
Web APIs in Android through the Lens of Security
Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, Oscar Nierstrasz

Software Composition Group, University of Bern
Bern, Switzerland

Abstract—Web communication has become an indispensable
characteristic of mobile apps. However, it is not clear what
data the apps transmit, to whom, and what consequences such
transmissions have.

We analyzed the web communications found in mobile apps
from the perspective of security. We first manually studied 160
Android apps to identify the commonly-used communication
libraries, and to understand how they are used in these apps.
We then developed a tool to statically identify web API URLs
used in the apps, and restore the JSON data schemas including
the type and value of each parameter.

We extracted 9 714 distinct web API URLs that were used in
3 376 apps. We found that developers often use the java.net
package for network communication, however, third-party li-
braries like OkHttp are also used in many apps. We discovered
that insecure HTTP connections are seven times more prevalent
in closed-source than in open-source apps, and that embedded
SQL and JavaScript code is used in web communication in more
than 500 different apps. This finding is devastating; it leaves
billions of users and API service providers vulnerable to attack.

Index Terms—Web APIs, network libraries, communication,
security

I. INTRODUCTION

Mobile applications (apps) increasingly rely on web com-
munication to provide their services. Apps access the internet
through web APIs in order to use an increasing number of
public web services, or to communicate with private backends.
Researchers have recently studied the use of such APIs in
mobile apps, and, for instance, found that a large number of
web requests are not directly traceable to source code [1],
cloud and mail service credentials are hard-coded in the
apps [2], many web requests are harmful [3], many web links
targeting well-known advertisement networks impose serious
risks on users [4], and lax input validation in many web APIs
could compromise the security and privacy of millions of
users [5].

We could not, however, find any publicly available tool that
researchers can use to study web APIs. Also, There are several
third-party libraries to implement network communication,
but existing studies are mainly limited to java.net APIs.
Finally, dissecting the distribution of elements that comprise
the web API URLs is never studied, which is necessary for
collecting security-related information stored in query keys
and values, as well as to fuzz web APIs.

We manually studied the use of common web communi-
cation frameworks in 160 randomly selected Android mobile
apps, i.e., more than 4.7% of the whole dataset, and developed
a static analysis tool to investigate whether network commu-
nications in 3 376 closed-source and open-source apps differ.
We manually inspected the tool’s output for 100 random apps,
and used the reported URLs to connect to the servers and
to investigate their response. We found eight security code
smells, i.e., symptoms in the code that signal the prospect
of a security vulnerability [6], on both ends, dominated by
the use of embedded computer languages. We handcrafted
regular expressions to automatically identify the use of those
languages, and other languages prevalent on GitHub.

In this work we address the following research questions:
RQ1: Which API frameworks are used in Android mobile

apps, and what is the nature of the data that apps transmit
through these frameworks? We identified six different web
API communication libraries, and learned that open-source
apps rely on simpler request paths including only one or two
path segments, while closed-source apps mostly include two
or three path segments. Unexpectedly, the opposite is true for
key-value pairs: Open-source apps frequently use one to three
pairs, while closed-source apps mainly use one pair. Fragments
have only been used very sparsely in both types of apps. We
found that open-source and closed-source apps are similar in
the choice of web communication libraries, but advertising
services are more prevalent in closed-source apps.

RQ2: What security smells are present in web commu-
nication? We found eight security smells in the apps and
the server software. For instance, 500 apps use embedded
computer languages (e.g., SQL, and JavaScript commands)
in web API communications, thus introducing the threat of
code injection attacks. A horrific 67% of the closed-source
and 9.5% of the open-source apps communicate with servers
over insecure HTTP connections. Many apps neglect to use
the HTTP strict transport security policy. Finally, we observed
a lack of authentication and authorization mechanisms for
services that are supposed to be private.

In summary, this work attempts to shed more light on the
use of web APIs in mobile apps, by studying what data the
apps transmit, to whom, and for what purpose. The tool and
the obtained results in this study are available online.1

1https://github.com/pgadient/jandrolyzerPreprint – SANER 2020

ar
X

iv
:2

00
1.

00
19

5v
2

 [
cs

.C
R

]
 1

 J
un

 2
02

0

https://github.com/pgadient/jandrolyzer

The remainder of this paper is organized as follows. We
describe the methodology of our web API mining approach
in section II, and we present the results of our empirical
study in section III. We report numerous web API security
smells in section IV. Finally, we recap the threats to validity
in section V, and we summarize related work in section VI.
We conclude this paper in section VII.

II. WEB API MINING

We manually inspected Android apps to identify what APIs
developers use to call web services, and how they are used.
Then we took advantage of this information to develop a
tool to automatically extract the web API URLs and their
corresponding HTTP request headers statically from the apps.

A. Library Inspection

An Android app can call a web API either with the
help of the built-in Java classes, or by using external third-
party libraries. We consulted the official Java and Android
documentations to compile a list of built-in APIs that are
relevant to network communication, and to establish how
these APIs are used. We mainly focused on the java.net
package, which includes a number of classes such as Socket,
HttpsURLConnection, and URLConnection to imple-
ment network-related operations

Next, we manually inspected 160 randomly selected apps
from a dataset of 3 376 apps (see section III) that request
Android’s INTERNET permission to investigate what third-
party libraries they may use for web communication, and
how. These libraries are often built on top of the built-in Java
network APIs. Therefore, we first checked whether a call to
such Java APIs exists, and, if so, we checked whether the call
belongs to the app or an external library. For each library, we
studied the documentation, and investigated how developers
use the library in each app, e.g., to construct URLs, and to
attach headers to web requests. During the inspection of each
app, we collected the web API URLs and any data that are
transmitted to the servers to determine if what we collect from
the source code is actually helpful to issue valid requests.

In this study, besides the native Java network libraries, we
found that libraries such as Apache HttpClient, Glide, Ion,
OkHttp, Retrofit, and Volley are used in the apps.

While studying the use of web communication libraries,
we also noticed that besides the built-in org.json package,
developers often use two external libraries, namely Gson and
Moshi, for parsing and manipulating JSON (JavaScript Object
notation) data, which is commonly used for data exchange in
web services.

B. API Miner

We then developed a tool that leverages our finding in the
library inspection phase, and statically analyzes apps to extract
web API URLs, query keys and the corresponding values
where applicable. The tool takes the following steps:

1) Decompilation: Given an APK file, the tool first decom-
piles the app using the command line version of the JADX
decompilation tool.2 A successful decompilation will provide
us with a project folder that contains decompiled Java source
code of the app and the resource files. Although decompilation
errors are common, JADX is quite robust and produces code
with a correct syntax. In particular, method declarations and
class structures remain intact with comments in place where
the decompilation did not succeed completely.

The tool uses the JavaParser framework to create an
abstract syntax tree (AST) for every .java file within the
project.3 When the actual source code of an app is available,
we use the information from the build and configuration files to
accurately inject specific library versions into the JavaParser
framework to enable the resolution of library dependencies in
the subsequent app analysis. If the desired library version is
unavailable in our collection, the next available more recent
version is added instead. Closed-source apps (i.e., APKs) do
not require those dependency injections as they already contain
the required code themselves.

2) Detection and Extraction: In principal, we need to track
flows of data in relevant APIs, and several static analysis
frameworks exist to track data flows in Android apps. Nev-
ertheless, in our experience as well as according to recent
studies, these tools may not perform as described in the
relevant papers [7], [8], [9]. We therefore decided to implement
our own lightweight analysis tailored to reconstruct web APIs
in the code.

The tool traverses the AST to identify APIs, i.e.,
MethodCallExpression nodes, that are used to access
web APIs in a network library. For each method call, it
recursively resolves the nodes on which the API depends, e.g.,
the object on which the method is called, and its parameters.
In detail, we rely on the JavaSymbolSolver framework to
associate a variable in the code to its declaration.4 We track
all Assignment, and MethodInvocation constructs on
each variable in each relevant VariableDeclaration
node. Moreover, depending on the target library, the tool
also tracks implicit dependencies, e.g., the annotation-driven
dependency injection.

URL and header5 construction largely depend on string con-
catenation. We therefore support the extraction of strings that
are built using the StringBuilder.append() method,
the String.concat() method, and the “+” operator.

3) Reconstruction: All web API URLs and JSON data
structures that contain at least one unresolved value are further
processed in the reconstruction stage. We set the value of
variables whose types are number or boolean to 0 and true,
respectively. For those variables (i.e., JSON or query keys)
whose types are String, and for which we did not find a
concrete value during the extraction, we compute the Jaro-

2https://github.com/skylot/jadx
3https://javaparser.org
4https://github.com/javaparser/javasymbolsolver
5The HTTP request header is a plain text record providing input details for

the web API request.

https://github.com/skylot/jadx
https://javaparser.org
https://github.com/javaparser/javasymbolsolver

Winkler similarity distance [10] between the variable names
and every variable declaration in the code. In the end, for each
successful analysis, the tool reports the web API, as shown in
Listing 1, and the corresponding request headers, as shown in
Listing 2.
1 Path:
2 /Users/marc/...
3 Library:
4 com.squareup.retrofit
5 Scheme:
6 http://
7 Authority:
8 retrofiturl.com
9 Base URL:

10 http://retrofiturl.com
11 Endpoints:
12 Path: api/loadUsers
13 Queries:
14 Query key: position, query value: <String>
15 Query key: order, query value: <String>
16 Fragments:
17 HTTP Methods:
18 HTTP Method: GET

Listing 1. The tool’s output for a successful web API extraction

1 Path:
2 .../User.java
3 Library:
4 com.squareup.moshi
5 JSON Object:
6 {"address":{"street":"<STRING>",
7 "number": <NUMBER_INT>"},"name":"Bob"}

Listing 2. The tool’s output for a successful JSON object extraction

4) Evaluation: We performed a lightweight evaluation of
the tool on 10 open-source and 10 closed-source apps ran-
domly selected from our dataset. In each app, we manually
searched for the terms “http://” and “https://” in the (decom-
piled) source code. For each finding, we evaluated which
entries were related to web APIs, and then tried to understand
what are the URLs and the other request parameters.

We manually identified 24 distinct URLs for web APIs in
the apps, of which 21 were found in the Java source code. The
tool reported 39, of which 18 URLs referred to web services:
17 were amongst the URLs identified manually, and the tool
uncovered one new case that was overlooked due to complex
string concatenation. The tool achieved a precision of 46%
and a recall of 80%.

There are several reasons for the tool missing the remaining
seven URLs, such as URLs in open-source apps being hidden
in build scripts and XML resource files rather than Java code,
and incomplete library injections for closed-source apps.

The tool reported 21 URLs that did not refer to a web
service. In particular, 18 URLs referred to static HTML pages,
and three suffered from invalid reconstruction.

C. Security Checks

We inspected the result of the tool on a random set of 100
apps in order to identify security smells in the code relevant
to web API communications.

We implemented lightweight detection strategies for these
smells, mainly using regular expressions. For instance, using

search terms such as username, password, etc. we could find
hard-coded passwords, tokens, and insufficiently protected
authorization schemes in the results.

1 HTML:
2 String uiElement = "<html><body>" +
3 ↪→ jsonObj.getText() + "</body></html>";
4

5 JavaScript:
6 String customScript = jsonObj.getResponse();
7

8 SQL:
9 String queryParameter = "SELECT * FROM weather";

Listing 3. Examples of embedded computer code in app source strings

In many apps we found code from various computer lan-
guages embedded in Java strings, such as that shown in List-
ing 3, thus potentially exposing the app or the server to code
injection attacks. We compiled a list of commonly used com-
puter languages based on our own findings, and the scripting
languages found in the top ten used programming languages
on GitHub.6 For each language, we pragmatically developed
regular expressions inspired by the relevant language specifica-
tions, with the aim to match as many occurences as possible.
With these regexes, shown in Table I, we counted the key
identifiers for each language in each app report, to detect
usages of embedded languages in the web communications.

TABLE I
REGULAR EXPRESSIONS USED TO DETECT COMPUTER LANGUAGES

Language Regular expressions Language Regular expressions
Bash sh[]+ SQL alter[]+table

%.sh create[]+.*index
HTML %<[]*html[]*%> create[]+.*table
JavaScript function[ˆ%(]*%([ˆ%)]*%) create[]+.*trigger

%<[]*script create[]+.*view
js[]*= delete[]+from

PHP %<%? drop[]+index
Python import[]+%(.*%) drop[]+table
Ruby require[]*%(.*%) drop[]+trigger

drop[]+view
insert[]+.*into
replace[]+into
select[]+.*[]+from
update[]+.+[]+set

In a subsequent step, we issued requests to each of the URLs
extracted from the entire dataset, and observed unexpected
responses, e.g., stack traces, error messages, or status infor-
mation, disclosing sensitive information regarding the API
implementation, running software, or server configuration.

III. STUDY RESULT

We investigated the use of network communication in
Android mobile apps. In particular, the focus is on the use
of libraries, and the request characteristics.

We randomly collected apps that use internet. For closed-
source apps we mined the free apps on the Google Play
store, and for the open-source apps we relied on the F-Droid

6https://github.com/oprogramador/github-languages

https://github.com/oprogramador/github-languages

software repository.7 For each app, we removed the duplicates,
i.e., apps with the same package identifier, but different version
numbers, and kept only the most recent version of the app. In
the end, we collected 17 079 closed-source, and 432 open-
source apps.

We applied our tool to these apps, and restricted each app
analysis to 30 minutes processing time, with a node resolution
limit of 15 iterations on a machine with two AMD Opteron
6 272 16-core processors and 128 GB of ECC memory. The
tool could completely analyze 293 open-source apps, and 2 410
closed-source apps. We also included the partial results of
the apps whose analyses were incomplete, resulting in a total
analysis result of 303 open-source, and 3 073 closed-source
apps in our dataset. Only 2 587 apps (15%) were successfully
decompiled, due to crashes of the tool caused by various bugs,
and incomplete feature support, e.g., reflection, native code,
and customized app configurations.

The apps in our dataset come from 48 different Google
Play store categories. Most of them belong to EDUCATION
(317 apps) and TOOLS (292 apps), however, a majority (574)
have a GAMES-related tag. Interestingly, work-related apps are
common in our dataset (335 apps). The top five categories
whose apps contain the largest number of distinct web API
URLs are EDUCATION (1 555 URLs), LIFESTYLE (1 027
URLs), BUSINESS (995 URLs), ENTERTAINMENT (704
URLs), and PRODUCTIVITY (619 URLs).

We present our findings in the following, and conclude each
focal point with a short discussion, which entails similarities
or differences in open-source and closed-source apps.

A. Communication Libraries

We investigated the distribution of the seven different com-
munication libraries in 3 376 apps in our dataset.

1) Result: In open-source apps, we found that each app
uses up to four network libraries. The URLConnection
(37%), HttpURLConnection (24%), Socket (9.1%), and
HttpsURLConnection (6.0%) classes included in java.net
are the preferred choice of open-source developers, espe-
cially URLConnection and HttpURLConnection are
omnipresent in projects. When considering third party network
libraries, we found that OkHttp and Retrofit (each 5.6%) are
used the most. It is interesting to see that libraries with specific
support for image downloads are similarly used, i.e., Glide and
Volley. The Ion library is used only in three apps (1.0%).

In closed-source apps each app uses up to seven network
libraries. We found that the classes included in java.net
such as URLConnection (42%), HttpURLConnection
(34%), Socket (10%), and HttpsURLConnection
(4.3%) are the preferred choice. Interestingly, the OkHttp
library is the most commonly used third-party library
even surpassing the well-known Glide and Retrofit li-
braries. We found org.apache.httpcomponents and
com.loopj.android are the two least used network li-
braries contributing only 0.9% and 0.5%, respectively.

7https://f-droid.org

2) Discussion: We realized that one to three classes are
usually responsible for network communication in an app. In
open-source apps we found the use of up to four network
libraries in each app, and in closed-source apps it was up to
seven. Although each library may provide specific features,
e.g., JSON parsing, HTTP connection management, image
caching, etc., we expect the reason for the use of multiple
libraries in an app is that many developers use the code
snippets from other projects or online information sources.

We found fewer java.net libraries in open-source apps
compared to closed-source apps. During decompilation, the
bundled libraries are decompiled together with the app code.
Therefore, what the tool reports is not only the network calls
in the app code, but also the network APIs on top of which
the third-party libraries are developed. However, this is not the
case for the open-source apps whose dependencies are defined
in Gradle, and are dynamically injected without adding the
actual code to the project itself.

The libraries Ion and Volley have been used only in open-
source apps, while HttpComponents and LoopJ have been
used only in closed-source apps. Surprisingly, we did not find
any instances of the well-known AndroidHttpClient and
SSLSocket classes. Finally, the use of Glide, which supports
exhaustive image downloading and caching features, seems
much more prevalent on closed-source apps.

B. The Nature of Web API Requests

Based on the analysis results for the apps in our database,
we investigated the structure, dissemination and use of 13 276
web API URLs, of which 9 714 were unique.

1) Open-source Apps: The tool extracted 1 533 URLs from
the open-source projects. We found that the majority of web
APIs consist of one or two queries or path segments. We only
found up to one fragment per web API. We further found
that 209 web APIs exist with paths consisting of four or
five segments to distinguish between resources (the average
number of segments in the web APIs is 2.36). Nevertheless,
web APIs using more than five elements are rare. Web APIs
contain an average of 2.3 key-value pairs in queries. The data
do not follow a normal distribution.

Surprisingly, the top base URL was https://github.com,
which we observed 29 times (1.8%). Likewise, Google ser-
vices have been widely used, e.g., https://play.google.com
or https://plus.google.com, of which the tool could spot 42
instances (2.7%). Rather at the end of the ten most commonly
used base URLs the tool found the OpenWeatherMap API
http://openweathermap.org (7, 0.4%) and the Twitter social
network API https://twitter.com (6, 0.3%).

Furthermore, we found that the https URL scheme (1 012
occurrences, 66%) is much more commonly used than its
insecure counterpart http (521 occurrences, 33%).

2) Closed-source Apps: The tool extracted 11 743 URLs
from closed-source apps. We found that the majority of
web APIs consist of one or two queries or path segments.
On a second look, we observed that web APIs with two
path segments are most prevalent. We further discovered that

https://f-droid.org
https://github.com
https://play.google.com
https://plus.google.com
http://openweathermap.org
https://twitter.com

2 116 web APIs exist with paths consisting of four to eight
path segments to distinguish between resources (the average
number of segments in the web APIs is 2.44). Nevertheless,
web APIs using more than four elements are rare. Additionally,
we could identify that URL fragments are seldomly used in
web APIs; although we found up to seven fragments in a single
web API URL, we only discovered 183 web APIs in total
using this feature, i.e., 1.5%. Web APIs, on average, contain
2.9 key-value pairs in queries. The data do not follow a normal
distribution.

Interestingly, all the most common URLs we could retrieve
were pointing towards Google services. The top URL, http:
//schemas.android.com, was observed 1 303 times (11%). Two
of the observed URLs were related to advertising distribution
services, i.e., http://media.admob.com (283, 2.4%) and https:
//pagead2.googlesyndication.com (271, 2.3%).8

We found that the http URL scheme (7 208 occurrences,
61%) is much more prevalent than its secure counterpart
https (4 531 occurrences, 38%). Besides findings of the
two common schemes we found few appearances of the ws
(WebSocket) protocol (4 occurrences, 0.0%), which provides
(unprotected) full-duplex communication on top of HTTP TCP
connections.

3) Discussion: The number of used path segments and
query keys are an indicator for the complexity of a specific
request. Servers usually reject requests with incomplete or
flawed parameter configurations, and thus the task of sending
a successful request becomes harder the more path segments
and query keys are involved.

Open-source apps relied on simpler request paths including
only one or two path segments, while closed-source apps
mostly included two or three path segments. Unexpectedly,
the opposite is true for key-value pairs: Open-source apps
frequently use one to three pairs, while closed-source apps
majorly use one pair. Fragments have only been used very
sparsely in both types of apps.

We did not expect to observe a difference between open-
source and closed-source apps. Moreover, we did not expect
to find many complex requests, because the idea of providing
APIs is that they can be used by other developers who
presumably prefer an easy to use interface. We conclude that
the majority of the APIs provide a simple interface and are
rather straightforward to access.

While the open-source apps contained no advertising ser-
vices in the ten most used base URLs, the closed-source apps
heavily used such services. We expect that the “Freemium”
price model, i.e., installation of apps is free but the user must
later watch ads or pay a fee, is a major enabler of this setting.

The open-source community prefers the Twitter social net-
work over Facebook.

We found one major difference in the URL schemes used
in the apps. Open-source apps principally rely on secure
https connections (66%). In contrast, closed-source apps

8Google AdMob is a popular advertising platform that provides SDKs to
developers to integrate Google ads into their own apps to increase revenue.

largely use the insecure http protocol (60%). We see here
much potential for improvement through stricter rejection of
apps using insecure connections. The more efficient, but more
complex WebSocket protocol seems to be out of interest for
the majority of developers.

C. Security Risks

We studied the kinds of data communicated through web
APIs, and found that both credentials (i.e., user name and pass-
word combinations) and embedded code were very common
in the web communications. As the former has been reported
on extensively in the past, we focus here on the latter.

1) Open-source Apps: The tool extracted 458 JSON
schemes in which STRING is the most used value type with
1 197 occurrences, followed by NUMBER with 234 occur-
rences.

We found that SQL (91%, 10 affected apps) is by far
the most used embedded language. HTML (5.5%, 2 affected
apps) and JavaScript (2.7%, 1 affected apps) are very rare. No
instances of other embedded languages were detected.

2) Closed-source Apps: The tool extracted 14 606 JSON
schemes where STRING is the most used value type with
40 017 occurrences, followed by BOOLEAN with 5 640 occur-
rences. NUMBER and NULL only represent a minority with
2 389 and 1 483 occurrences, respectively.

In contrast to open-source apps, we observed that JavaScript
(76%, 170 affected apps) is very prevalent, and SQL (23%,
476 affected apps) is used less, but still frequently. HTML
code is almost non-existent (0.7%, 27 affected apps).

3) Discussion: We found that the use of tokens in open-
source apps is not as common as in closed-source apps. One
explanation could be that the fees associated to web services
do not pay off for open-source apps which mostly do not
generate any revenue.

Several embedded languages are actively used within mobile
apps. While SQL is relatively common in both open-source
and closed-source apps, JavaScript is much more commonly
used in the latter.

IV. WEB API SECURITY SMELLS

In this section, we present the security smells that we
found in web communication during investigation of the tool’s
results, by manually investigating 100 apps, and by analyzing
the responses from requests to each of the 9 714 web API
URLs extracted from apps in our dataset. We classify the
smells into client side (i.e., within mobile apps), and server
side (i.e., on the API servers). For each smell we report
the security issue at stake, the potential consequences for
users, the symptom in the code (i.e., the code smell), and the
recommended mitigation strategy of the issue, principally for
developers.

We used the results from the manual analysis explicitly to
identify security issues, but not to perform any quantitative
evaluation. In this section, we do not report any number of
occurrences found in the tool’s results, because those either

http://schemas.android.com
http://schemas.android.com
http://media.admob.com
https://pagead2.googlesyndication.com
https://pagead2.googlesyndication.com

have been discussed in the previous section, or the task would
require additional research to gather qualitative results.

In our analysis, we could identify eight web API security
smells, of which three were in apps and five in server im-
plementations. Two of the three web API app security smells
could be mitigated, if only secure HTTPS channels would be
used for communication. We have not yet reported our findings
to developers or marketplaces.

A. Client-side

We identified three client-side web API security code
smells.

• Credential leak. We found hard-coded API keys, login
information, and other sensitive data, e.g., email ad-
dresses, in the source code. Several of the retrieved data
were valid at the time of our investigation: We could
access Google Maps, Mapquest, OpenWeatherMap, the
San Francisco transit API, and a Telegram bot.
Issue: Credentials issued to app vendors are prevalent in
apps that use web APIs, and they are statically stored
in the Java software to perform the queries. However,
the software can be decompiled into source code, which
renders the data extraction trivial.
Consequently, web services can be misused by people
who have gained access to unique credentials. Such ser-
vices allow impersonation, phishing, information leaks,
fake messages, or financial infringements for the app
developers due to API overuse or lockdowns.
Symptom: Query keys like key, token, user,
username, password, pw are used in web requests
and the corresponding values are statically stored in the
apps.
Mitigation: Developers should avoid using access tokens
and logins of corporate accounts for apps. Instead, a
unique child token based on the corporate token should be
assigned to every user. If this option is unavailable, web
relay APIs can be provided to the apps which forward
the requests to the final destination without disclosing
any credentials.

• Embedded languages. We found apps that assemble
CSS, HTML, or JavaScript code programmatically using
external input. In many apps, such constructed code is
executed within a WebView or Android’s UI framework,
which is inspired by Java Swing and supports HTML
elements. Similarly, we found assembled SQL statements
that are executed in the local SQLite database engine. In
two apps we found assembled shell commands sent over
an SSH connection.
Issue: An attacker could gain control over the
app’s visual representation, the behavior, the data
storage, or the corresponding server by exploiting
such code. Shell commands such as String
command = "touch /home/" + username
+ "/.toolConfig/configuration"; allow an
adversary to execute commands on a server by letting
the variable username be ;echo ’executes on

server’;.
Consequently, for HTML and CSS, an attacker could
change the appearance of existing web elements to make
space for additional ones, e.g., by reducing the font size
of existing text to make it impossible to read and at
the same time injecting additional text in regular size.
Such changes can trick users into taking unintended
actions. With JavaScript, an attacker could gain access
to the Document Object Model (DOM) of the app’s
webpage and extract or alter the visible content. Such
changes expose sensitive user data, or mislead users
through altered information. SQL allows adversaries to
perform arbitrary actions on the database, e.g., altering
and deleting existing data, or inserting new data. This
leads to data loss, corruption, or leaks for the users.
Through shell commands an adversary could potentially
gain elaborated remote access to the server’s operating
system. Threats range from DoS attacks to sensitive user
information leaks and corporate network infiltrations
by disabling security measures and installing malicious
software on the server.
Symptom: At least one statement is manually assembled
with the help of external data, e.g., "<html><body>"
+ example + "</html></body>" or "color:"
+ color + ";". HTML/CSS: common tags or
properties occur, e.g., "<html>", "<body>", or
"color:". JavaScript: identifiers exist in the app, e.g.,
function(), <script, js=. SQL: keywords are
used in the app, e.g., SELECT, INSERT, UPDATE,
DELETE, REPLACE, TRUNCATE. Shell: commands are
not trivial to detect, because developers use a variety of
different commands, e.g., sudo, rm, cp, mv, ls, exec,
attrib, chmod, touch, etc.
Mitigation: Developers should not use external input
when assembling embedded languages, but try to embed
the content into the app installation or update package.
Static code should be used whenever possible. If
dynamic code is required, the built-in sanitizing classes
must be used, e.g., PreparedStatement for SQL
code. User input should never be trusted. In general,
any untrustworthy input must not be used before it is
properly escaped and sanitized.

• Insecure transport channel. Web API communication
relies on HTTP or HTTPS; both variants exist in apps.
Issue: HTTP does not provide any security; neither the
address, nor the header information or the payload are
encrypted.
Consequently, any attacker with access to the transmitted
data can read or alter all plain text messages. User data
leaks, corruptions, losses, or impersonation are probable.
Symptom: HTTP URLs are used to establish connections
to web APIs.
Mitigation: HTTPS instead of HTTP URLs must be used
for any web communication.

B. Server-side

For every collected API in our dataset, we accessed the
corresponding web server and stored the response. We were
particularly interested in information such as operating sys-
tem identifiers, used software modules, and version numbers,
which we could initially identify during the manual analysis
of a sample of the server responses. We then crafted a number
of search queries to detect occurrences of such features and
applied them to our dataset.

We have identified five server-side web API security code
smells.

• Disclosure of API implementation code. Error messages
provide valuable information regarding the implementa-
tion of a running system. We found web APIs that leak
internal error states and use status codes in a different
way than what is specified by the RFC7231.9,10

Issue: Error messages that include the relevant stack
trace are transmitted as plain text in the server’s message
response body. Such a message reveals information like
the used method names, line numbers, and file paths dis-
closing the internal file system structure and configuration
of the server.
Consequently, adversaries can obtain detailed information
about the service implementation, which may lead to an
exploit.
Symptom: When an invalid request is received, a server
responds with a detailed error message containing infor-
mation that is not required by any user of the API.
Mitigation: If the used framework provides an option to
turn off diagnostic or debug messages: this feature should
be used. Otherwise, an API gateway in between the client
and the server should filter such responses and deliver
regular HTTP 500 messages to the client instead.

• Disclosure of version information. Besides useful con-
nection parameters, HTTP headers provide information
regarding the software architecture and configuration of
a running system. We spotted in the reported HTTP
headers version information of web server daemons and
API implementation frameworks.
Issue: We encountered outdated software that suf-
fers from severe security vulnerabilities. For instance,
we observed a server that returned X-Powered-By:
PHP/5.5.23 in the response header. This PHP version
is at the time of writing more than 6 years old, and a quick
search in the Common Vulnerabilities and Exposures
(CVE) database showed that this framework suffers from
69 known security vulnerabilities, six of which received
the most severe impact score of 10.11

Consequently, the vulnerabilities range from simple DoS
attacks, access control bypassing, and cross-site scripting

9https://tools.ietf.org/html/rfc7231
10Although HTTP servers should reply with the status code 200 to indicate

a successful request, we noticed that some servers use this status code when
an error has occurred.

11https://www.cvedetails.com/vulnerability-list/vendor id-74/product
id-128/version id-183021/PHP-PHP-5.5.23.html

to arbitrary code execution on the server.
Symptom: One of the following header keys ex-
ists in the response header: engine, server,
x-aspnet-version, or x-powered-by.
Mitigation: If the used software provides an option to
turn off the publishing of version information: this feature
should be used. Otherwise, an API gateway in between
the client and the server should remove the affected keys
and deliver messages with sanitized HTTP headers to the
client instead.

• Lack of access control. Authentication by a user name
and a password provides tailored experiences to end
users, e.g., individual chat logs or friend lists, and at the
same time enables access control to separate and protect
sensitive user data.
Issue: The access to sensitive data or actions is not
restricted by a sane authentication mechanism such as
a user name and password pair, instead, easy-to-forge
identifiers or no identification data at all are used to
secure the access. We found several APIs that did not use
any authentication or authorization mechanisms, although
they host sensitive data, e.g., for car rental services and
accounting. In one app we found code to access an
exposed SQL database interface.
Consequently, every internet user can access sensitive
data or perform unauthorized actions including the read-
ing, modification, and deletion of arbitrary user data. We
could access information from such APIs, e.g., real-time
location data of rental cars and transaction histories on
different bank accounts. In one case, we were also able
to create new users in the system. Exposing database
or other interpreter interfaces with broken authentication
allows adversaries to execute arbitrary statements on the
server.
Symptom: A web API server hosts sensitive data or
provides actions which would require elevated access
rights. The server responds without asking for any lo-
gin information, that is, no HTTP headers or keys re-
lated to personal information are used in the API, e.g.,
username, password, or pw. The server requires
query keys with names of programming languages, e.g.,
sql, and responds when such variables hold a statement
in that language, e.g., SELECT table_name FROM
all_tables;. The decision finding of data sensitivity
or elevated actions is non-trivial and involves manual rea-
soning [11]. Therefore, we cannot infer general purpose
terms.
Mitigation: Application architects have to implement au-
thentication, favorably multi-factor authentication, when-
ever sensitive data or elevated operations are involved in
the process. All user data, and location data in general,
have to be considered as sensitive. Developers should
never expose interpreter interfaces to a web service
without prior authentication and input validation. REST
interfaces for specific tasks should be created, preferably
each using static statements that do not rely on any user

https://tools.ietf.org/html/rfc7231
https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/version_id-183021/PHP-PHP-5.5.23.html
https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/version_id-183021/PHP-PHP-5.5.23.html

input.
• Missing HTTPS redirects. In contrast to HTTPS, HTTP

does not provide any security: neither the URL, nor the
header information and embedded content are encrypted.
We found servers that do not redirect the clients to
encrypted connections although they would have been
supported.
Issue: Web API servers do not redirect incoming HTTP
connections to HTTPS when legacy apps try to connect,
or users manually configure a URL without adding a
proper https:// prefix.
Consequently, the transmitted data remains visible and
changeable to anyone within the communication path.
Symptom: For an HTTP web API request, a server does
not deliver an HTTP 3xx redirect message which points
to the corresponding HTTPS implementation of the web
API.
Mitigation: A server should not offer legacy HTTP ser-
vices. If they are still required due to legacy clients with
hardcoded HTTP URLs, redirects should be provided to
guide all clients to the secure version.

• Missing HSTS. HTTP header information is used
to properly set up the connection by specifying
various communication parameters, e.g., the acceptable
languages, the used compression, or the enforcement
of HTTPS for future connection attempts, a feature
which is called HTTP Strict Transport Security (HSTS).
HSTS provides protection against HTTPS to HTTP
downgrading attacks, i.e., when a user once accessed
a web resource in a secure environment (at home or
work), the client knows that the resource needs to be
accessed only through HTTPS. If this is not possible,
e.g., at an airport at which an attacker tries to perform
MITM attacks, the client will display a connection
error. Hence, HSTS should be used in combination with
HTTP to HTTPS redirects, because the HSTS header
is only considered to be valid when sent over HTTPS
connections. We found servers that do not enforce clients
to remain on the secure channel for future requests.
Issue: Servers do not leverage the HSTS feature.
Consequently, in unprotected public networks or
networks under external supervision, if an attacker sets
up a fake gateway which runs SSLsniff,12 the provided
services remain vulnerable, because transmitted data is
visible and changeable.
Symptom: A server does not deliver the HTTP
HSTS header Strict-Transport-Security:
max-age=31536000; includeSubDomains for
an HTTPS request.
Mitigation: In combination with HTTP to HTTPS
redirects, the HSTS header should be used in all HTTPS
connections.

12https://github.com/moxie0/sslsniff

V. THREATS TO VALIDITY

The main threat to validity is the completeness of this study,
i.e., it is not guaranteed that we found all major libraries used
for web communication in Android apps.

There may be bias in the apps that we selected for this study.
We included all open-source apps that were available on F-
Droid, but they may not be representative of the whole open-
source app community. We collected random closed-source
apps that were freely available on the Google Play store, but
paid apps or the apps on third-party stores may have different
characteristics.

We only mined web APIs that were available in the source
code; our tool suffers from the inherent limitations which come
with static source code analysis. We developed a lightweight
analysis, which is not path sensitive. We opted for this
design because, during manual inspection of network APIs
in the apps, we noticed that these APIs are usually free of
conditional statements and loops. Furthermore, we had to
decompile closed-source apps for analysis, which introduces
further threats to the validity of our results. For instance,
the app code and its library code are not easy to discern
automatically, and therefore the libraries in such apps may
have influenced our findings.

We did not evaluate how complete the tool results are for
every app, but just a small number. There is a threat to
construct validity through potential bias in our expectancy.
However, we examined the tool results for 50 apps, and
confirmed that 90% led to successful communication with the
web APIs.

VI. RELATED WORK

In previous work, we defined the notion of security code
smells and investigated their appearance in 46 000 closed-
source Android apps from the official market [6]. We identified
28 different security smells in five different categories, and
found that XSS-like Code Injection, Dynamic Code Loading,
and Custom Scheme Channel are the most prevalent smells.
In a follow-up work, we studied the prevalence of Inter-
Component Communication (ICC)-related security smells in
more than 700 open-source apps, and manually inspected
around 15% of the apps to assess the extent to which identi-
fying such smells uncovers ICC security vulnerabilities [12].
We found that almost all apps suffer from the Common
Task Affinity smell, and that Unauthorized Intent and Custom
Scheme Channel are prevalent among mobile apps. Further-
more, we discovered that updates rarely have any impact on
ICC security, however, in case they do, they often correspond
to new app features. The manual investigation of 100 apps
showed that our tool successfully found many different ICC
security code smells, and about 43% of them in fact represent
vulnerabilities.

Zhou et al. harvested free email and Amazon AWS cloud
service credentials with their tool CredMiner from more than
36 500 apps from various Android markets [2]. In their case
studies, they mention unprotected credentials within the app’s
source code, obfuscated credentials using a Base64 encoding,

https://github.com/moxie0/sslsniff

and encrypted credentials, however, in those cases the decryp-
tion key has also been found in the app’s source code. They
alarmingly found that more than every second app using such
a service leaked the developers’ credentials in the apps’ source
code. Making matters worse, more than 77% of those collected
credentials were valid at the time of the experiment. Such
credentials will present a massive threat in the mid-term future,
as many of those credentials cannot be easily replaced without
temporarily abating the experience of millions of users, but in
the meantime they can be easily exploited by attackers.

Rapoport et al. studied web requests in Android apps [1].
They demonstrated that a large number of web requests are
not immediately traceable to source code and need dynamic
analysis. For instance, URLs may originate in app resources,
e.g., XML files or Gradle build scripts, they may stem from
the content received from previous web requests, or they might
be assembled by JavaScript code at run time. In contrast, a
significant proportion of URLs are only detected by static anal-
ysis: the dynamic analysis may simply fail to produce desired
results due to a lack of code coverage during instrumentation.

Zuo et al. analyzed 5 000 top-ranked apps in Google Play
and identified 297 780 URLs [3]. They fed the URLs to a
harmful URL detection service at VirusTotal, and found 8 634
harmful URLs. The harmful URLs have been classified into
three different non-distinct threat categories: phishing (23%),
malicious sites (37%), and malware (43%). For the malware
category, one interesting example they mention is an APK
file download triggered by an app, which itself tries to obtain
superuser access to the device by exploiting Linux kernel
vulnerabilities.

Mendoza et al. studied the inconsistencies in input val-
idation logic between apps and their respective web API
services [5]. They developed a tool to extract requests to web
API services from an app, and to infer sample input values
that violate the implemented constraints found in the app,
such as email address or JSON content validation executed
on the client side. They then analyzed app-violating request
logic on the server side via black box testing. From a set of
10 000 popular Android apps, they found 4 000 apps that do
not properly implement input validation for web API services.
Investigation of web API hijacking vulnerabilities in 1 000
apps showed that the security and privacy of millions of users
are at risk.

In summary, we could not find any publicly available tool
that researchers can use to study web APIs. Also, existing
work usually focused on the use of java.net APIs, and did
not study several third-party libraries to implement network
communication in Android apps. Finally, to the best of our
knowledge, dissecting the distribution of elements that com-
prise the web APIs, and the use of embedded languages, is
never studied.

VII. CONCLUSION

We manually reviewed 160 Android apps to compile a
list of commonly used network and data conversion libraries
and to learn how they are used in these apps. Based on our

findings, we developed a lightweight static analysis tool that
identifies network-related APIs, and extracts communication
information such as the web APIs, and the associated JSON
headers. With the help of our tool we successfully analyzed
the network-related information within 450 closed-source and
open-source apps. We found that in both open-source and
closed-source apps network communication is mainly devel-
oped using java.net classes. Amongst the third-party libraries
we found that OkHttp and Retrofit are used the most. By far
the most used value type in JSON data is STRING.

We realized that closed-source apps substantially rely on ad-
vertisement services, and that they tend to have more complex
URL paths consisting of more path segments. Surprisingly, the
secure HTTPS protocol is used in the majority of extracted
web APIs from open-source applications, but the opposite
is true for closed-source apps. Obviously, when embedded
languages are used along with manual string concatenations,
the attack surface for code-injection attacks increases. Nev-
ertheless, we could identify numerous such cases during the
manual examination of the web APIs, i.e., embedded SQL and
JavaScript content was rather common within web communi-
cations. Even worse, we found many more issues on the server-
side: unnecessary disclosure of server configurations, outdated
web servers and language interpreters with known security
vulnerabilities, leaks of internal error messages, and other
sensitive data. Finally, we also found private APIs without
any kind of authentication or authorization mechanisms.

We conclude that a lightweight static code analysis is very
helpful in mining web APIs, and that the impact of embedded
code in web API requests and the hardening of servers has
been deeply underestimated.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assistance” (SNSF project No. 200020-181973, Feb.
1, 2019 - April 30, 2022). We also thank CHOOSE, the Swiss
Group for Original and Outside-the-box Software Engineering
of the Swiss Informatics Society, for its financial contribution
to the presentation of this paper.

REFERENCES

[1] M. Rapoport, P. Suter, E. Wittern, O. Lhótak, and J. Dolby, “Who
you gonna call?: Analyzing web requests in Android applications,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 80–90. [Online]. Available: https://doi.org/10.1109/MSR.2017.11

[2] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in Android apps,” in WISEC, 2015.

[3] C. Zuo and Z. Lin, “Smartgen: Exposing server URLs of mobile
apps with selective symbolic execution,” in Proceedings of the 26th
International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2017, pp. 867–876. [Online].
Available: https://doi.org/10.1145/3038912.3052609

[4] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Riley, “Are
these ads safe: Detecting hidden attacks through the mobile app-web
interfaces,” in NDSS, 2016.

[5] A. Mendoza and G. Gu, “Mobile application web API reconnaissance:
Web-to-mobile inconsistencies & vulnerabilities,” in 2018 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2018, pp. 756–769.

https://doi.org/10.1109/MSR.2017.11
https://doi.org/10.1145/3038912.3052609

[6] M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in Android,”
in 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM), Sept 2017, pp. 121–130.

[7] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. ACM, 2018, pp. 176–186. [Online].
Available: http://doi.acm.org/10.1145/3213846.3213873

[8] F. Pauck, E. Bodden, and H. Wehrheim, “Do Android taint analysis
tools keep their promises?” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018, 2018, pp. 331–341. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236029

[9] C. Corrodi, T. Spring, M. Ghafari, and O. Nierstrasz, “Idea:

Benchmarking Android data leak detection tools,” in Engineering
Secure Software and Systems, M. Payer, A. Rashid, and J. M. Such,
Eds. Cham: Springer International Publishing, 2018, pp. 116–123.
[Online]. Available: http://scg.unibe.ch/archive/papers/Corr18a.pdf

[10] W. E. Winkler and Y. Thibaudeau, An application of the Fellegi-Sunter
model of record linkage to the 1990 US decennial census. Citeseer,
1991.

[11] G. O. M. Yee, “Model for reducing risks to private or sensitive data,” in
Proceedings of the 9th International Workshop on Modelling in Software
Engineering, ser. MISE ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 19–25. [Online]. Available: https://doi.org/10.1109/MiSE.2017..6

[12] P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz, “Security
code smells in Android ICC,” Empirical Software Engineering Special
Issue, 2018.

http://doi.acm.org/10.1145/3213846.3213873
http://doi.acm.org/10.1145/3236024.3236029
http://scg.unibe.ch/archive/papers/Corr18a.pdf
https://doi.org/10.1109/MiSE.2017..6

	I Introduction
	II Web API Mining
	II-A Library Inspection
	II-B API Miner
	II-B1 Decompilation
	II-B2 Detection and Extraction
	II-B3 Reconstruction
	II-B4 Evaluation

	II-C Security Checks

	III Study Result
	III-A Communication Libraries
	III-A1 Result
	III-A2 Discussion

	III-B The Nature of Web API Requests
	III-B1 Open-source Apps
	III-B2 Closed-source Apps
	III-B3 Discussion

	III-C Security Risks
	III-C1 Open-source Apps
	III-C2 Closed-source Apps
	III-C3 Discussion

	IV Web API Security Smells
	IV-A Client-side
	IV-B Server-side

	V Threats to Validity
	VI Related Work
	VII Conclusion
	References

