
Energy Refactorings for Android in the Large and
in the Wild

Marco Couto
HASLab/INESC TEC

Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

João Saraiva
HASLab/INESC TEC

Universidade do Minho, Portugal
saraiva@di.uminho.pt

João Paulo Fernandes
CISUC

Universidade de Coimbra, Portugal
jpf@dei.uc.pt

Abstract—Improving the energy efficiency of mobile applica-
tions is a timely goal, as it can contribute to increase a device’s
usage time, which most often is powered by batteries. Recent
studies have provided empirical evidence that refactoring energy-
greedy code patterns can in fact reduce the energy consumed
by an application. These studies, however, tested the impact of
refactoring patterns individually, often locally (e.g., by measuring
method-level gains) and using a small set of applications.

We studied the application-level impact of refactorings, com-
paring individual refactorings, among themselves and against
the combinations on which they appear. We use scenarios that
simulate realistic application usage on a large-scale repository
of Android applications. To fully automate the detection and
refactoring procedure, as well as the execution of test cases, we
developed a publicly available tool called Chimera.

Our findings include statistical evidence that i) individual
refactorings produce consistent gains, but with different impacts,
ii) combining as much refactorings as possible most often, but
not always, increases energy savings when compared to individual
refactorings, and iii) a few combinations are harmful to energy
savings, as they can actually produce more losses than gains.

We prepared a set of guidelines for developers to follow, aiding
them on deciding how to refactor and consistently reduce energy.
Index Terms—Android, Energy, Code Patterns, Refactorings

I. INTRODUCTION

Mobile devices such as smartphones or tablets are pervasive

in our personal and professional activities, which is actually

drawing significant attention for them to be energy efficient.

Indeed, consumer satisfaction regarding a smartphone is highly

dependent on its battery uptime [1]. For developers, battery

uptime is also crucial, as abnormal drainage frequently justifies

bad reviews in app stores [2]. Finally, the amounts of energy

spent by mobile devices are heavily affecting sustainability [3].

In the context of Android - the largest mobile ecosystem

- several works have focused on documenting energy-greedy

programming patterns and on finding better alternatives for

them. In fact, identifying and refactoring such code patterns to

improve energy consumption has already presented promising

research results [4]–[13]. These results, however, have essen-

tially been validated by testing code patterns individually and

often in a small set of applications (sometimes only in one).

In this paper, we consider 11 energy-greedy code patterns

obtained from the literature, described in detail in Section III.

We conduct a study over a large-scale repository of 600+ An-

droid applications to understand the frequency of occurrence

of such patterns. Within the 200+ applications where the pat-

terns were detected, we studied the impact that replacing them,

individually and combined, by their documented alternatives

has on the energy consumption. Moreover, as we consider

all the possible combinations of the individual patterns, this

resulted in 400+ refactored applications under analysis.

To perform our study, we developed an extensible, fully au-

tomated framework called Chimera, which is able to detect and

refactor the patterns. Each pattern is considered individually

and is also combined with all the other patterns. Chimera also

measures the energy consumed by an application in different

simulated usage scenarios, before and after refactoring.

In summary, the main contributions of this work are:

1) An analysis of how energy-greedy patterns proposed in

the literature are distributed over a large-scale repository of

Android applications. This is described in Sections IV and V;

2) A reusable prototype of a pattern-oriented testing frame-

work (Chimera), described in Section VI-B, for the detection,

filtering, and refactoring of patterns in Android applications;

it can also run a set of usage scenarios on such applications,

while collecting metrics such as energy consumption;

3) An empirical study, described in Section VI, to assess the

energy impact of applying refactorings. We analyze, for each

code pattern and combination of patterns, the test results for

the Android applications on which they occur, and compare

the obtained gains between each pattern/combination.

Using the results of the empirical study referred in 3), we

aim at answering the following research questions:

• RQ1: Do refactorings consistently lead to energy savings?
• RQ2: Do all individual refactorings lead to energy savings

of the same magnitude?
• RQ3: What are the refactorings that, individually or when

combined, produce the higher energy savings?
• RQ4: When refactoring for energy efficiency, what approach

should developers follow?

In line with the literature, our findings confirm (in the large

and in the wild) that refactorings consistently lead to energy

improvements. Complementary, we have found statistical evi-

dence that combining refactorings can produce higher energy

savings, although in a few cases we discovered the opposite.

As a final contribution of our work, we present a set of guide-

lines that developers can follow when aiming at refactoring

978-1-7281-5143-4/20/$31.00 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

217

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

their applications to consistently improve their energy effi-

ciency. All the study subjects, artifacts and results used and/or

produced in our work are available in an online appendix1.

The remaining sections of the paper are organized as fol-

lows: Section II describes related work; Section V-B discusses

the technique used for automatically refactoring energy-greedy

patterns; Section VII discusses threats to the validity of our

study; Section VIII presents our conclusions and future work.

II. RELATED WORK

Profiling, analyzing and improving the energy efficiency of

software has become a very broad and prolific research area.

With the increasing interest of developers in the subject [14],

the extent of research works covers a wide variety of subjects,

such as the energy impact of choosing different data struc-

tures [15]–[18], or languages [19], [20], how to model and

even predict the energy consumption [21]–[23] or even point

out energy leaks in the source code [24]. The energy impact of

memoization [25], design patterns [26], code refactoring [27],

[28], and even the testing phase [29], were also explored.

In the Android ecosystem, energy analysis has been also

widely explored. In this context, several energy profilers have

been proposed which operate at different program levels:

PowerTutor [30] and eProf [31] at the application level, while

eCalc [32] and vLens [33] at the byte code instruction and

source line levels, respectively. To monitor energy consump-

tion, however, these either require a device-dependent energy

consumption model or an external measurement tool. Hence,

in our work we used the Trepn tool, which can accurately

be used on several Qualcomm-based Android devices [34]

to profile energy consumption at the application level. This

choice serves our intention of creating a framework that can

work with as many devices as possible. Moreover, Trepn has

been used in other energy-related research works [35]–[37].

Energy-related research in Android extends beyond the

scope of profilers. Some works focused on classifying An-

droid applications as being more/less energy efficient [35],

by detecting well-known energy greedy APIs in the Android

framework [12] using static analysis; others presented tech-

niques to estimate energy consumption of code fragments

such as methods [37], [38], and used that information to

identify potential energy issues. Nevertheless, understanding

how different programming strategies influence the energy

consumption in Android is most likely the most explored

subject in this area in the past decade [4]–[11], [39]–[41].

In [11] and [9], the authors focused on using static analysis

to detect code patterns related to an energy inefficient use of

resources, such as display or camera. Li et al. [10] proved that

high memory usage, avoidable methods calls, and bundling of

HTTP requests can potentially affect energy consumption.

Cruz et al. [8] studied how individually refactoring 5

performance-greedy code patterns reflects on the energy con-

sumption of 6 real applications, concluding that in fact the

1Online appendix URL: http://marcocouto.gitlab.io/android-egaps

refactorings produced energy savings; a tool was later devel-

oped to automatically refactor the patterns [6]. Carette et al. [7]

did a similar study with 3 other patterns, which were analyzed

individually and all together, in 5 different applications; the

refactoring process is also automatic, and the authors reached

similar conclusions: in the context on which the patterns were

tested, the refactoring reduced the energy consumption.

The experiments performed in these studies were conducted

over a small set of applications, hence the conclusions cannot

be entirely generalized. Taking this into consideration, two

works performed large-scale studies using different code pat-

terns [4], [5]. In [4], the authors analyzed the energy impact

of refactoring 9 patterns individually. Using a previously

developed tool [42] to detect the patterns in 60 Android

applications, they compared the energy consumed by methods

containing each pattern before and after performing a man-

ual refactoring. Identically, 5 object-oriented and 3 Android

specific patterns were studied in [5], individually and over 20

applications, but with the goal of combining code quality with

energy consumption when proposing refactorings.

All of the aforementioned works studied several patterns,

yet no study has considered all patterns at once. Also, the

patterns were analyzed under different conditions, and using

different measurement tools/devices and whenever a large-

scale study was conducted, the refactorings were performed

manually. Finally, most works analyze the energy impact of

the considered patterns individually, even though such patterns

can occur simultaneously in the applications used for testing.

It is our strong belief that, with our work, we addressed all

these issues. All code patterns for which the energy impact

was already studied in Android were considered, and we

provide an approach for automatic detecting and refactoring

them. Our results include the energy impact of refactorings

in several applications, both when applied alone and when

combined with others. Such results were obtained from a large-

scale study, where every test was conducted under the same

conditions, using the same energy profiling tool.

A few of the patterns proposed in the past were excluded

from our study. This was due to the fact that refactoring such

patterns could not be done automatically, since it depends

on their application context. For instance, in [5] the pattern

Long Parameter List describes methods that have a long list of

parameters, and the refactoring strategy consists of replacing

the parameters with an object which includes all of them

as instance variables; this implies the refactoring strategy

should transform the method, but also look for every scenario

and context on which the method is used and transform it

accordingly, which, to be done automatically, is infeasible.

III. EGAPS - ENERGY GREEDY ANDROID PATTERNS

We have searched the literature for code patterns which have

been tested for Android and that have proven to be energy in-

efficient; by an energy-inefficient pattern we mean a pattern for

which an alternative exists, one that preserves the application’s

functionality, while consuming less energy. We have found 9

218

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

independent works that identify 11 energy-inefficient patterns

and that propose alternatives for them [4]–[11], [41].
In the context of our work, and in its description in this

paper, we shall refer to such a pattern as “Energy Greedy

Android Pattern”, or EGAP.
In this section, we include a brief description of every EGAP

we found, where for each one we indicate which research

work(s) detected the pattern, while explaining what makes it

energy greedy, what is the suggested alternative for it, and

why such alternative consumes less energy.

A. EGAP #1 - Draw Allocation

This is the first of five EGAPs whose energy impact

analysis was included in [6], [8]. The authors aimed at

understanding how fixing code patterns detected by An-

droid lint2 can improve energy efficiency. Lint’s issues are

divided into categories, such as Performance or Security.

Draw Allocation, as well as the EGAPs described in

Sections III-B, III-C, III-D, and III-E, is a Performance issue.
Draw Allocation occurs when new objects are allo-

cated along with draw operations, which are very sensitive

to performance. In other words, it is a bad practice to create

objects inside the onDraw method of a class which extends a

View Android component, as we see in the following snippet:
public class CloudMoonView extends View {
@Override
protected void onDraw(Canvas canvas) {
RectF rectF1 = new RectF(); �
...
if(!clockwise) {

rectF1.set(X2-r, Y2-r, X2+r, Y2+r);
...

} }

The recommended alternative for this EGAP, as of [6], [8],

is to move the allocation of independent objects outside the

method, turning it into a static variable, as shown next:
public class CloudMoonView extends View {
RectF rectF1 = new RectF(); �
@Override
protected void onDraw(Canvas canvas) {
...
if(!clockwise) {

rectF1.set(X2-r, Y2-r, X2+r, Y2+r);
...

} }

B. EGAP #2 - Wakelock
Wakelock is the second Android lint performance is-

sue [4], [6], [8], [11]. Basically, lint detects whenever a wake

lock, a mechanism to control the power state of the device and

prevent the screen from turning off, is not properly released,

or is used when it is not necessary.
The following snippet shows an example of a wake lock

being acquired, but not released when the activity pauses.
public class DMFSetTempo extends Fragment {
PowerManager.WakeLock wakeLock;

public void onClickBtStart(View view) {
wakelock.acquire(); �

}

@Override()
public void onPause() { super.onPause(); � }
}

}

2Lint is a code analysis tool, provided by the Android SDK, which
reports upon finding issues related with the code structural quality. Website:
developer.android.com/studio/write/lint

The alternative here would be to simply add a release
instruction as shown next:

public class DMFSetTempo extends Fragment {
PowerManager.WakeLock wakeLock;

public void onClickBtStart(View view) {
wakelock.acquire(); �

}

@Override()
public void onPause() {

super.onPause();
if (wakeLock.isHeld()) wakeLock.release(); �

}
}

C. EGAP #3 - Recycle

Recycle is another Android lint performance issue [6],

[8]. It detects when some collections or database related ob-

jects, such as TypedArrays or Cursors, are not recycled

nor closed after being used. When this happens, other objects

of the same type cannot efficiently use the same resources.

The following snippet shows a Cursor instance being used

without being recycled:

public Summoner getSummoner(int id) {
SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.query(TABLE_FAV, new String[] { ... };
...
return summoner; �

}

The alternative in this case would be to include a close
method call before the method’s return:

public Summoner getSummoner(int id) {
SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.query(TABLE_FAV, new String[] { ... };
...
c.close(); �
return summoner;

}

D. EGAP #4 - Obsolete Layout Parameter

The fourth Android lint performance issue [6], [8],

Obsolete Layout Parameter, is the only one that is

not Java-related. The view layouts in Android are specified

using XML, and they tend to suffer several updates. As a

consequence, some parameters that have no effect in the

view may still remain in the code, which causes excessive

processing at runtime. The alternative is to parse the XML
syntax tree and remove these useless parameters.

The next snippet shows an example of a view component

with parameters that can be removed:

<TextView android:id="@+id/centertext"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="remote files"
layout_centerVertical="true" �
layout_alignParentRight="true"> �

</TextView>

E. EGAP #5 - View Holder

View Holder is the last Android lint performance is-

sue [6], [8], whose alternative intends to make a smoother

scroll in List Views. The process of drawing all items in a

List View is costly, since they need to be drawn separately.

However, it is possible to make this more efficient by reusing

data from already drawn items, which reduces the number of

calls to findViewById(), known to be energy greedy [12].

219

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

In order to better describe this EGAP, we introduce the

following snippet:

public View getView(int pos, View cView, ViewGroup par) {
LayoutInflater inflater = (LayoutInflater) context
.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

cView = inflater.inflate(R.layout.apps, par, false);
TextView txt=(TextView) cView.findViewById(R.id.label); �
ImageView img=(ImageView) cView.findViewById(R.id.logo);�
return row;

}

Every time getView() is called, the system searches on

all the view components for both the TextView with the

id “label” (�) and the ImageView with the id “logo” (�),

using the energy greedy method findViewById(). The

alternative version is to cache the desired view components,

with the following approach:

static class ViewHolderItem {
TextView txtView; ImageView imgView;

}

public View getView(int pos, View cView, ViewGroup par) {
ViewHolderItem hld; LayoutInflater inflater = ...

if (cView == null) { �
cView = inflater.inflate(...);
hld = new ViewHolderItem();
hld.txtView = (TextView) cView.findViewById(...); �
hld.imgView = (ImageView) cView.findViewById(...); �
cView.setTag(hld);

} else {
hld = (ViewHolderItem) cView.getTag(); 	

}
TextView txt = hld.txtView; ImageView img = hld.imgView;
...

}

Condition � evaluates to true only once, which means

instructions � and � execute once, i.e., findViewById()
executes twice, and its results are stored in the

ViewHolderItem instance. The following calls to

getView() will use cached values for the view components

txt and img ().

F. EGAP #6 - HashMap Usage

This EGAP is related to the usage of the HashMap collec-

tion [4], [5], [7], [41]. In fact, as stated in the Android docu-

mentation page, the usage of HashMap is discouraged, since

the alternative ArrayMap is allegedly more energy-efficient,

without decreasing the performance of map operations3.

The alternative is to simply replace the type HashMap,

whenever it is used, with ArrayMap.

G. EGAP #7 - Excessive Method Calls

Unnecessarily calling a method can penalize performance,

since a call usually involves pushing arguments to the call

stack, storing the return value in the appropriate processor’s

register, and cleaning the stack afterwards. This penalty was

explored by [7], [10], showing that the energy consumption in

Android applications can be decreased by removing method

calls inside loops that can be extracted from them. An example

of an extractable method call would be one which receives no

arguments, and is accessed by an object that is not altered in

any way inside the loop.

The alternative is to replace the method call by a variable

that is declared outside the loop, and is initialized with the

return value of the method call extracted.

3ArrayMap documentation: http://bit.ly/32hK0y9.

H. EGAP #8 - Member Ignoring Method

This EGAP addresses the issue of having a non-static

method inside a class, and which could be static instead [4],

[7], i.e., it does not access any class fields, it does not directly

invoke non-static methods, and it is not an overriding method.

Static methods are stored in a memory block separated from

where objects are stored, and no matter how many class

instances are created throughout the program’s execution, only

an instance of such method will be created and used. This

mechanism helps in reducing energy consumption.

I. EGAPs #9, #10 & #11 - Resource Leak

Resource Leak [9], [11] simultaneously refers to three

EGAPs which are all particular cases of Wakelock, where

a system resource is not properly released. Here, we consider

the Sensor, Camera, and Media resources, which differ from

Wakelock in the way resources are released. Since improving

EGAPs on different resources can produce different energy

gains, we decided to separate EGAPs #2 from #9, #10 & #11.

IV. THE ANDROID APPLICATION REPOSITORY

In order to study the practical impact of replacing energy

greedy patterns with their documented alternatives, a large-

scale repository of Android applications from the real world

was deemed necessary.

During our research, we came across large repositories

of open-source Android applications such as the F-Droid

catalogue4. However, using them in the context of our work

would require additional effort in collecting the applications’

source code: we would have to collect, for each application,

the available information, parse it to find the source repository

(which can be stored in different platforms, such as GitHub or

GitLab), and download it. This additional step would be time

consuming, and we wanted to avoid it.

Therefore, we followed an alternative approach to obtain a

representative set of Android applications: we have taken the

MUSE repository [43], [44] as a starting point for our work.

MUSE5 is a repository of Java projects, collected from

public repositories contained in well known source code

platforms, such as GitHub, Bitbucket or Apache. In addition to

the projects’ source code collection, MUSE has an associated

database where, for each project, information regarding its

source code is also available. For example, it is possible to

know how many files each project has, what import statements

are used and what classes are declared in each file, what

methods and variables are declared in each class, and so on.

Since Android applications are mainly Java projects, we

were able to query MUSE and search for projects containing

Android API components. The filtering strategy was to look

at the import statements of each project. If there were any

Android API imports, then it was and Android application

project. We were able to obtain 609 buildable and executable

Android projects, that we take as study subjects in this work.

4F-Droid webpage: f-droid.org.
5MUSE webpage: https://muse-portal.net/.

220

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

In order to better understand the dimension of the Android

projects repository, we computed, for each one of the 609

Android projects, the number of lines of code, Java files, XML

files, classes, and methods. The results of this analysis are

summarized in Table I where we include, for each metric, the

maximum, minimum and average values.

TABLE I
APPLICATIONS REPOSITORY METRICS

Java Files XML Files Classes Methods LOC
Min 2 1 2 1 22
Max 3,492 4,929 4,267 39,511 668,085
Average 73 407 65 524 10,822
TOTAL 44,959 248,385 39,926 319,636 6,590,636

V. AUTOMATIC EGAP DETECTION AND

TRANSFORMATION ON ANDROID SOURCE CODE

In this section, we describe the methodology used for

detecting and transforming the patterns described in Sec-

tion III, in the large-scale repository of Android applications

described in Section IV. We start by explaining the techniques

used to detect EGAPs in all the applications, and how we

process the output from this analysis (Section V-A). Next, we

present our approach for the automatic transformation of such

patterns, along with a discussion regarding its applicability

(Section V-B). Finally, we study how individual and combined

EGAPs are distributed in the analyzed applications, and we

present the final list of (individual and combined) EGAPs that

we managed to analyze in this paper (Section V-C).

A. Detection Methodology

Detecting a pattern in the source code of an Android appli-

cation can be achieved by: i) parsing it into an abstract syntax

tree (AST), ii) traversing through such AST, and iii) reporting

where the pattern is found. These steps have already been

abstracted within the lint tool which allows the possibility of

creating rules for the detection of such patterns6.

In fact, lint already includes rules which allow the detection

of EGAPs #1 - #5. So, we needed to create custom rules

for the detection of the remaining 6 EGAPs. Furthermore,

the lint tool enables the selection of which rules to apply,

which allowed us to consider the detection of “our” 11 EGAPs

only, avoiding further analysis. Finally, it also contains a built-

in report system which automatically produces an XML file

indicating where a pattern is found in the code.

Defining a custom lint rule consists of creating a class where

we first define a set of properties, such as the rule description,

category, or severity. Along with such properties, we must

define the rule’s workflow: what AST node types must be

analyzed, what to do before/after traversing through the AST,

and most importantly what visitor to use in each traversal.

A visitor goes through the AST in a bottom-up approach,

running the respective visit method when it finds a node

signaled as analyzable. All the EGAP-related properties are

6More information can be found here: http://bit.ly/2Mh7aPF.

inferred in visit methods; when an EGAP is found we use the

built-in report system to store its location. The next snippet

shows how we implemented one such method, namely to

detect the HashMapUsage EGAP, and that reports when a

method variable is declared with the HashMap type:

private void checkAndReport(PsiVariable var) {
if (var.getType() == null) return;
String varType = var.getType().getCanonicalText();
PsiExpression init = var.getInitializer();

if (varType.startsWith(mHashMapClass)) {
Reporter.reportIssue(mContext, ISSUE, var);

} else if (varType.startsWith(mMapClass)
&& init != null && init.getType() != null) {

String initTp = init.getType().getCanonicalText();
if (initTp.startsWith(mHashMapClass)) {
Reporter.reportIssue(mContext, ISSUE, var);

}
} }

Having at hand the custom rules for detecting all EGAPs,

we then ran the lint tool on each of the 609 considered

applications and collected the report files. The lint report

consists of a list of EGAP occurrences within an application,

with information regarding where in a file was the EGAP

found. For each application, we parsed the report file to find

which EGAPs were detected (and the number of occurrences).

We group and store this information in JSON format.

In order to validate the accuracy of our detection method-

ology, we used a set of sample applications where all the

patterns were manually injected, in all contexts on which they

can occur7. After lint analyzed them, we manually searched

for both false positives and negatives. We confirmed that all

patterns were properly detected, with no inconsistencies found.

B. Automatic Refactoring Approach

To automate the transformation of Android EGAPs, we

reused the AutoRefactor8 system: a well-known Java refac-

toring framework. This is an open-source Eclipse IDE plugin

and it supports refactoring of Android applications, which was

already used to refactor a small-set of energy-greedy Android

patterns [6], [45]. In AutoRefactor a refactor is concisely

defined as a set of source code transformation rules. Cruz et

al. [8] defined these rules to express refactorings for EGAPs

#1 - #5. We extend this work with transformation rules for

the remaining EGAPs, and we integrate all refactorings in the

command line interface (CLI) mechanism of Autorefactor.

Following the same approach as Cruz et al. [8], we designed

the transformations to be generic without compromising the

applications integrity. This means that although we detect all

EGAPs reported in the literature that may occur in an Android

application, it was not always possible to safely apply the

corresponding refactoring automatically. This happens when

the transformation does not preserve the semantics of the

pplication (e.g., in EGAP #6 when the constructor of a

HashMap receives a Map object, it is not possible to change

it into an ArrayMap, as the former has no such constructor).

We were able to detect at least one EGAP in 239 appli-

cations, and overall we detected 71 different combinations of

7For instance, for EGAP #6 we injected references to HashMap in variable
types, method arguments, cast expressions, and instance creation statements.

8AutoRefactor webpage: autorefactor.org.

221

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

EGAPs. Out of these 71, we were able to refactor, at least

in one application, 44 combinations, which then consist of

our (EGAP combination) study base. Overall, we obtained

416 different applications where at least one refactoring was

applied, which consist of our (application) study base9.

This represents a considerable larger study base than re-

ported in the literature.

C. Results and Discussion

Table II summarizes the results of the EGAP detection and

refactoring phases. The first column contains the total set

of combinations that were found in at least one application,

and the second column shows the number of applications on

which each combination was detected. Columns Max per app.
and Min per app. respectively show the highest and lowest

number of times that EGAPs in the combination were detected

in an application. For example, for combination [#1, #6], the

application in which the highest number of (#1+#6) EGAPs

were found totaled 5 occurrences (4 of EGAP #1 and 1 of

EGAP #6). Finally, column # Apps Refactored (%) shows

the success rate in refactoring that combination10.

TABLE II
RESULTS OF EGAP DETECTION AND REFACTOR PHASES

EGAP
Combination

#Apps
Detected

Max
per app.

Min
per app.

Refactored
apps (%)

[#1] 12 39 1 5 (41.7%)
[#2] 2 1 1 1 (50%)
[#3] 29 11 1 5 (17.2%)
[#4] 40 39 1 39 (97.5%)
[#5] 5 6 1 4 (80%)
[#6] 84 21 1 60 (71.4%)
[#7] 111 53 1 50 (45%)
[#8] 172 155 1 101 (58.7%)
[#1, #6] 5 [4, 1] [1, 1] 2 (40%)
[#1, #7] 5 [1, 8] [1, 1] 2 (40%)
[#1, #8] 7 [39, 5] [2, 2] 1 (14.2%)
[#3, #4] 5 [5, 3] [1, 1] 2 (40%)
[#3, #6] 17 [7, 21] [1, 1] 2 (11.8%)
[#3, #8] 20 [7, 155] [1, 1] 1 (5%)
[#4, #5] 2 [4, 1] [1, 2] 2 (100%)
[#4, #6] 17 [1, 20] [1, 1] 11 (64.7%)
[#4, #7] 20 [39, 4] [1, 1] 10 (50%)
[#4, #8] 26 [2, 30] [1, 1] 7 (26.9%)
[#5, #6] 3 [6, 4] [2, 1] 2 (66.6%)
[#5, #7] 3 [1, 8] [1, 1] 2 (66.6%)
[#5, #8] 3 [6, 8] [2, 6] 1 (33.3%)
[#6, #7] 47 [21, 53] [1, 1] 12 (25.5%)
[#6, #8] 62 [21, 155] [1, 1] 23 (37.1%)
[#7, #8] 76 [53, 155] [1, 1] 25 (32.8%)
[#1, #6, #7] 3 [3, 1, 5] [1, 1, 1] 1 (33.3%)
[#1, #6, #8] 4 [3, 1, 18] [1, 1, 3] 1 (25%)
[#1, #7, #8] 5 [3, 5, 18] [1, 1, 6] 2 (40%)
[#3, #4, #6] 4 [1, 1, 20] [5, 3, 2] 2 (50%)
[#4, #5, #6] 1 [4, 1, 6] [4, 1, 6] 1 (100%)
[#4, #5, #7] 2 [4, 1, 8] [1, 2, 4] 1 (50%)
[#4, #5, #8] 1 [4, 1, 10] [4, 1, 10] 1 (100%)
[#4, #6, #7] 13 [1, 20, 17] [1, 1, 1] 5 (38.5%)
[#4, #6, #8] 16 [1, 20, 18] [1, 1, 2] 7 (43.8%)
[#4, #7, #8] 16 [2, 12, 30] [1, 1, 2] 5 (31.2%)
[#5, #6, #7] 1 [1, 6, 8] [1, 6, 8] 1 (100%)
[#5, #6, #8] 3 [6, 4, 8] [2, 1, 6] 2 (66.6%)
[#5, #7, #8] 1 [1, 8, 10] [1, 8, 10] 1 (100%)
[#6, #7, #8] 40 [21, 53, 155] [1, 1, 1] 8 (20%)
[#1, #6, #7, #8] 3 [3, 1, 5, 18] [1, 1, 1, 6] 1 (33.3%)
[#4, #5, #6, #7] 1 [4, 1, 6, 8] [4, 1, 6, 8] 1 (100%)
[#4, #5, #6, #8] 1 [4, 1, 6, 10] [4, 1, 6, 10] 1 (100%)
[#4, #5, #7, #8] 1 [4, 1, 8, 10] [4, 1, 8, 10] 1 (100%)
[#4, #6, #7, #8] 12 [1, 20, 17, 18] [1, 1, 1, 2] 3 (25%)
[#4, #5, #6, #7, #8] 1 [4, 1, 6, 8, 10] [4, 1, 6, 8, 10] 1 (100%)

9Note that the same (original) application is being counted more than once,
in case more than one combination of EGAPs was actually applied to it.

10Combinations with a success rate of 0% are available in the supplemen-
tary material and were omitted due to space limitations.

From the set of 609 analyzed applications, we observed that:

1. EGAPs #9, #10 and #11 were not found in any application.

Despite their relevance described in the literature [9], [11], this

suggests that the contexts where they were found might not

be generally representative;

2. on 370 of them (≈ 60%) none of the 11 EGAPs were de-

tected. This suggests that there still might be room to propose

new energy greedy source code patterns or that potentially a

significant amount of application developers already follow the

best practices for energy efficient code;11

3. EGAPs #6, #7, and #8 are the most frequent, either

individually or combined. This might be related to the fact

that these three particular EGAPs are not exclusively related

with the Android API. Indeed, any Java application can use

an HashMap, and this seems to confirm that not declaring a

method as static when it is possible to do so, or unnecessarily

calling a method inside a loop (e.g., to improve readability), is

common. Nonetheless, it is important to notice that not only

Google itself suggests to avoid using the HashMap collection

for performance reasons, but it was also already proved that

this collection can not only be energy-greedy in Android

applications, but also in typical Java applications [17], [46].

VI. ANALYZING THE ENERGY IMPACT OF REFACTORING

EGAPS

The goal of our study is to understand the energy impact

of refactoring EGAPs. In this section, we explain the proce-

dure we followed: the tools and methodology used, the data

collected, and how it was used to reason about energy impact.

Fig. 1. Case Study Pipeline

A. Experimental Setup

Our experiments were performed in three factory-reseted

Nexus 5 mobile devices running Android 6.0.1. Energy con-

sumption data was obtained using the (same version of the)

Qualcomm Trepn profiler12, a profiling application that has

been used in several energy-related studies [35]–[37].

We divided the workload through all devices in a way that

all applications to be tested for each combination of EGAPs

(both before and after refactoring) are executed in the same

11In the latter case, note that developers may already request EGAPs #1 -
#5 to be automatically signaled upon the application build.

12Trepn webpage: developer.qualcomm.com/software/trepn-power-profiler.

222

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

device. This ensures not only that the comparison between the

different versions of the same application, but also the analysis

of the impact of one EGAP combination, are made using data

gathered from the same device.
During each test execution, the only applications running

were, aside from OS-related Android applications and ser-

vices, the application under test and Trepn (running as a

service, in background). Moreover, we kept all devices in

airplane mode and with minimum screen brightness, to reduce

as much as possible the measurement noise.
The EGAPs we considered can be found in different com-

ponents in an Android application (e.g., the Wakelock is

associated only with Activities, while the HashMap Usage
can occur anywhere in the application). Thus, we decided to

test the applications where the EGAPs were transformed by

running different usage scenarios on them.

B. Experimental Pipeline
For the purpose of testing the energy effects of refactoring

an EGAP, we developed a testing framework which incorpo-

rates EGAP detection and refactoring. This framework is also

capable of automatically running a predefined set of usage

scenarios, storing the results of each scenario, and grouping the

results per application and EGAP. The framework implements

the execution pipeline depicted in Figure 1.
The execution pipeline contains 4 operators responsible for

performing independent tasks, and needs to receive as input

both the complete set of EGAP combinations (included in

Table II) and the list of EGAPs detected in each application.

Next, we explain each pipeline operator.
The Detector operator detects EGAPs in an application, and

stores its results so they can be further utilized. For each

existing EGAP combination Ci, Filter uses the output from

Detector to filter and gather the applications containing all

EGAPs in Ci. It returns both Ci and the source code of the

filtered applications.
Each application selected by Filter is forked into two

versions: the original, and the refactored. The latter version

goes through the Refactor operator, which is responsible for

applying the refactorings for the EGAPs in Ci. This operator’s

outputs are the 2 application versions, along with the number

of times each detected EGAP was refactored.
Using the output from Refactor, Exerciser first checks the

list of refactored EGAPs. If there is at least one of the EGAPs

in Ci (the combination under analysis) that is not contained

in the list of refactored EGAPs, then the application will not

be executed. If Refactor completes successfully, then the 2

application versions will be executed to produce the results.
To simulate the application’s usage scenarios, we used

the Android MonkeyRunner13. We chose this tool because it

provides a very convenient method to inject events on an

application, and by this to simulate usage scenarios without

knowing the application context. In fact, a recent study shows

that randomly injecting events over Android applications pro-

vides a way of testing them and assure the best ratio between

13Android MonkeyRunner webpage: http://bit.ly/2VzPFAF.

coverage and effort needed for the setup [47]. Considering

we are analyzing a substantial set of applications, it would

be unpractical to build context-dependent usage scenarios for

each. Therefore, we designed 25 usage scenarios that can

be applied to any application. Each scenario consists of 2

parameters that are given to MonkeyRunner: the application

package, and a randomly generated sequence of 25 events to

be triggered. Each sequence is unique, in order to simulate

different execution paths of the application. The scenarios run

on the original and the refactored version are exactly the same.

In each scenario execution, Exerciser opens the application,

waits 5 seconds (warm-up), and then starts the MonkeyRunner
events and the measurement procedures. When MonkeyRunner
finishes, Exerciser stops measuring, closes the app, stores the

collected values, and waits another 5 seconds (cool-down).

This procedure is repeated both for the original and the

refactored versions of an application.

C. Results and Discussion

The experiments described in the previous section took over

500 hours to finish. Once finished, we obtained results for 416
applications. For each application, and for each of its 25 test

scenarios, the experiment produced i) the number of times

each EGAP was refactored and ii) the energy consumed by

the original (EO) and refactored (ET) versions. Using this

information, we were able to calculate the gain obtained in

each test, which is the percentage difference between EO and

ER, calculated using the formula:
(EO−ER)

EO
×100. A negative

value means a loss of energy in a test.

The results of the experiments are summarized in Figure 2.

For each EGAP (or combination), we included a bar plot

comparing the proportion of usage scenarios which resulted in

gains with the ones that resulted in losses, with the respective

number in front of each bar. The boxplots indicate how the

exact gains/losses values are distributed14. Combining these

two plots, we can observe not only if a certain combination had

overall more gains/losses, but also if the impact was higher.

We can see that, when refactoring individual patterns, the

number of tests that resulted in gains is always greater than the

number of losses. Moreover, as the boxplots confirm, the gain

values are always considerably higher than the loss values.

In line with the literature, this confirms that refactoring such

patterns individually consistently leads to energy savings.

Looking at combinations of EGAPs, the majority of them

do clearly have higher gains than losses. Nevertheless, in a few

cases the gains do not clearly surpass the losses, or are even

lower. For instance, combination [#4, #5] has the exact same

number of tests with gains and losses, and the boxplots are

very similar, whereas [#4, #8] has more tests which resulted

in gains, but the boxplots indicate a slight tendency to favor

the losses. The more interesting scenario, however, occurs

for combination [#4, #5, #6, #7]: the distribution of gain

values demonstrates that they were considerably low (all below

≈3%), and are clearly surpassed by the losses.

14Outliers were excluded for the purpose of aiding data visualization.

223

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overview: Experimental Results

Based on our results, we can safely state that when refac-
toring patterns individually, the gains are consistently
higher than the losses, but the same cannot be concluded
for a few combinations of patterns, hence answering RQ1.

In order to answer RQ2, we examined, for each individual

refactoring, how similar were its gains/losses when compared

to the other 7. We ran a Mann–Whitney U test, which is

used to assess if two independent samples (in our case, a

set of gains/losses) are selected from populations having the

same distribution. If H0, the null hypothesis, is rejected, the

gains/losses of two refactorings are significantly different.

Also, the resulting test statistics can assess if a value from one

sample is likely to be higher or lower than one randomly taken

from the other, and by how much. We consider α = 0.05, so

we can reject the null hypothesis with 95% confidence.

TABLE III
RESULTS OF MANN–WHITNEY U TEST FOR INDIVIDUAL COMBINATIONS

#1 #2 #3 #4 #5 #6 #7 #8
ρ stats ρ stats ρ stats ρ stats ρ stats ρ stats ρ stats ρ stats

#1 – – 0 -7.19 0 -5.64 0.98 0.03 0 -2.71 0.41 -0.83 0.75 -0.32 0.69 -0.41
#2 0 7.19 – – 0 5.49 0 7.46 0 6.38 0 7.66 0 7.14 0 7.40
#3 0 5.64 0 -5.49 – – 0 7.19 0 2.82 0 6.86 0 6.71 0 6.91
#4 0.98 -0.03 0 -7.46 0 -7.19 – – 0 -3.32 0.05 -1.97 0.39 -0.86 0.34 -0.96
#5 0 2.71 0 -6.38 0 -2.82 0 3.32 – – 0 2.76 0 2.92 0 2.96
#6 0.41 0.83 0 -7.66 0 -6.86 0.05 1.97 0 -2.76 – – 0.28 1.09 0.23 1.20
#7 0.75 0.32 0 -7.14 0 -6.70 0.39 0.86 0 -2.92 0.28 -1.09 – – 0.98 0.03
#8 0.69 0.41 0 -7.40 0 -6.91 0.34 0.96 0 -2.96 0.23 -1.20 0.98 -0.03 – –

The test results are depicted in Table III. Each row rep-

resents an EGAP, and it contains the p-value (ρ) and test
statistics (stats) resulting from testing the gains/losses of that

EGAP against the ones of the EGAP in the corresponding

224

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

column (p-values below 0.01 were rounded to 0).

From the obtained p-values, most gains are expected to

be quite different between refactorings (rejected H0). In

a few cases, a high p-value is observed; here, the ex-

pected gains are very similar for both refactorings. We

see that, e.g., DrawAllocation (#1) is expected to pro-

duce similar gains as ObsoleteLayoutParam (#4) and

ExcessiveMethodCalls (#7) (p-values of 0.98 and 0.75).

When H0 is rejected, the stats value gives us an indication

on what to expect from the results of two refactorings. For

instance, comparing Recycle (#3) and DrawAllocation
(#1), we have a stats value of 5.64, and when comparing

with Wakelock (#2) the value is -5.49. This means that

the average gain from refactoring Recycle is expected to

be about 5.64 times bigger than the ones obtained from

refactoring DrawAllocation, but at the same time about

5.49 times lower when compared with Wakelock.

In conclusion, to answer RQ2, refactoring individual
EGAPS most often, but not always, leads to energy savings
with significantly different orders of magnitude.

With RQ3, we first sought to understand whether it is

always preferable to apply, in an application, all the refac-

torings that are possible. For this, we compared every single

refactoring, with all the combinations where such refactoring

is included. For fairness, we considered only the applications

where both the individual refactoring and the combinations

which include it are available.

Again, a Mann–Whitney U test was used to compare the

gains of every individual refactoring Ri against all com-

binations Ci where it occurs. If H0 is rejected, there is

statistical evidence that the gains obtained from applying Ri

are either consistently higher or lower than the ones obtained

from applying Ci. If so, we also wanted to quantify how

big that difference is. We calculated the Cohen’s d value

between gains obtained from Ri and Ci, and we used the

Sawilowsky [48] suggested thresholds of 0.2, 0.5, 0.8, 1.2,

and 2, which respectively translates to small, medium, large,

very large and huge effect size.

The results we obtained are depicted in Figure 315. Each

individual refactoring on the left is connected to the combi-

nations on the right on which the statistical test suggested to

reject H0 (i.e. where the gains between them are undeniably

different, when applied on the same applications). A green

connection reveals a tendency for the gains to be higher for the

combination on the right; we shall refer to such scenarios as

positive effects. Similarly, yellow, orange, or red connections

indicate scenarios where the gains tend to be lower, and we

shall call them negative effects. The color intensity and the

connection width express the effect size.

If it would be preferable to apply as much refactorings as

possible, then all connections should express positive effects,

or at least the negative ones should not exist (which would

ultimately mean that there was no strong evidence). In practice,

out of the existing 38 connections, 22 are positive and 16 are

15An interactive version of this plot is available in the online appendix.

negative, with the latter having an overall more relevant effect

size. In conclusion, and to provide the answer to RQ3, we can

say that combinations that contain positive connections are
the ones with higher gains, as such connections reflect the

existence of higher and consistent gains. Still, the existence

of negative connections provides evidence that the gains ob-
tained by some individual refactorings can be significantly
reduced when combined with others.

We now seek to provide an answer to RQ4. By doing so,

we aim at providing a guideline for developers to follow when

aiming at reducing energy consumption of an application, by

refactoring energy greedy patterns. In other words, we want to

identify which combinations should be avoided/adopted, and

how to decide on the potentially ambiguous cases.

We believe our recommendations should be interpreted as a

confirmation of the possibility that, for certain combinations of

refactorings, the energy savings are not cumulative. We argue

that these results present a way of looking at the most likely
scenario for a combination, when it comes to energy savings.

For the majority of combinations, the results indicate that

the gains are consistently higher than the losses (as shown in

Figure 2). However, for the ones identified in Figure 3 with

having negative connections, applying only one refactoring in

the same context has proven to result in higher energy savings.

A joint and more in-depth analysis of both figures allows us

to propose the following guidelines:

G1: Avoid combinations whose gains are not significantly
larger than the losses (Figure 2), specially when they
have at least one negative connection (Figure 3). Looking,

for instance, at combination [#4, #5, #6, #7], we see that it

has 4 negative connections, one for each of its individual

refactorings. Additionally, it had more tests resulting in losses,

and with a higher impact compared to the the ones resulting

in gains. Another example is the combination [#5, #8]. We

consider these combinations to be harmful.
G2: Adopt combinations that (only) have positive connec-
tions. This is the case of 11 combinations, that we argue

developers should apply. Not only do their gains surpass their

losses, but there is also statistical evidence that the gains are

expected to increase if all refactorings in the combination are

applied, instead of applying only one of them. Combination

[#4, #5, #7, #8] is the one where this is more notorious: all tests

resulted in gains, and the combination has 4 positive effect
connections, with either a large, very large, or huge effect

size. We classify these combinations as effective.

G3: Even when considering a combination that resulted
in substantially higher gains, it might be preferable to
do individual refactorings if the combination (only) has
negative connections or no connections at all. Combinations

such as [#3, #4] resulted in substantially higher gains but have

negative connections. This means that, while the combination

is helpful, further analysis is needed to decide on what to

refactor; this may involve, e.g., counting the occurrences of

EGAPs #3 and #4 in a particular application.

225

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Gains Comparison: EGAPs vs Combinations

VII. THREATS TO VALIDITY

We focused on studying the impact of refactoring EGAPs

over a large set of applications and on scenarios that try to

simulate realistic usage. There are several aspects that may

affect the validity of our work and findings.

1. While we have used an experimental setup that is not totally

aligned with related works, the fact is that such works have

themselves implemented different setups. Also, although some

potential measurement noise may exist due to unpredictable

actions, such as activity management or garbage collection,

there are strong evidences that our conclusions are drawn upon

correct data. For once, our results for individual EGAPs (the

ones for which a comparison is possible) are well aligned

with the findings in the literature. Also, running 25 scenarios

per application aids in minimizing the potential error margin.

Finally, Trepn is accepted as an effective measurement tool,

as it was already used in multiple other energy-related studies.

2. Using random events to define tests may not ensure that

applications have all their features explored. However, this is

the only generic way to simulate realistic, context-free, usage

scenarios, which are essential within our methodology.

3. Our conclusions are sustained on the gains/losses obtained

for each refactoring or combination. Extensive as our work

may be, this might not reflect all possible scenarios Never-

theless, since our methodology ensures that any significant

gain/loss is due to the performed refactorings only, and we test

a very large number of applications 25 times without enforcing

the use of refactored code, we argue that our study provides

a compelling evidence for the most likely scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

This paper performed an analysis over a large-scale repos-

itory of Android applications, using as subjects, individually

and combined, 11 code patterns termed EGAPs, which were

individually studied in previous research to understand how

replacing them can influence energy consumption. Our anal-

ysis considered the global impact that refactoring has on an

application, which also differs from previous approaches.

Our work provides several findings that can guide develop-

ers in improving the energy efficiency of their code. For once,

refactoring individual EGAPs consistently leads to energy

savings, which is aligned with previous findings. Refactoring

combinations of EGAPs, however, can sometimes produce less

gains than expected, so the decision on whether or not to

refactor a certain combination needs to be properly evaluated.

The analysis is fully automated, and was achieved by open-

source tools, which are publicly available for others to use.

We believe our work raises a relevant direction for future

research. Although our extensive and in-depth study has pro-

vided experimental and statistical evidence that combining as

much refactorings as possible may sometimes not produce the

optimal energy efficiency, it would be interesting to further

understand, when it occurs, why this is the case. Nevertheless,

we strongly believe this direction should be addressed by a

dedicated study, that can build on our (novel) findings.

ACKNOWLEDGMENTS

We would like to thank Cristina Videira Lopes (Univ. of
California Irvine) for helping us obtain the Android repository,
Jácome Cunha (Univ. of Minho) for the helpful discussions, and
the anonymous reviewers for their valuable feedback. The first
author is financed by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnolo-
gia within project UID/EEA/50014/2019, and also by FCT grant
SFRH/BD/132485/2017. The second author is financed by the ERDF
- European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalization - COMPETE
2020 Programme and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia within
project POCI-01-0145-FEDER-016718.

226

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “The most wanted smartphone features,” https://www.statista.com/chart/
5995/the-most-wanted-smartphone-features, accessed: 2018-01-24.

[2] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What Do Mobile
App Users Complain About?” IEEE Software, vol. 32, no. 3, pp. 70–77,
May 2015.

[3] “Our phones and gadgets are now endangering the planet,”
https://www.theguardian.com/commentisfree/2018/jul/17/
internet-climate-carbon-footprint-data-centres, accessed: 2018-01-
24.

[4] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“On the impact of code smells on the energy consumption of mobile
applications,” Information and Software Technology, vol. 105, pp. 43–
55, January 2019.

[5] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“EARMO: An Energy-Aware Refactoring Approach for Mobile Apps,”
IEEE Transactions on Software Engineering, vol. 44, no. 12, pp. 1176–
1206, Dec 2018.

[6] L. Cruz and R. Abreu, “Using Automatic Refactoring to Improve Energy
Efficiency of Android Apps,” CoRR, vol. abs/1803.05889, 2018.

[7] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of Android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb 2017, pp. 115–126.

[8] L. Cruz and R. Abreu, “Performance-based Guidelines for Energy
Efficient Mobile Applications,” in Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems, ser. MOBILE-
Soft ’17. IEEE Press, 2017, pp. 46–57.

[9] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang, and J. Yan, “Detecting Energy
Bugs in Android Apps Using Static Analysis,” in Formal Methods and
Software Engineering, Z. Duan and L. Ong, Eds. Springer International
Publishing, 2017, pp. 192–208.

[10] D. Li and W. G. J. Halfond, “An Investigation into Energy-saving
Programming Practices for Android Smartphone App Development,” in
Proc. of 3rd Int. Workshop on Green and Sustainable Software, ser.
GREENS 2014. ACM, 2014, pp. 46–53.

[11] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal, “Towards Verifying An-
droid Apps for the Absence of No-sleep Energy Bugs,” in Proceedings of
the 2012 USENIX Conference on Power-Aware Computing and Systems,
ser. HotPower’12. USENIX Association, 2012.

[12] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining Energy-greedy API Usage
Patterns in Android Apps: An Empirical Study,” in Proc. of 11th Working
Conf. on Mining Software Repositories, ser. MSR 2014. ACM, 2014,
pp. 2–11.

[13] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated Energy Opti-
mization of HTTP Requests for Mobile Applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16. ACM, 2016, pp. 249–260.

[14] G. Pinto, F. Castor, and Y. D. Liu, “Mining Questions About Software
Energy Consumption,” in Proc. of 11th Working Conf. on Mining
Software Repositories, ser. MSR 2014. ACM, 2014, pp. 22–31.

[15] G. Pinto and F. Castor, “Characterizing the energy efficiency of
java’s thread-safe collections in a multi-core environment,” in Proc. of
SPLASH’2014 workshop on Software Engineering for Parallel Systems
(SEPS), SEPS, vol. 14, 2014.

[16] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes, “Haskell in Green Land: Analyzing the Energy Behavior of a
Purely Functional Language,” in 2016 IEEE 23rd Int. Conf. on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, March 2016,
pp. 517–528.

[17] R. Pereira, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva,
“The Influence of the Java Collection Framework on Overall Energy
Consumption,” in Proc. of 5th Int. Workshop on Green and Sustainable
Software, ser. GREENS ’16. ACM, 2016, pp. 15–21.

[18] R. Pereira, P. Simão, J. Cunha, and J. a. Saraiva, “jStanley: Placing
a Green Thumb on Java Collections,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. ACM, 2018, pp. 856–859.

[19] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards
a Green Ranking for Programming Languages,” in Proceedings of the
21st Brazilian Symposium on Programming Languages, ser. SBLP 2017.
ACM, 2017, pp. 7:1–7:8.

[20] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and
J. Saraiva, “Energy Efficiency Across Programming Languages: How Do
Energy, Time, and Memory Relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering,
ser. SLE 2017. ACM, 2017, pp. 256–267.

[21] S. Nakajima, “Model-based Power Consumption Analysis of Smart-
phone Applications,” in 16th Int. Conf. on Model Driven Engineering
Languages and Systems (MoDELS 2013), Miami, Florida, USA, Septem-
ber 29th, 2013., 2013.

[22] S. Nakajima, “Using Real-Time Maude to Model Check Energy
Consumption Behavior,” in FM 2015: Formal Methods, ser. LNCS,
N. Bjørner and F. de Boer, Eds. Springer Int. Publishing, 2015, vol.
9109, pp. 378–394.

[23] M. Couto, P. Borba, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Products Go Green: Worst-Case Energy Consumption in Software
Product Lines,” in Proceedings of the 21st International Systems and
Software Product Line Conference - Volume A, ser. SPLC ’17. ACM,
2017, pp. 84–93.

[24] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Helping Programmers Improve the Energy Efficiency of Source Code,”
in Proc. of the 39th International Conference on Soft. Eng. Companion,
ser. ICSE-C 2017. ACM, 2017, pp. 238–240.

[25] R. Rua, M. Couto, A. Pinto, J. Cunha, and J. Saraiva, “Towards using
Memoization for Saving Energy in Android,” in Proceedings of the XXII
Iberoamerican Conference on Software Engineering, ser. CIbSE, 2019,
pp. 279–292.

[26] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
in Green and Sustainable Software (GREENS), 2012 First Int. Workshop
on. IEEE, 2012, pp. 55–61.

[27] C. Sahin, L. Pollock, and J. Clause, “How Do Code Refactorings Affect
Energy Usage?” in Proc. of 8th ACM/IEEE Int. Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’14. ACM, 2014,
pp. 36:1–36:10.

[28] R. Verdecchia, R. A. Saez, G. Procaccianti, and P. Lago, “Empirical
Evaluation of the Energy Impact of Refactoring Code Smells,” in
ICT4S2018. 5th International Conference on Information and Commu-
nication Technology for Sustainability, ser. EPiC Series in Computing,
B. Penzenstadler, S. Easterbrook, C. Venters, and S. I. Ahmed, Eds.,
vol. 52, 2018, pp. 365–383.

[29] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond, “Integrated
Energy-directed Test Suite Optimization,” in Proc. of 2014 Int. Sympo-
sium on Software Testing and Analysis, ser. ISSTA 2014. ACM, 2014,
pp. 339–350.

[30] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones,” in Proc. of
Eighth Int. Conf. on Hardware/Software Codesign and System Synthesis,
ser. CODES/ISSS ’10. ACM, 2010, pp. 105–114.

[31] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent
Inside My App?: Fine Grained Energy Accounting on Smartphones with
Eprof,” in Proc. of 7th ACM European Conf. on Computer Systems, ser.
EuroSys ’12. ACM, 2012, pp. 29–42.

[32] S. Hao, D. Li, W. Halfond, and R. Govindan, “Estimating Android
applications’ CPU energy usage via bytecode profiling,” in Green and
Sustainable Software (GREENS), 2012 First Int. Workshop on, June
2012, pp. 1–7.

[33] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating Source
Line Level Energy Information for Android Applications,” in Proc. of
2013 Int. Symposium on Software Testing and Analysis, ser. ISSTA 2013.
ACM, 2013, pp. 78–89.

[34] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, Profiling, and Debugging the Energy Consumption of Mo-
bile Devices,” ACM Comput. Surv., vol. 48, no. 3, pp. 39:1–39:40, 2015.

[35] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“EcoDroid: An Approach for Energy-based Ranking of Android Apps,”
in Proc. of 4th Int. Workshop on Green and Sustainable Software, ser.
GREENS ’15. IEEE Press, 2015, pp. 8–14.

[36] N. Hegde, E. L. Melanson, and E. Sazonov, “Development of a real
time activity monitoring Android application utilizing SmartStep,” in
Proceedings of the 2016 IEEE 38th Annual International Conference of
the Engineering in Medicine and Biology Society (EMBC), 2016, pp.
1886–1889.

227

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

[37] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for Android applications,” Science
of Computer Programming, pp. 132–147, 2018, special Issue on TASE
2016.

[38] M. Couto, C. T., J. Cunha, J. P. Fernandes, and J. Saraiva, “Detecting
Anomalous Energy Consumption in Android Applications,” in Program-
ming Languages, ser. LNCS, F. M. Quintão Pereira, Ed. Springer Int.
Publishing, 2014, vol. 8771, pp. 77–91.

[39] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, vol. 24, no. 4, pp. 2209–2235,
Aug 2019.

[40] L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia, “Do energy-oriented
changes hinder maintainability?” 2019.

[41] R. Saborido, R. Morales, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol,
“Getting the most from map data structures in Android,” Empirical
Software Engineering, vol. 23, no. 5, pp. 2829–2864, 2018.

[42] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Lightweight detection of Android-specific code smells: Tshe aDoctor
project,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Feb 2017, pp. 487–
491.

[43] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI Source Code

Data Sets,” 2010. [Online]. Available: http://www.ics.uci.edu/∼lopes/
datasets/

[44] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “DéJàVu: A Map of Code Duplicates on GitHub,” Proc.
ACM Program. Lang., vol. 1, no. OOPSLA, pp. 84:1–84:28, 2017.

[45] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving Energy
Efficiency of Android Apps via Automatic Refactoring,” in IEEE/ACM
International Conference on Mobile Software Engineering and Systems,
MobileSoft 2017, ser. MOBILESoft ’17, 2017, pp. 205–206.

[46] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy Profiles of Java Collections Classes,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 225–236.

[47] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet? (E),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE ’15. IEEE Computer Society, 2015, pp.
429–440.

[48] S. Sawilowsky, “New Effect Size Rules of Thumb,” Journal of Modern
Applied Statistical Methods, vol. 8, pp. 597–599, 11 2009.

228

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 15:15:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

