direction of this relationship. 

Thus, we determined the correlation between the number of defects and each slice-based 

measure. 

In statistics, there are several types of correlation coefficients. Widely used types 

are Pearson correlation, Spearman correlation, Kendall rank correlation, and Point-Biserial 

correlation. Each one has its own definition and formula. They all calculate the values in 

the range of -1 to +1, where -1 indicates the strongest negative relationship and +1 indicates 

the strongest positive relationship (Boddy and Smith 2009). These values can have the 

following meanings: 

• A correlation coefficient of 1 means that for every positive increase of 1 unit in the 

first variable, there will be a positive increase of 1 unit in the other variable.  

• A correlation coefficient of -1 means that for every positive increase of 1 unit in 

the first variable, there will be a negative increase of 1 unit in the other variable. 

• Zero value means that for any positive or negative increase in the first variable, 

there will be no change in the other variable. This means the two variables are 

completely unrelated. 

In the following subsection, I will discuss the Spearman correlation, as it is the one 

used in our analyses. 
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6.2.1 Spearman Rank Correlation 
Spearman rank correlation coefficient, also known as Spearman rho or rs, named 

after Charles Spearman, is a non-parametric measure of rank correlation between two 

variables. In contrast to Pearson correlation, the Spearman rank correlation is a robust 

technique that can be applied even when the association between two variables is non-

linear. This correlation is applicable for continuous and discrete ordinal variables (Lehman 

et al. 2013). Spearman correlation coefficient can be defined as the covariance of the two 

variables divided by the product of their individual standard deviations. To calculate the 

Spearman correlation, the following formula is used: 

 

!!	 = ##$!,#$" =
&'((#$!,#$")
+#$!+#$"

,                        (6.1) 

 

where: 

!!	 = Spearman correlation coefficient 

" = the usual Spearman correlation coefficient, but using ranked variables 

!##  = ranked values of $% 

!#$  = ranked values of &% 

'()(!## , !#$) = covariance of the ranked variables 

-%&!-%&"= standard deviation of the ranked variables 
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6.2.1.1 Assumptions  

Spearman correlation can be used when the association between values is non-

linear. Spearman correlation determines the monotonic association between variables 

rather than linear association. This explains why the assumptions, normality, linearity and 

homoscedasticity, are not required for Spearman correlation. 

6.2.1.2 Statistical significance 

The 95% confidence interval (CI) of a Spearman's rank correlation coefficient is 

computed by bootstrapping with 1,000 replicates (Hervé 2019). The significance (p-values) 

of the correlation are computed using algorithm AS 89 for n<1290 when exact compute 

was allowed (Best and Roberts 1975) otherwise Edgeworth series approximation with 

cutoff modification from the original (Hollander and Wolfe 1999). 

6.3 Modeling Techniques 

If slice-based cognitive complexity metrics correlate with defects, can we use them 

to predict defects? This question is essential to answer: 

RQ2. Do slice-based cognitive complexity metrics contribute to the prediction of the 

probability of defects? 

Therefore, we build multiple regression models where the number of defects forms 

the dependent variable in binary classification, representing whether an instance is 

defective or non-defective. We build separate models for two sets of independent variables: 

• BMM (baseline metrics model): This set consists of all code and process metrics 

section 5.3 and Table 5.3.1. 
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• SBCCM (slice-based cognitive complexity model): This set of variables includes 

the addition of slice-based metrics that were introduced in section 4.1 and Table 

4.2.1 to the baseline metrics. 

6.4 Model Construction Process 

In the following subsections, we present the detail of our model construction process. 

6.4.1 Normality Analysis 
Regression models expect normality in the outcome and in the predictors. Defect 

prediction datasets suffer from  high skewed data typically do not follow a normal 

distribution (McIntosh et al. 2016; Shihab, Bird, and Zimmermann 2012) (e.g., defects 

exist only in a small portion of the files). Therefore, we apply a log transformation log2 

(x+1) to reduce the skew and adequate the data to the regression assumption. 

6.4.2 Correlation Analysis 
Software metrics can be highly correlated to each other (Rajbahadur et al. 2017). 

Highly correlated metrics (i.e., |ρ| > 0.7) can lead to an inflated variance in the 

estimation of the outcome (Jr 2015). Prior to modeling, we evaluate the correlations 

among our extracted metrics. We use Spearman pair-wise rank correlation to better 

account for  collinearity between predictors in the data. Afterword, we use Principal 

Component Analysis (PCA) (Jackson 2003) to build the regression models using sets 

of principal components (PC), which are independent instead of the actual independent 

variable (i.e., metrics). Therefore, these components do not suffer from 

multicollinearity, while at the same time they account for as much sample variance as 
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possible (i.e., feature selection). We use prcomp function from stats R package. We 

include PCs that account for at least 95% of the variance. Across systems, SBCCMs 

need an average of 80% of the components to account 95% of the data variance, while 

the BMMs need an average of 67% of the components. 

6.4.3 Redundancy Analysis  
To ensure principal components of the PCA do not include redundant predictors, 

the redundancy analysis is performed in an iterative manner in which components are 

dropped until no components can be predicted with an R2 or adjusted R2 higher than 

0.9.  Hence, we use the redun function from Hmisc R package and find no redundant 

PCs in all datasets (Jr and others 2018). 

6.4.4 Handling Category Imbalance  

Table 6.1.1 shows that our dependent variables are imbalanced, e.g., there are more 

non-defective instances than defective ones. If left untreated, the models will favor the 

majority category, since it offers more predictive power. To combat this bias, we use 

the SMOTE technique (Chawla et al. 2002) (provided by the DMwR R package 

(“DMwR-Package: Functions and Data for the Book ‘Data Mining with R’ in DMwR: 

Functions and Data for ‘Data Mining with R’” n.d.)) which creates artificial data based 

on the feature space similarities from the minority modules. The SMOTE technique 

has been shown to improve AUC and been used in previous defect prediction studies 

(Tantithamthavorn, Hassan, and Matsumoto 2018). 
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6.4.5 Binary Logistic Regression 
We conduct our experiments using binary logistic regression model. This technique 

is a standard statistical modeling technique in which the dependent variable can take 

two different values. It is suitable for building defect prediction models because the 

files under consideration are divided into two categories: defective and non-defective. 

Logistic regression predicts likelihoods between 0 and 1, i.e., the likelihood that a file 

contains at least one defect. The general form of a binary logistic regression is shown 

in the following equation: 

.(#%/(0) = log 5 '
()'6 = 7* + 7($( + 7+$+ +⋯+ 7,$,,  (6.2) 

 

where 0 = :!(; = 1), y is the dependent variable, 7 is the regression coefficient 

and X is the predictor/independent variable.  We choose logistic regression over other 

modeling techniques because it is a widely used technique in defect prediction and it 

yields the best performance for models that combine both process and code metrics 

(Rahman and Devanbu 2013). We use the method lrm from the RMS R package (Jr 

2018). 

6.4.6 Out-of-Sample Bootstrap  

In order to ensure that the conclusions that we draw about our models are robust, 

we use the out-of-sample bootstrap validation technique, which has been shown to yield 

the best balance between the bias and variance (Tantithamthavorn et al. 2017). Unlike 

the ordinary bootstrap, the out-of-sample bootstrap technique fits models using the 

bootstrap samples, but rather than testing the model on the original sample, the model 
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is instead tested using the rows that do not appear in the bootstrap sample 

(Tantithamthavorn et al. 2017). Thus, the training and testing corpora do not share 

overlapping observations. The fraction of this sampling is 1/3 of the size of the original 

data. The entire bootstrap process is repeated 1000 times with the function validate 

from the RMS R package (Jr 2018), and the average out-of-sample performance is 

reported as the performance estimate. 

6.5 Model Analysis 

6.5.1 Logistic Regression Model Explanatory Power  

6.5.1.1 Area under the ROC curve (AUC) 

AUC measures the area under the receiver operating characteristic (ROC) curve. 

The ROC curve is plotted by false positive rate (FP) and true positive rate (TP). Figure 6.1 

explains about a typical ROC curve. PF and PD vary based on threshold for prediction 

probability of each classified instance. By changing the threshold, we can draw a curve as 

shown in Figure 6.1. the AUC value characterizes the accuracy of the model across all 

possible cutoff values. When the model gets better, the curve tends to be close to the point 

of PD=1 and PF=0. Thus, AUC of the perfect model will have “1”. For a random model, 

the curve will be close to the straight line from (0,0) to (1,1) (Menzies, Greenwald, and 

Frank 2007; Rahman, Posnett, and Devanbu 2012). Other measures such as precision and 

recall can vary according to prediction threshold values. However,  AUC value 

characterizes the accuracy of the model across all possible cutoff values. In this reason, 

AUC is a stable measure to compare different prediction models (Rahman, Posnett, and 

Devanbu 2012). Larger AUC values indicate better performance (Wu and Flach 2005). 
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Figure 6.1: A typical ROC curve 

6.5.1.2 Nagelkerke R2 

Nagelkerke is a specialized R2 typically used for logistic regression models 

(Nagelkerke 1991). Nagelkerke R2 with larger values indicating more variability explained 

by the model and less unexplained variation—a high Nagelkerke R2  (provided by the lrm 

method) value indicates good explanative power, but not predictive power. 

6.5.1.3 Influential Observations 

To identify influential observations in the models, we employ the Cook's distance 

to measure the effect of removing data point on all the predictors combined. If an 

observation has a Cook's distance equal to or larger than 1, it is regarded as an influential 

observation and is hence excluded for the analysis (Belsley, Kuh, and E. Welsch 2005). In 

addition, we examine observations for any unusual high leverage values, i.e., unusual 
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combination of predictor values. Any point with leverage value greater than 2.5 the average 

leverage of a point in the data set is investigated closely. 

6.5.2 Logistic Regression Model Prediction Abilities 
To assess the models prediction abilities, we use four possible classification 

outcomes:  

• A file is classified as defective when it is truly defective (true positive, TP) 

• It can be classified as defective when it is truly non-defective (false positive, FP) 

• It can be classified as non-defective when it is truly defective (false negative, FN) 

• It can be classified as non-defective when it is truly non-defective (true negative, 

TN).  

Based on TP, TN, FP, and FN, we calculate precision, recall, and F1-score as 

follows: 

• Precision: the proportion of files that are correctly labeled as defective among those 

labeled as defective. 

 

P = TP/(TP + FP)   (6.3) 

 

• Recall: is also known as true positive rate (TPR). Recall measures correctly predicted 

buggy instances among all buggy instances. 

 

R = TP / ( TP  +  FN )  (6.4) 
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• F1-score: is a harmonic mean that combines both precision and recall. It evaluates if 

an increase in precision (recall) outweighs a reduction in recall (precision). 

 

F = ( 2 × P × R ) / ( P + R )  (6.5) 

 

F1 minimizes the trade-off between precision and recall that can cause difficulties to 

compare the performance of several prediction models by using only precision or recall 

alone. This follows the setting used in many software analytics studies (Kim et al. 2011; 

Nam, Pan, and Kim 2013; Tantithamthavorn et al. 2018). In general, the higher the F1-

score is, the better the performance of an approach. 
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EVALUATION RESULTS 

In this chapter, we present our results, broken down by the research questions 

presented earlier in Section 1.2. 

7.1 Research Question 1 

Do Slice-Based Cognitive Complexity Metrics Significantly Correlate to Defects? 

7.1.1 Data Distribution 
To perform correlational analysis, we need first to examine the distribution of our 

datasets in all systems whether they follow normal distribution, where the data are 

symmetrically distributed, or not as this will determine the method of for analysis. There 

are several graphical and numerical tools for assessing normality of a data, we chose 

histogram visualization to test the distribution of our variables. Figure 7.1, Figure 7.2, 

Figure 7.3, Figure 7.4, and Figure 7.5 clearly display the asymmetrical distribution of our 

metrics in most instances. They suffer from substantial right skew indicating more 

clustered data at the left end of the distribution. Therefore, we choose the Spearman rank 

correlation coefficient method since it does not require normal distribution and assess 

relationship between variables using monotone function even if the relation is not linear.
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Figure 7.1: Histograms of slice-based metrics in Linux 3.13 and Eclipse 3.1. 
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Figure 7.2: Histograms of slice-based metrics in Eclipse 3.2 and Koffice 2.0. 
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Figure 7.3: Histograms of slice-based metrics in Appache HTTP 2.0 and 2.2. 



 

 92 

 

 

Figure 7.4: Histograms of slice-based metrics in Dolphin 14.11 and Lucene 3.0. 
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Figure 7.5: Histograms of slice-based metrics in KDE Krita 3.0 and 3.1.4. 
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7.1.2 Correlation Analysis 
Figure 7.6 and Table 7.1.1 show the Spearman correlations for all systems 

computed by bootstrapping with 1,000 replicates. For clarification, the cells in Figure 7.6 

distinguish between the correlation value and correlation intensity shown by the color 

range. All correlations are significant at 0.95-confidence level (p-value £ 0.05) except the 

correlations that are not bolded. From these results, we can make the following 

observations.  

Most of the investigated slice-based metrics are significantly correlated with 

defects. In 94% (i.e., 47 out of 50) of the cases, slice-based metrics have p-value ≤ 0.05 

and 95% CI that does not include zero. The SliceCount, sliceSize, and sliceIdentifier, show 

a consistent positive relationship with defect counts across all systems, which means that 

an increase in the aforementioned metrics leads to an increase in number of defects. This 

finding suggests that code that is divided into many parts (i.e., higher sliceCount), have a 

higher concentration of method invocations with parameters (i.e., higher sliceIdentifier), 

and have more tracing activity (i.e., higher sliceSize) during comprehension process, have 

a higher probability of defects. The increase of the aforementioned metrics indeed increases 

the cognitive complexity implying that developers should carefully handle files with high 

percentage of slice size, slice count and slice identifier.
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Figure 7.6: Spearman correlation coefficients between bug counts and metrics.
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Subject 

sliceCount sliceSize sliceCoverage sliceIdentifier sliceSpatial 

rs 
95%CI 

rs 
95%CI 

rs 
95%CI 

rs 
95%CI 

rs 
95%CI 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

Linux 3.13 0.31 0.29 0.33 0.19 0.17 0.21 -0.28 -0.30 -0.26 0.17 0.15 0.19 -0.16 -0.18 -0.14 

Eclipse 3.1 0.33 0.26 0.4 0.31 0.24 0.37 -0.36 -0.43 -0.3 0.23 0.16 0.30 -0.03 -0.1 0.04 

Eclipse 3.2 0.45 0.38 0.52 0.36 0.29 0.43 -0.39 -0.45 0.32 0.26 0.19 0.33 -0.02 -0.11 0.06 

Koffice 2.0 0.24 0.17 0.31 0.1 0.02 0.16 -0.26 -0.32 -0.19 0.1 0.03 0.16 -0.15 -0.22 -0.07 

Apache HTTP 2.0 0.48 0.37 0.58 0.20 0.1 0.32 -0.50 -0.6 -0.4 0.24 0.12 0.36 -0.33 -0.44 -0.22 

Apache HTTP 2.2 0.32 0.18 0.46 0.2 0.05 0.34 -0.27 -0.4 -0.13 0.2 0.05 0.34 -0.16 -0.31 -0.0005 

Dolphin 14.11 0.45 0.27 0.60 0.2 0.06 0.35 -0.47 -0.61 -0.29 0.24 0.09 0.38 -0.25 -0.41 -0.08 

Lucene 3.0 0.28 0.24 0.33 0.16 0.11 0.21 -0.25 -0.30 -0.20 0.1 0.03 0.14 0.02 -0.03 0.07 

KDE Krita 3.0 0.31 0.26 0.36 0.13 0.07 0.18 -0.32 -0.37 -0.26 0.14 0.1 0.19 -0.15 -0.20 -0.1 

KDE Krita 3.1 0.29 0.23 0.34 0.16 0.1 0.21 -0.26 -0.3 -0.21 0.13 0.07 0.19 -0.11 -0.17 -0.04 

Average 0.35 0.27 0.42 0.20 0.12 0.28 -0.34 -0.40 -0.19 0.18 0.10 0.26 -0.13 -0.22 -0.05 

Table 7.1.1: Spearman correlation coefficient rs, p-value and confidence interval (CI) between defect counts and cognitive 
complexity metrics. All correlation coefficient values are statistically significant except values not bolded.
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Conversely, sliceCoverage shows an expected consistent negative relationship 

across systems, which means an increase in sliceCoverage comes with a decrease in 

number of defects. sliceCoverage measures the average sliceSize relative to file LOC (i.e., 

sliceSize/sliceCount*file LOC). Thus, an increase in the file LOC and sliceCount decreases 

the sliceCoverage, leading to more cognitive complexity and eventually defects. 

We find that sliceSpatial has a negative relationship with the probability of defects. 

This suggests that being in large and scattered slices do not necessarily result in a high 

number of defects. While, this correlation is very weak (i.e., -0.12) and all of the 

insignificant correlation cases (i.e., 3 out of 3) occurred in relation to sliceSpatial, one 

would expect a high slice spatial to increase the cognitive complexity leading to more 

defects. This might be due to the file level granularity of the analysis by taking the average 

of sliceSpatial within a file. A highly scattered slice might be hidden in a large block of 

unite code resulting in a low value for the large block. Therefore, sliceSpatial might 

provide a higher and positive correlation with defects if a finer granularity of analysis is 

used (e.g., at slice-level). However, without further investigation to support this analysis, 

we cannot claim such argument. For more details about the Spearman correlation and how 

do they look, the scatterplots for each relationship assessment are highlighted in 

APPENDIX A. 

Overall, the individual correlations of each cognitive complexity metrics indicate a 

weak/moderate monotonic relationship with number of defects in most of the cases. The 

metrics with the highest observed correlations are sliceCount and sliceCoverage. These 

metrics are more related to defects than finer grained metrics (sliceIdentifier, sliceSize, and 
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sliceSpatial). This finding suggests that handling files with high slice coverage and slice 

count is more challenging and requires better understanding of the source code by 

developers. The results in addition suggest that these metrics might have more association 

if used together in relation to defects which is the analysis to be done in RQ2. 

In summary, the characteristics of cognitive complexity captured by slice-based 

metrics express a statistically significant relationship with the probability of defects, 

suggesting that slice based cognitive complexity metrics can be used as defects indicators. 

Slice count, slice size and slice identifier metrics have a consistent and significant positive 

relationship with the probability of defects across systems, while slice coverage and slice 

spatial have a significant negative relationship, suggesting that handling files with higher 

cognitive complexity captured by slice-based metrics is more challenging and requires a 

better understanding of the source code by developers. 

7.2 Research Question 2 

Do Slice-Based Cognitive Complexity Metrics Contribute to the Prediction of the 

Probability of Defects?  

To address RQ2, we apply the preprocessing techniques on the metrics as described in 

sections 6.4.1, 6.4.2, 6.4.3, and 6.4.4. After that, we follow the modeling process described 

in sections 6.4.5 and 6.4.6 to train multiple regression models for two different sets of 

predictors: 

• SBCCM (slice based cognitive complexity model) and  

• BMM (baseline metrics model). 
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7.2.1 Metrics Preprocessing  

7.2.1.1 Normalization of the Data 

We use the log2(x+1) transformation method to deal with the asymmetrical 

distribution in the data. It helps in reducing the right skew distribution before performing 

the modeling. Most variables show a marked correction of the asymmetrical pattern and 

the rest show a reduction of the right skew distribution.  

7.2.1.2 Collinearity and Redundancy Analysis 

We perform PCA to deal with collinearity between predictors. APPENDIX B 

shows the PCA aspects (loadings, communalities, contributions to PCs, eigenvalues, and 

proportion of variance) of SBCCM and BMM. We include PCs that account for at least 

95% of the variance, and on the same time do not suffer from multicollinearity. We after 

that ensure by the redundancy analysis that the PCs do not include redundant predictors in 

all datasets. In addition, to ensure that the models are not overfitted with any PCs, we 

calculate Variance Inflation factor (VIF) for all models. Across all systems, VIFs are < 3.5. 

7.2.1.3 Category Balancing  

As mentioned before, the dependent variables are clearly imbalanced, and this will 

lead to bias. Therefore, we use SMOTE technique to create artificial balanced data. Table 

7.2.1  highlights the category numbers before and after balancing.
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Subject 
Before Balancing After Balancing 

Buggy Clean Buggy Clean 

Linux 3.13 3085 4131 6170 6170 

Eclipse 3.1 479 322 644 644 

Eclipse 3.2 416 214 428 428 

Koffice 2.0 248 518 496 496 

Apache HTTP 2.0 99 140 198 198 

Apache HTTP 2.2 55 112 110 110 

Dolphin 14.11~18.8 57 76 114 114 

Lucene 3.0 340 1301 680 680 

KDE Krita 3.0~3.1.3 548 814 1096 1096 

KDE Krita 3.1.4~4.0 338 658 676 676 

Table 7.2.1: The dependent variable counts before and after balancing by SMOTE 
technique. 

7.2.2 Models Explanatory Power 
We measure the explanatory power of models from the bootstrap training samples and 

measure the prediction performance of the models on the bootstrap testing samples. This 

process is validated by repeating the bootstrapping for 1,000 times. 

The generated classifiers are evaluated using the AUC obtained from the training 

bootstrap samples. Table 7.2.2, Figure 7.7, Figure 7.8, Figure 7.9, Figure 7.10, and Figure 

7.11 report the average AUC for each studied dataset. Overall, we find that SBCCM has 

an average AUC of 0.8 while BMM has an average of 0.71. In addition, ROC curves of 
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SBCCM where closer to the top left corner than BMM throughout different cut off points. 

This means SBCCM increases the AUC by 9% on average compared to BMM. In 

particular, the SBCCM reveals an increase in the AUC values across all systems by up to 

16% and not less than 5%. This indicates that the addition of slice-based metrics certainly 

increases the discriminating power of the models. To measure the significance of the AUC 

differences between the two models, we use a Wilcoxon signed-rank test (Wilcoxon 1945) 

since it does not need the data to follow a normal distribution and it tests paired results. 

The test reveals that the differences between SBCCM and BMM are significant in all 

datasets. 

Figure 7.12 highlights the AUC values distribution of the 1000 iterations of 

bootstrap of SBCCM and BMM. Both models have a high level of agreement on the 

computed AUCs, as the boxplots are comparatively short, and whiskers do not stretch over 

a wider range of values indicating reliable results. We observe a consistent trend of 

SBCCM outperforming BMM among all systems. SBCCM have a larger median and mean 

than the BMM. Across all systems, the lower whiskers of SBCCM are larger than BMM 

median. No sharable Inter-quartile ranges (IQR, i.e., middle box that represents 50% of 

AUC distribution) across systems. Moreover, all differences are significant using 

Wilcoxon signed-rank test.  

Additionally, Nag. R2 values of SBCCM in Table 7.2.2 show improvement in all 

datasets that reaches up to 35% with an average increase of 18% over BMM which 

indicates an improvement in the fitted model. Thus, SBCCM model has a substantially 

better classification performance than the BMM. 
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Subject 
BMM SBCCM 

AUC Nag. R2 AUC (*) Nag. R2 (*) 

Linux 3.13 0.62 0.04 0.72 (+10%) 0.18 (+14%) 

Eclipse 3.1 0.67 0.15 0.78 (+11%) 0.30 (+15%) 

Eclipse 3.2 0.73 0.20 0.79 (+6%) 0.32 (+12%) 

Koffice 2.0 0.75 0.23 0.80 (+5%) 0.34 (+11%) 

Apache HTTP 2.0 0.73 0.20 0.87 (+14%) 0.49 (+29%) 

Apache HTTP 2.2 0.74 0.23 0.82 (+8%) 0.41 (+18%) 

Dolphin 14.11~18.8 0.71 0.16 0.87 (+16%) 0.51 (+35%) 

Lucene 3.0 0.69 0.14 0.78 (+9%) 0.30 (+16%) 

KDE Krita 3.0~3.1.3 0.70 0.15 0.76 (+6%) 0.26 (+11%) 

KDE Krita 3.1.4~4.0 0.74 0.21 0.80 (+6%) 0.35 (+14%) 

Average 0.71 0.17 0.80 (+9%) 0.35 (+18) 

* The values between ( ) represent the improvement between BMM and SBCCM. 

Table 7.2.2: Logistic regression models average AUC, Nagelkerke R2 values across 
systems using 1000 bootstrap validation (Bold font highlights the best performance).
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Figure 7.7: ROC curves comparing the models of SBCCM and BMM in Linux 3.13 
and Eclipse 3.1  
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Figure 7.8: ROC curves comparing the models of SBCCM and BMM in Eclipse 3.1 
and Koffice 2.0.  
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Figure 7.9: ROC curves comparing the models of SBCCM and BMM in Appache 
HTTP 2.0 and 2.2.  
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Figure 7.10: ROC curves comparing the models of SBCCM and BMM in Dolphin 
14.11 and Lucene 3.0.  
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Figure 7.11: ROC curves comparing the models of SBCCM and BMM in KDE 
Krita 3.0 and 3.1.4. 
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Figure 7.12: Logistic regression models AUC distribution of the 1000 out of sample bootstrap 

(Gray boxplots are SBCCM models, white boxplots are BMM and red triangles indicate mean values).
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7.2.3 Models Prediction Power  
In order to test the logistic regression model’s prediction ability, we compute 

precision, recall and F-measure using the out-of-sample bootstrap validation (1,000 times) 

and report them in Table 7.2.3. The comparison between SBCCM and BMM shows that 

SBCCM is having higher F-measure in all 10 datasets. SBCCM achieves an improvement 

in F-measure up to 14% and not less than 6% (average 9%) over the BMM. Figure 7.13 

shows the F-measure values distribution of the 1000 iterations of out-of-sample bootstrap 

validation for all datasets of SBCCM and BMM. In all systems, SBCCM has a larger 

median and mean than the BMM. In addition, no sharable IQR across systems.  

To measure the significance of the differences, we use a Wilcoxon signed-rank test. 

The results reveal that the differences are significant (p < 0.001) across all datasets. The 

higher F-measure values for SBCCM include an increase in both recall (average 12%, 

range 6%-17%) and precision (average 6%, range 2%-13%) in all systems. 

In summary, the addition of slice based cognitive complexity metrics significantly 

improves AUC and Nag. R2 measures across all systems. Across all systems, slice-based 

cognitive complexity features significantly improve defect classification F1, recall and 

precision. 
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Subject 
BMM SBCCM 

Recall Precision F-1 Recall (*) Precision (*) F-1(*) 

Linux 3.13 48 60 54 65 (+17%) 65 (+5%) 65 (+11%) 

Eclipse 3.1 54 67 60 65 (+11%) 69 (+2%) 67 (+7%) 

Eclipse 3.2 61 67 64 67 (+6%) 73 (+6%) 70 (+6%) 

Koffice 2.0 61 68 64 69 (+8%) 72 (+4%) 70 (+6%) 

Apache HTTP 2.0 68 65 66 81 (+13%) 78 (+13%) 79 (+13%) 

Apache HTTP 2.2 61 67 63 71 (+10%) 70 (+3%) 70 (+7%) 

Dolphin 14.11~18.8 61 64 62 75 (+14%) 77 (+13%) 76 (+14%) 

Lucene 3.0 58 62 60 71 (+13%) 70 (+8%) 71 (+11%) 

KDE Krita 3.0~3.1.3 58 67 62 66 (+8%) 70 (+3%) 68 (+6%) 

KDE Krita 3.1.4~4.0 55 68 61 70 (+15%) 73 (+5%) 72 (+11%) 

Average 58 66 62 70 (+12%) 72 (+6%) 71 (+9%) 

* The values between ( ) represent the improvement between BMM and SBCCMs 

Table 7.2.3: Logistic regression models recall, precision and F1 values across 
systems using 1000 bootstrap validation (Bold font highlights the best performance).
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Figure 7.13: Logistic regression models F-measure distribution of the 1000 out of sample bootstrap 

(Gray boxplots are SBCCM models, white boxplots are BMM and red triangles indicate mean values). 
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7.3 Applying the Cognitive Complexity Measures During Software Inspections 

For very large software systems, inspecting and comprehending all code and its 

dependencies to identify possible defects is an expensive, time consuming, and often 

unrealistic approach. An as-needed reading approach has to be adopted to deal with the 

possibly large amounts of de-localized information. The aim of any inspection approach 

has to be to limit the number of dependencies that have to be analyzed and comprehended. 

Through the combination of slicing with cognitive complexity metrics, the 

inspection process can be further enhanced by focusing a developer’s attention on only the 

parts that are relevant with respect to a particular function/variable. The criteria for 

choosing a function or variable for slicing include, for example, a function with high slice 

identifier, or a variable whose computation involves code with a high slice spatial. One 

might choose to inspect a code slice either prior to performing maintenance or as part of 

code verification prior to the release of a product. 

Additionally, identifying the most difficult to comprehend program elements can 

be a valuable aid in deciding schedules and choosing appropriate programmers for a 

project. It is not always feasible to improve on the cognitive complexity of a difficult 

program element, as some domains are inherently complex. In such situations, we should 

allocate enough time for individuals to understand the material with minimal error. 

Additionally, programmer experience plays a larger role in such situations and the 

programmer’s familiarity with the application domain and type of implementation should 

be considered when setting time constraints. 
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Moreover, program slicing allows for fine-grained cognitive complexity driven 

inspection of the source code, by focusing and prioritizing the preventive maintenance 

activity on these fine-grained parts of the system that might require additional 

comprehension and maintenance effort during future system maintenance. 

Testing of large software systems and their executions is difficult and a time-consuming 

task. A possible application is that we can apply slice-based metrics and defect prediction 

results to prioritize or select test cases. In regression testing, executing all test suites for 

regression testing is very costly so that many prioritization and selection approaches for 

test cases have been proposed (Yoo and Harman 2012). Since defect prediction results 

provide bug-prone software artifacts and their ranks, it might be possible to use the results 

for test case prioritization and selection. 
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THREATS TO VALIDITY 

Like any empirical study design, experimental design choices may impact the results 

of our study. However, we perform a highly controlled experiment to ensure that our results 

are robust. Below, we discuss threats that may impact the results of our study. 

8.1 Construct Validity 

We use an automated bug linking process, which may introduce false positives in 

the linked set. This may arise because undetected defects in the considered interval are 

labeled clean, as defective commits are detected and fixed in 100-300days (Kim and 

Whitehead 2006; Tan et al. 2015). To overcome such issue, we cover a large span of time 

period an average of 20 months across systems. 

The conclusions are based on a rule-of thumb EPV value that is suggested by 

(Peduzzi et al. 1996) and (Tantithamthavorn et al. 2017), who argue that, EPV has a 

significant influence on the performance of defect classifiers. In particular, defect 

classifiers trained with datasets with a low EPV value yield unstable results 

(Tantithamthavorn et al. 2017; 2016). To ensure the stability of our results, we ensure that 

included datasets have an EPV value that is larger than 10. Particularly, the systems we 

select have EPV ranging from 14 to 718. 

The slicing process of srcSlice is performed using the srcML (Collard, Decker, and 

Maletic 2011; Collard, Maletic, and Robinson 2010) format for source code which provides 
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direct access to abstract syntactic information. While this approach is inter procedural and 

highly scalable, it might not match the accuracy of generating a complete PDG/SDG. 

However, a previous study (Alomari et al. 2014)  compared srcSlice’s accuracy with a 

heavyweight slicing tool and shows that srcSlice produces reliable accuracy given its speed 

and lightweight approach. 

Previous research (Arisholm and Briand 2006; Bettenburg and Hassan 2013; Bland 

and Altman 1996) suggested mitigating the skewness distribution of defect datasets is 

necessary. Indeed, Jiang et al. (Jiang, Cukic, and Menzies 2008) point out that log 

transformation rarely affects the performance of defect prediction models. Thus, we 

suspect that the use of log transformation poses a threat to the validity of our conclusions. 

However, applying other choices of data transformation techniques may yield different 

results. 

8.2 External Validity 

We studied 10 datasets that represent varying application domains and with 

different characteristics (defect rates, size, language, #files, etc.) to make our dataset 

general and representative. However, it is unclear how well they generalize to closed source 

software, which may have different behavior. Our approach only requires software metrics 

that can be computed in a standard way by publicly available tools and all our data will be 

made publicly available. Replication using closed source systems may prove fruitful. 
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8.3 Internal Validity 

We validate our model stability using out-of-sample bootstrap which been recently 

shown to provide the least bias and most stable performance estimates across measures in 

defect prediction (Tantithamthavorn et al. 2017). While 100 repetition found to be 

sufficient (Tantithamthavorn et al. 2017), we repeated the experiment 1,000 times to ensure 

that the results converge, and found consistent result.
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CONCLUSIONS AND FUTURE WORK  

9.1 Conclusions 

We empirically examine the usefulness of cognitive complexity slice-based metrics 

in the context of defect prediction. The findings from an evaluation of 10 datasets covers 

parts of the version histories of open source systems show that 94% of the investigated 

metrics are statistically significant in relation to defects. Cognitive complexity metrics have 

significant impact on defect classification measured by AUC, R2, F1, recall and precision.  

Slice-based metrics allows for fine-grained cognitive complexity driven inspection 

of the source code, by focusing and prioritizing the preventive maintenance activity on 

these parts of the code that require additional comprehension and maintenance effort during 

future maintenance. The approach can also be practically applied, as the slicing approach 

used is scalable to large system. Running it on the largest system (Linux) takes less than 

10 minutes on a typical desktop machine.  

Future effort will be devoted to investigating the metrics performance in a cross-

project prediction and to replicate the analyses on closed source software which might 

exhibit different behaviors. Furthermore, we will provide a replication package, which 

includes data for both the defects and metrics used for our experiment, to allow other 

researchers to compare our results. 
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9.2 Future Work 

There are several directions for the future of this research. Some directions involve the 

following: 

9.2.1 Cross-Project Prediction 
Most of prediction models are trained on historical data. Since most new projects 

don’t have historical data, there is interest in cross-project prediction: using data from one 

project to predict defects in another. However, most experiments in cross-project defect 

prediction report poor performance, using the standard measures of precision, recall and F-

score. It’s been argued that these IR-based measures, while broadly applicable, are not as 

well suited for the QA settings in which defect prediction models are used. These measures 

are taken at specific threshold. However, in practice, QA processes choose from a range of 

time-and-cost vs quality tradeoffs: how many files should we inspect? Thus, measures 

based on a variety of tradeoffs, viz., 5%, 10% or 20% of files tested/inspected would be 

more suitable (Rahman, Posnett, and Devanbu 2012). A model that works well upon 

inspecting 80% of SLOC, may not work as well when inspecting only 20% of SLOC. 

Therefore, we want to investigate cross-project defect prediction using slice-based 

metrics from this perspective. Since slice-based metrics are of a finer granularity and can 

capture more detailed view of the modules, we hypothesize that cross-project prediction 

performance is no worse than within-project performance, and substantially better than 

state of the art cross-project prediction models. 
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9.2.2 Churn of Slice-Based Metrics 
Using churn of slice-based metrics can have some potential to predict defects. These 

measure code churn as deltas of slice-based metrics instead of line-based code churn. The 

intuition is that higher-level metrics may better model code churn than simple metrics like 

addition and deletion of lines of code. We sample the history of the source code and 

compute the deltas of slice metrics for each consecutive pair of samples. For each slice-

based metric, we create a matrix where the rows are the files, the columns are the sampled 

versions, and each cell is the value of the metric for the given file at the given version. 

9.2.3 Enhance Reliability 
Other directions involve building Module-order models for targeting reliability 

enhancement. The goal is to target reliability enhancement activities to those modules that 

are most likely to have defects.  Previous research including our classification models have 

focused on classification models to identify defect-prone and not defect-prone modules. 

Such models require that defect-prone be defined as a class before modeling, usually via a 

threshold on the number of defects. However, due to resource constraints that limit the 

amount of reliability enhancement effort, software development managers often cannot 

choose an appropriate threshold at the time of modeling. In such cases, with a predicted 

rank-order in hand, one can select as many modules from the top of the list for enhancement 

for as long as resources allow (Khoshgoftaar and Allen 2003).  

9.2.4 Varimax Transformation 
Another idea is to use varimax transformation as a post processing technique for 

PCA. In this work, we use PCA to best account for multicollinearity. Software metrics can 
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be highly correlated to each other (Rajbahadur et al. 2017) and highly correlated metrics 

(i.e., |ρ| > 0.7) can lead to an inflated variance in the estimation of the outcome. 

Ortiz et al. apply varimax transformation for PCA (VPCA) in paleoclimate and 

remote sensing studies to address multicollinearity and show improvement in terms of R2 

from 0.7 to over 0.9 (Ortiz et al. 2019; Avouris and Ortiz 2019; Judice et al. 2020). In their 

work, the values that they use to conduct the VPCA are the derivative of a reflectance 

spectra as a function of wavelength, so the variables are wavelength bands. The PCA is 

based on the decomposition of the correlation matrix from the derivative transform of the 

reflectance values as a function of wavelength. In analogy to this work, these wavelengths 

would be the slice-based model variables or the baseline model variables. Then, we will 

run the logistic regression modeling against known bugs in each of the systems and 

compare these results against PCA results shown in APPENDIX B .
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APPENDIX A 

SCATTERPLOTS FOR THE RELATIONSHIPS BETWEEN SLICE-BASED 

METRICS AND DEFECT COUNTS 

 

Figure 9.1: Scatterplots for the relationships between slice-based metrics and defect 
counts in Linux 3.13 and Eclipse 3.1. 
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Figure 9.2: Scatterplots for the relationships between slice-based metrics and defect 
counts in Eclipse 3.2 and Koffice 2.0. 
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Figure 9.3: Scatterplots for the relationships between slice-based metrics and defect 
counts in Apache HTTP 2.0 and 2.2. 
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Figure 9.4: Scatterplots for the relationships between slice-based metrics and defect 
counts in Dolphin 14.11 and Lucene 3.0. 
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Figure 9.5: : Scatterplots for the relationships between slice-based metrics and 
defect counts in KDE Krita 3.0 and 3.1.4. 
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APPENDIX B 

Results of the principal component analysis (PCA) 

Model Aspect Metric PC1 PC2 PC3 PC4 PC5 

SB
C

C
M

 

Loadings 

sliceCount 0.52 -0.36 0.18 -0.12 0.74 
sliceCoverage -0.32 0.59 -0.33 -0.39 0.53 
sliceSize 0.54 0.27 0.12 -0.68 -0.39 
sliceIdentifier 0.54 0.20 -0.71 0.41 -0.04 
sliceSpatial 0.20 0.64 0.58 0.45 0.10 

Communalities 

sliceCount 0.66 0.22 0.01 0.00 0.10 
sliceCoverage 0.25 0.61 0.04 0.05 0.05 
sliceSize 0.70 0.12 0.01 0.14 0.03 
sliceIdentifier 0.69 0.07 0.19 0.05 0.00 
sliceSpatial 0.09 0.72 0.13 0.06 0.00 

Contribution to the PCs 

sliceCount 27.51 12.74 3.216 1.386 55.14 
sliceCoverage 10.54 34.85 11.14 15.17 28.3 
sliceSize 29.36 7.066 1.373 46.85 15.35 
sliceIdentifier 28.74 4.134 50.3 16.62 0.202 
sliceSpatial 3.845 41.21 33.97 19.98 1.005 

EigenValue 2.40 1.74 0.38 0.30 0.19 
Proportion of Variance % 0.48 0.35 0.08 0.06 0.04 
Cumulative Proportion % 0.48 0.84 0.91 0.97 1.00 

BM
M

 

Loadings 

NLOC 0.50 0.29 -0.04 0.29 -0.76 
CCN 0.49 0.29 0.08 -0.81 0.12 
Program Length 0.49 0.32 -0.05 0.50 0.64 
lineChange 0.37 -0.60 0.70 0.08 0.00 
funcChange 0.37 -0.61 -0.70 -0.07 0.02 

Communalities 

NLOC 0.87 0.10 0.00 0.01 0.01 
CCN 0.85 0.10 0.00 0.05 0.00 
Program Length 0.85 0.12 0.00 0.02 0.01 
lineChange 0.49 0.44 0.08 0.00 0.00 
funcChange 0.48 0.45 0.08 0.00 0.00 

Contribution to the PCs 

NLOC 24.77 8.62 0.19 8.48 57.93 
CCN 23.97 8.46 0.72 65.46 1.39 
Program Length 23.98 10.23 0.24 24.91 40.63 
lineChange 13.81 35.80 49.68 0.70 0.00 
funcChange 13.47 36.88 49.17 0.44 0.04 

EigenValue 3.53 1.22 0.15 0.08 0.02 
Proportion of Variance % 0.71 0.24 0.03 0.200 0.005 
Cumulative Proportion % 0.71 0.95 0.98 0.995 100.00 

Table 9.2.1: PCA aspects of Eclipse 3.1. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.53 -0.35 0.07 0.04 0.77 
sliceCoverage -0.34 0.58 -0.22 -0.46 0.54 
sliceSize 0.53 0.28 0.50 -0.57 -0.26 
sliceIdentifier 0.54 0.22 -0.79 0.01 -0.21 
sliceSpatial 0.18 0.65 0.29 0.67 0.11 

Communalities 

sliceCount 0.68 0.22 0.00 0.00 0.10 
sliceCoverage 0.27 0.60 0.02 0.06 0.05 
sliceSize 0.67 0.14 0.09 0.10 0.01 
sliceIdentifier 0.69 0.09 0.21 0.00 0.01 
sliceSpatial 0.07 0.76 0.03 0.13 0.00 

Contribution to the PCs 

sliceCount 28.54 12.16 0.472 0.188 58.65 
sliceCoverage 11.24 33.31 4.754 21.28 29.42 
sliceSize 28.1 7.65 24.67 33.04 6.545 
sliceIdentifier 29.01 4.867 61.88 0.021 4.224 
sliceSpatial 3.113 42.02 8.23 45.47 1.17 

EigenValue 2.38 1.82 0.35 0.29 0.17 
Proportion of Variance % 0.48 0.36 0.07 0.06 0.03 
Cumulative Proportion % 0.48 0.84 0.91 0.97 1.00 

BM
M

 

Loadings 

NLOC 0.55 -0.20 0.04 -0.23 0.78 
CCN 0.54 -0.19 -0.02 0.80 -0.18 
Program Length 0.54 -0.22 0.02 -0.55 -0.60 
lineChange 0.26 0.65 -0.71 -0.04 0.01 
funcChange 0.23 0.67 0.70 0.01 -0.03 

Communalities 

NLOC 0.91 0.07 0.00 0.00 0.01 
CCN 0.89 0.06 0.00 0.05 0.00 
Program Length 0.88 0.08 0.00 0.02 0.01 
lineChange 0.21 0.71 0.07 0.00 0.00 
funcChange 0.17 0.76 0.07 0.00 0.00 

Contribution to the PCs 

NLOC 29.87 3.92 0.17 5.46 60.59 
CCN 29.00 3.46 0.05 64.12 3.38 
Program Length 28.86 4.89 0.05 30.22 35.97 
lineChange 6.87 42.47 50.47 0.19 0.00 
funcChange 5.40 45.25 49.26 0.02 0.06 

EigenValue 3.06 1.68 0.15 0.08 0.02 
Proportion of Variance % 0.61 0.34 0.03 0.016 0.005 
Cumulative Proportion % 0.61 0.95 0.98 0.995 1.00 

Table 9.2.2: PCA aspects of Eclipse 3.2. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.59 -0.10 0.28 -0.63 0.40 
sliceCoverage -0.34 0.52 0.73 0.09 0.26 
sliceSize 0.43 0.50 0.12 -0.08 -0.73 
sliceIdentifier 0.53 0.33 -0.22 0.62 0.43 
sliceSpatial -0.25 0.60 -0.57 -0.45 0.22 

Communalities 

sliceCount 0.83 0.02 0.03 0.10 0.03 
sliceCoverage 0.28 0.50 0.21 0.00 0.01 
sliceSize 0.44 0.46 0.01 0.00 0.09 
sliceIdentifier 0.66 0.20 0.02 0.10 0.03 
sliceSpatial 0.15 0.67 0.13 0.05 0.01 

Contribution to the PCs 

sliceCount 35.06 1.03 7.97 39.88 16.06 
sliceCoverage 11.74 27.27 53.24 0.78 6.97 
sliceSize 18.85 24.97 1.50 0.72 53.97 
sliceIdentifier 27.98 10.74 4.67 38.26 18.35 
sliceSpatial 6.36 35.99 32.63 20.36 4.66 

EigenValue 2.35 1.85 0.39 0.25 0.16 
Proportion of Variance % 0.47 0.37 0.08 0.05 0.03 
Cumulative Proportion % 0.47 0.84 0.92 0.97 1.00 

BM
M

 

Loadings 

NLOC 0.59 -0.03 -0.30 -0.02 -0.75 
CCN 0.56 -0.04 0.80 0.16 0.12 
Program Length 0.58 -0.04 -0.48 -0.10 0.65 
lineChange 0.06 0.70 0.13 -0.70 -0.02 
funcChange 0.03 0.71 -0.13 0.69 0.03 

Communalities 

NLOC 0.97 0.00 0.01 0.00 0.01 
CCN 0.89 0.00 0.10 0.00 0.00 
Program Length 0.95 0.00 0.04 0.00 0.01 
lineChange 0.01 0.91 0.00 0.07 0.00 
funcChange 0.00 0.92 0.00 0.07 0.00 

Contribution to the PCs 

NLOC 34.48 0.08 8.78 0.03 56.62 
CCN 31.48 0.12 64.45 2.53 1.42 
Program Length 33.62 0.18 23.33 1.03 41.83 
lineChange 0.33 49.61 1.71 48.32 0.03 
funcChange 0.09 50.00 1.73 48.08 0.10 

EigenValue 2.83 1.84 0.16 0.15 0.02 
Proportion of Variance % 0.56 0.37 0.03 0.03 0.01 
Cumulative Proportion % 0.56 0.93 0.96 0.99 1.00 

Table 9.2.3: PCA aspects of Linux 3.13. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount -0.62 0.17 -0.33 -0.17 0.67 
sliceCoverage 0.39 -0.52 0.01 0.45 0.61 
sliceSize -0.46 -0.43 -0.46 0.46 -0.42 
sliceIdentifier -0.50 -0.33 0.80 0.01 0.02 
sliceSpatial 0.09 -0.63 -0.19 -0.74 -0.05 

Communalities 

sliceCount 0.83 0.06 0.04 0.01 0.07 
sliceCoverage 0.33 0.57 0.00 0.05 0.06 
sliceSize 0.45 0.39 0.08 0.05 0.03 
sliceIdentifier 0.54 0.22 0.23 0.00 0.00 
sliceSpatial 0.02 0.84 0.01 0.13 0.00 

Contribution to the PCs 

sliceCount 38.18 2.87 10.90 2.97 45.07 
sliceCoverage 15.07 27.36 0.01 20.36 37.20 
sliceSize 20.85 18.90 21.23 21.54 17.48 
sliceIdentifier 25.15 10.67 64.13 0.01 0.03 
sliceSpatial 0.74 40.20 3.73 55.12 0.21 

EigenValue 2.16 2.08 0.37 0.24 0.15 
Proportion of Variance % 0.43 0.42 0.07 0.05 0.03 
Cumulative Proportion % 0.43 0.85 0.92 0.97 1.00 

BM
M

 

Loadings 

NLOC -0.55 0.24 -0.29 0.01 -0.74 
CCN -0.47 0.27 0.83 0.01 0.11 
Program Length -0.54 0.23 -0.47 -0.03 0.66 
lineChange -0.30 -0.64 0.05 -0.70 -0.02 
funcChange -0.30 -0.64 0.02 0.71 0.03 

Communalities 

NLOC 0.86 0.09 0.03 0.00 0.02 
CCN 0.63 0.12 0.25 0.00 0.00 
Program Length 0.82 0.09 0.08 0.00 0.01 
lineChange 0.25 0.69 0.00 0.07 0.00 
funcChange 0.26 0.67 0.00 0.07 0.00 

Contribution to the PCs 

NLOC 30.53 5.68 8.49 0.01 55.29 
CCN 22.33 7.24 69.17 0.00 1.25 
Program Length 29.06 5.40 22.06 0.10 43.38 
lineChange 8.78 41.28 0.22 49.70 0.02 
funcChange 9.30 40.40 0.05 50.19 0.06 

EigenValue 2.82 1.66 0.36 0.13 0.03 
Proportion of Variance % 0.56 0.33 0.07 0.03 0.01 
Cumulative Proportion % 0.56 0.89 0.96 0.99 1.00 

Table 9.2.4: PCA aspects of Koffice 2.0. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.59 -0.07 0.30 -0.29 0.69 
sliceCoverage -0.52 0.34 -0.47 -0.22 0.59 
sliceSize 0.34 0.57 -0.19 -0.60 -0.40 
sliceIdentifier 0.41 0.49 -0.28 0.71 0.12 
sliceSpatial -0.32 0.56 0.76 0.09 0.03 

Communalities 

sliceCount 0.88 0.01 0.03 0.02 0.07 
sliceCoverage 0.67 0.21 0.06 0.01 0.05 
sliceSize 0.29 0.59 0.01 0.08 0.02 
sliceIdentifier 0.42 0.45 0.02 0.11 0.00 
sliceSpatial 0.25 0.58 0.16 0.00 0.00 

Contribution to the PCs 

sliceCount 35.03 0.49 9.25 8.28 46.95 
sliceCoverage 26.66 11.31 21.80 4.98 35.25 
sliceSize 11.56 32.33 3.68 36.17 16.26 
sliceIdentifier 16.60 24.25 7.92 49.80 1.43 
sliceSpatial 10.14 31.62 57.35 0.77 0.11 

EigenValue 2.51 1.84 0.28 0.23 0.14 
Proportion of Variance % 0.50 0.37 0.06 0.05 0.03 
Cumulative Proportion % 0.50 0.87 0.93 0.98 1.00 

BM
M

 

Loadings 

NLOC 0.55 -0.19 0.01 -0.27 0.77 
CCN 0.54 -0.18 0.05 0.81 -0.15 
Program Length 0.55 -0.18 0.03 -0.53 -0.62 
lineChange 0.20 0.69 0.70 -0.02 0.01 
funcChange 0.26 0.65 -0.71 0.01 -0.01 

Communalities 

NLOC 0.92 0.06 0.00 0.01 0.01 
CCN 0.89 0.06 0.00 0.05 0.00 
Program Length 0.91 0.06 0.00 0.02 0.01 
lineChange 0.12 0.83 0.05 0.00 0.00 
funcChange 0.20 0.75 0.05 0.00 0.00 

Contribution to the PCs 

NLOC 30.28 3.59 0.01 7.32 58.81 
CCN 29.21 3.34 0.22 65.01 2.22 
Program Length 29.96 3.40 0.08 27.63 38.94 
lineChange 3.93 47.22 48.81 0.02 0.02 
funcChange 6.62 42.45 50.89 0.02 0.01 

EigenValue 3.04 1.76 0.10 0.08 0.02 
Proportion of Variance % 0.61 0.35 0.02 0.016 0.003 
Cumulative Proportion % 0.61 0.96 0.98 0.996 1.00 

Table 9.2.5: PCA aspects of Apache HTTP 2.0. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.59 0.06 -0.28 -0.32 -0.68 
sliceCoverage -0.59 0.09 0.23 0.26 -0.72 
sliceSize 0.15 0.66 -0.39 0.62 0.06 
sliceIdentifier 0.12 0.67 0.64 -0.35 0.07 
sliceSpatial -0.51 0.32 -0.56 -0.57 0.08 

Communalities 

sliceCount 0.88 0.01 0.02 0.03 0.07 
sliceCoverage 0.88 0.02 0.01 0.02 0.08 
sliceSize 0.06 0.80 0.04 0.10 0.00 
sliceIdentifier 0.03 0.82 0.12 0.03 0.00 
sliceSpatial 0.65 0.19 0.09 0.08 0.00 

Contribution to the PCs 

sliceCount 35.19 0.41 7.78 10.38 46.23 
sliceCoverage 35.17 0.88 5.19 6.50 52.26 
sliceSize 2.31 43.92 14.84 38.58 0.35 
sliceIdentifier 1.40 44.63 41.26 12.24 0.47 
sliceSpatial 25.92 10.16 30.93 32.29 0.69 

EigenValue 2.49 1.83 0.28 0.25 0.15 
Proportion of Variance % 0.50 0.37 0.06 0.05 0.03 
Cumulative Proportion % 0.50 0.87 0.93 0.98 1.00 

BM
M

 

Loadings 

NLOC 0.53 -0.25 0.15 -0.22 -0.77 
CCN 0.52 -0.24 -0.31 0.74 0.16 
Program Length 0.52 -0.25 0.13 -0.52 0.62 
lineChange 0.29 0.65 -0.66 -0.25 -0.06 
funcChange 0.31 0.63 0.66 0.25 0.06 

Communalities 

NLOC 0.89 0.10 0.00 0.00 0.01 
CCN 0.85 0.10 0.01 0.04 0.00 
Program Length 0.87 0.10 0.00 0.02 0.01 
lineChange 0.27 0.68 0.04 0.00 0.00 
funcChange 0.30 0.65 0.04 0.00 0.00 

Contribution to the PCs 

NLOC 27.83 6.02 2.20 5.03 58.92 
CCN 26.71 5.96 9.38 55.50 2.45 
Program Length 27.40 6.06 1.63 27.08 37.83 
lineChange 8.51 42.02 43.00 6.09 0.38 
funcChange 9.55 39.93 43.79 6.30 0.42 

EigenValue 3.19 1.63 0.09 0.08 0.02 
Proportion of Variance % 0.64 0.32 0.019 0.015 0.003 
Cumulative Proportion % 0.64 0.96 0.979 0.994 1.00 

Table 9.2.6: PCA aspects of Apache HTTP 2.2. 



 

 132 

Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.20 -0.63 0.39 0.24 0.60 
sliceCoverage -0.49 0.42 0.11 -0.34 0.68 
sliceSize -0.46 -0.43 0.45 -0.50 -0.39 
sliceIdentifier -0.38 -0.49 -0.77 -0.04 0.13 
sliceSpatial -0.60 0.09 0.18 0.76 -0.14 

Communalities 

sliceCount 0.09 0.80 0.04 0.01 0.05 
sliceCoverage 0.55 0.36 0.00 0.03 0.06 
sliceSize 0.49 0.37 0.06 0.06 0.02 
sliceIdentifier 0.34 0.48 0.18 0.00 0.00 
sliceSpatial 0.85 0.01 0.01 0.13 0.00 

Contribution to the PCs 

sliceCount 4.02 39.42 14.93 5.94 35.69 
sliceCoverage 23.69 17.82 1.12 11.52 45.84 
sliceSize 21.21 18.32 20.67 24.93 14.87 
sliceIdentifier 14.55 23.71 59.87 0.14 1.74 
sliceSpatial 36.52 0.72 3.42 57.47 1.86 

EigenValue 2.31 2.04 0.30 0.22 0.13 
Proportion of Variance % 0.46 0.41 0.06 0.04 0.03 
Cumulative Proportion % 0.46 0.87 0.93 0.97 1.00 

BM
M

 

Loadings 

NLOC 0.51 0.26 -0.31 0.11 -0.75 
CCN 0.31 0.66 0.66 0.01 0.17 
Program Length 0.50 0.17 -0.57 -0.04 0.63 
lineChange 0.46 -0.44 0.25 -0.73 -0.06 
funcChange 0.43 -0.52 0.28 0.68 0.09 

Communalities 

NLOC 0.87 0.08 0.03 0.00 0.01 
CCN 0.33 0.52 0.15 0.00 0.00 
Program Length 0.84 0.03 0.11 0.00 0.01 
lineChange 0.70 0.24 0.02 0.04 0.00 
funcChange 0.62 0.32 0.03 0.03 0.00 

Contribution to the PCs 

NLOC 25.89 6.89 9.50 1.23 56.49 
CCN 9.68 43.74 43.61 0.01 2.96 
Program Length 25.10 2.92 32.50 0.12 39.36 
lineChange 20.95 19.67 6.39 52.69 0.31 
funcChange 18.38 26.79 8.00 45.95 0.87 

EigenValue 3.36 1.20 0.35 0.07 0.03 
Proportion of Variance % 0.67 0.24 0.070 0.01 0.01 
Cumulative Proportion % 0.67 0.91 0.980 0.99 1.00 

Table 9.2.7: PCA aspects of Dolphin 14.11~18.8. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount -0.53 0.36 -0.28 0.05 -0.72 
sliceCoverage 0.35 -0.61 0.12 -0.33 -0.62 
sliceSize -0.50 -0.34 -0.38 -0.63 0.31 
sliceIdentifier -0.52 -0.11 0.84 -0.04 0.00 
sliceSpatial -0.28 -0.62 -0.22 0.70 0.03 

Communalities 

sliceCount 0.69 0.21 0.03 0.00 0.07 
sliceCoverage 0.30 0.62 0.01 0.03 0.05 
sliceSize 0.62 0.19 0.06 0.12 0.01 
sliceIdentifier 0.68 0.02 0.30 0.00 0.00 
sliceSpatial 0.19 0.64 0.02 0.14 0.00 

Contribution to the PCs 

sliceCount 27.78 12.63 7.77 0.24 51.57 
sliceCoverage 11.95 36.66 1.53 10.92 38.95 
sliceSize 25.07 11.24 14.52 39.79 9.38 
sliceIdentifier 27.44 1.16 71.27 0.13 0.00 
sliceSpatial 7.75 38.32 4.91 48.92 0.10 

EigenValue 2.48 1.68 0.42 0.29 0.13 
Proportion of Variance % 0.50 0.33 0.08 0.06 0.03 
Cumulative Proportion % 0.50 0.83 0.91 0.97 1.00 

BM
M

 

Loadings 

NLOC 0.58 -0.10 0.08 0.16 0.79 
CCN 0.55 -0.16 -0.19 -0.76 -0.25 
Program Length 0.57 -0.08 0.12 0.59 -0.56 
lineChange 0.14 0.69 -0.70 0.13 0.03 
funcChange 0.13 0.69 0.68 -0.21 -0.03 

Communalities 

NLOC 0.96 0.02 0.00 0.00 0.02 
CCN 0.87 0.04 0.01 0.08 0.00 
Program Length 0.93 0.01 0.00 0.05 0.01 
lineChange 0.06 0.85 0.09 0.00 0.00 
funcChange 0.05 0.85 0.09 0.01 0.00 

Contribution to the PCs 

NLOC 33.41 1.03 0.60 2.52 62.45 
CCN 30.36 2.47 3.74 57.05 6.38 
Program Length 32.44 0.63 1.49 34.46 30.98 
lineChange 1.99 47.73 48.57 1.64 0.08 
funcChange 1.80 48.14 45.61 4.34 0.11 

EigenValue 2.86 1.77 0.20 0.14 0.03 
Proportion of Variance % 0.57 0.35 0.04 0.03 0.01 
Cumulative Proportion % 0.57 0.92 0.96 0.99 1.00 

Table 9.2.8: PCA aspects of Lucene 3.0. 
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Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount -0.32 -0.57 -0.17 -0.44 0.59 
sliceCoverage 0.59 0.27 -0.10 0.22 0.72 
sliceSize 0.39 -0.48 -0.69 0.21 -0.29 
sliceIdentifier 0.18 -0.60 0.64 0.45 0.03 
sliceSpatial 0.61 -0.08 0.27 -0.72 -0.21 

Communalities 

sliceCount 0.23 0.68 0.01 0.05 0.03 
sliceCoverage 0.78 0.16 0.00 0.01 0.05 
sliceSize 0.34 0.49 0.15 0.01 0.01 
sliceIdentifier 0.07 0.75 0.13 0.05 0.00 
sliceSpatial 0.82 0.01 0.02 0.14 0.00 

Contribution to the PCs 

sliceCount 10.09 32.62 2.79 19.29 35.21 
sliceCoverage 34.83 7.49 0.91 5.06 51.71 
sliceSize 15.22 23.41 48.17 4.52 8.68 
sliceIdentifier 3.11 35.84 41.09 19.87 0.08 
sliceSpatial 36.74 0.64 7.04 51.25 4.32 

EigenValue 2.23 2.08 0.32 0.27 0.10 
Proportion of Variance % 0.45 0.42 0.06 0.05 0.02 
Cumulative Proportion % 0.45 0.87 0.93 0.98 1.00 

B M
M

 

Loadings 

NLOC -0.53 0.29 -0.30 0.03 -0.74 
CCN -0.44 0.29 0.84 -0.01 0.09 
Program Length -0.52 0.29 -0.44 0.01 0.67 
lineChange -0.35 -0.62 0.04 0.70 0.01 
funcChange -0.36 -0.60 0.01 -0.71 0.00 

Communalities 

NLOC 0.81 0.13 0.04 0.00 0.02 
CCN 0.56 0.13 0.31 0.00 0.00 
Program Length 0.77 0.13 0.09 0.00 0.01 
lineChange 0.35 0.58 0.00 0.07 0.00 
funcChange 0.38 0.55 0.00 0.07 0.00 

Contribution to the PCs 

NLOC 28.34 8.53 8.91 0.06 54.16 
CCN 19.53 8.41 71.20 0.02 0.85 
Program Length 26.85 8.43 19.72 0.02 44.98 
lineChange 12.06 38.47 0.17 49.30 0.02 
funcChange 13.23 36.16 0.00 50.60 0.00 

EigenValue 2.88 1.52 0.44 0.14 0.03 
Proportion of Variance % 0.57 0.30 0.09 0.03 0.01 
Cumulative Proportion % 0.57 0.87 0.96 0.99 1.00 

Table 9.2.9: PCA aspect KDE Krita 3.0~3.1.3. 



 

 135 

Model Aspect Metric PC1 PC2 PC3 PC4 PC5 
SB

C
C

M
 

Loadings 

sliceCount 0.62 -0.15 0.17 0.33 -0.67 
sliceCoverage -0.46 0.46 0.00 -0.32 -0.69 
sliceSize 0.41 0.47 0.63 -0.41 0.23 
sliceIdentifier 0.47 0.40 -0.76 -0.22 0.05 
sliceSpatial -0.11 0.62 0.05 0.76 0.14 

Communalities 

sliceCount 0.85 0.05 0.01 0.03 0.06 
sliceCoverage 0.47 0.44 0.00 0.03 0.07 
sliceSize 0.36 0.46 0.13 0.04 0.01 
sliceIdentifier 0.47 0.33 0.19 0.01 0.00 
sliceSpatial 0.03 0.81 0.00 0.15 0.00 

Contribution to the PCs 

sliceCount 39.06 2.17 2.84 10.81 45.11 
sliceCoverage 21.49 20.97 0.00 10.27 47.27 
sliceSize 16.53 22.05 39.35 16.63 5.44 
sliceIdentifier 21.62 15.75 57.58 4.81 0.23 
sliceSpatial 1.29 39.06 0.22 57.48 1.96 

EigenValue 2.19 2.08 0.32 0.27 0.14 
Proportion of Variance % 0.44 0.42 0.06 0.05 0.02 
Cumulative Proportion % 0.45 0.87 0.93 0.98 1.00 

BM
M

 

Loadings 

NLOC -0.58 0.18 -0.30 0.04 -0.74 
CCN -0.48 0.26 0.83 -0.09 0.10 
Program Length -0.57 0.16 -0.45 0.08 0.67 
lineChange -0.22 -0.67 0.15 0.69 -0.01 
funcChange -0.26 -0.65 -0.02 -0.71 0.01 

Communalities 

NLOC 0.89 0.06 0.03 0.00 0.02 
CCN 0.61 0.12 0.27 0.00 0.00 
Program Length 0.86 0.05 0.08 0.00 0.01 
lineChange 0.13 0.80 0.01 0.06 0.00 
funcChange 0.18 0.76 0.00 0.06 0.00 

Contribution to the PCs 

NLOC 33.35 3.14 8.93 0.17 54.41 
CCN 22.88 6.65 68.82 0.73 0.91 
Program Length 32.23 2.57 19.88 0.66 44.65 
lineChange 4.94 44.90 2.33 47.83 0.01 
funcChange 6.60 42.73 0.04 50.62 0.02 

EigenValue 2.67 1.79 0.39 0.12 0.03 
Proportion of Variance % 0.53 0.36 0.08 0.02 0.01 
Cumulative Proportion % 0.53 0.89 0.97 0.99 1.00 

Table 9.2.10: PCA aspects of KDE Krita 3.1.4~4.0. 
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