
Automatic Detection of Five API Documentation
Smells: Practitioners’ Perspectives

Junaed Younus Khana, Md. Tawkat Islam Khondakera, Gias Uddinb and Anindya Iqbala
aBangladesh University of Engineering and Technology and bUniversity of Calgary

Abstract—The learning and usage of an API is supported by
official documentation. Like source code, API documentation is
itself a software product. Several research results show that
bad design in API documentation can make the reuse of API
features difficult. Indeed, similar to code smells or code anti-
patterns, poorly designed API documentation can also exhibit
‘smells’. Such documentation smells can be described as bad
documentation styles that do not necessarily produce an incorrect
documentation but nevertheless make the documentation difficult
to properly understand and to use. Recent research on API
documentation has focused on finding content inaccuracies in
API documentation and to complement API documentation with
external resources (e.g., crowd-shared code examples). We are
aware of no research that focused on the automatic detection of
API documentation smells. This paper makes two contributions.
First, we produce a catalog of five API documentation smells by
consulting literature on API documentation presentation prob-
lems. We create a benchmark dataset of 1,000 API documentation
units by exhaustively and manually validating the presence of
the five smells in Java official API reference and instruction
documentation. Second, we conduct a survey of 21 professional
software developers to validate the catalog. The developers agreed
that they frequently encounter all five smells in API official
documentation and 95.2% of them reported that the presence
of the documentation smells negatively affects their productivity.
The participants wished for tool support to automatically detect
and fix the smells in API official documentation. We develop a
suite of rule-based, deep and shallow machine learning classifiers
to automatically detect the smells. The best performing classifier
BERT, a deep learning model, achieves F1-scores of 0.75 - 0.97.

Index Terms—API Documentation, Smell, Benchmark, Survey,
Shallow Learning, Deep Learning.

I. INTRODUCTION

APIs (Application Programming Interfaces) are interfaces
to reusable software libraries and frameworks. Proper learning
of APIs is paramount to support modern day rapid software
development. To support this, APIs typically are supported by
official documentation. An API documentation is a product
itself, which warrants the creation and maintenance principles
similar to any existing software product. A good documenta-
tion can facilitate the proper usage of an API, while a bad
documentation can severely harm its adoption [6], [61], [62].

A significant body of API documentation research has
focused on studying API documentation problems based on
surveys and interviews of software developers [6], [11], [13],
[26], [27], [42], [61], [62], [64], [91]. Broadly, API docu-
mentation problems are divided into two types, what (i.e.,
what is documented) and how (i.e., how it is documented) [7],
[81]. Tools and techniques are developed to address the ‘what’
problems in API documentation, such as detection of code

Create a benchmark of five API 
documentation smells by consulting 
literature and software practitioners

Investigate the effectiveness of automated 
documentation smell detection techniques 

using the benchmark 

Conduct survey of professional software 
developers on the prevalence and perceived 

impact of the API documentation smells

Fig. 1. The three major phases used in this study.

comment inconsistency [57], [75], [84], [92], natural language
summary generation of source code [44], [47], [65], [71],
adding description of API methods by consulting external
resources (e.g., online forums) [5], detecting obsolete API
documentation by comparing API version [16], [17], and
complementing official documentation by incorporating in-
sights and code examples from developer forums [72], [78].
In contrast, not much research has focused on the automatic
detection of ‘how’ problems, e.g., bad design in API docu-
mentation that can make the reuse of API features difficult
due to lack of usability [81]. Recently, Treude et al. [77]
find that not all API documentation units are equally readable.
This finding reinforces the needs to automatically detect API
documentation presentation issues as ‘documentation smells’,
as previously highlighted by Aghajani et al. [6]. Unfortunately,
we are not aware of any research on the automatic detection
of such API documentation smells.

As a first step towards developing techniques to detect
smells in API documentation, in this paper, we follow three
phases (see Fig. 1). First, we identify five API documentation
smells by consulting API documentation literature [7], [81]
(Section II). Four of the smells (bloated, fragmented and
tangled description of API documentation unit, and excess
structural info in the description) are reported as presentation
problems by Uddin and Robillard [81]. The other smell
is called ‘Lazy documentation’ and it refers to inadequate
description of an API documentation unit (e.g., no explana-
tion of method parameters). Such incomplete documentation
is reported in literature [7] and in online discussions. We
exhaustively explore official API documentation to find the

ar
X

iv
:2

10
2.

08
48

6v
1 

 [
cs

.S
E

] 
 1

6 
Fe

b 
20

21



4.8% Maybe

95.2% Yes
documentation
smells hinder

developer producivity

Fig. 2. Survey responses from professional developers on whether the
presence of the smells in API documentation hinders productivity.

occurrences of the five smells. The focus was to develop a
benchmark of smelly API documentation units. A total of 19
human coders participated in this exercise. This phase resulted
in a benchmark of 1,000 API documentation units, where
778 units have at least one of the five smells. To the best
of our knowledge, this is the first benchmark with real-world
examples of the five documentation smells.

In the second phase (Section III), we conducted a survey of
21 professional software developers to validate our catalog of
API documentation smells. All the participants reported that
they frequently encounter the five API documentation smells.
More than 95% of the participants (20 out of 21) reported
that the presence of the five smells in API documentation
negatively impacts their productivity (see Fig. 2). The par-
ticipants asked for tool support to automatically detect and
fix the smells in API official documentation. These findings
corroborate previous research that design and presentation
issues in API documentation can hinder API usage [6], [81].
In the third phase (Section IV), we investigate a suite of
rule-based, shallow and deep machine learning models using
the benchmark to investigate the feasbility of automatically
detecting the five smells. The best performing classifer BERT,
a deep learning model, achieves F1-scores of 0.75 - 0.97. To
the best of our knowledge, ours are the first techniques to
automatically detect the five API documentation smells. The
machine learning models can be used to monitor and warn
about API documentation quality by automatically detecting
the smells in real-time with high accuracy.

Replication Package with benchmark, code, and survey is
shared at https://github.com/disa-lab/SANER2021-DocSmell

II. A BENCHMARK OF API DOCUMENTATION SMELLS

We describe the methodology to create our benchmark of
API documentation smells (Section II-A) and then present the
benchmark with real-world examples (Sections II-B - II-C).

A. Benchmark Creation Methodology

Code and design smells are relatively well studied fields of
software engineering. However, to the best of our knowledge,
this is the first research on API documentation smells. As
such, we needed to investigate both the literature on API
documentation [6], [7], [62], [81] and the diverse API docu-
mentation resources (e.g., Java SE docs) during the creation of
our catalog of API documentation smells. We followed a three-
step process, which closely mimics the standard approaches
followed in code/design smell formulation studies [2], [3]. The
three steps are outlined in Fig. 3 and are explained below.

Documentation Problems, Documentation 
Sources, Documentation Practices

Code Smells, Design Anti-Patterns, 
Software Development Practices A

 c
at

al
o

g 
o

f 
fi

ve
 

d
o

cu
m

en
ta

ti
o

n
 

sm
el

ls

Knowledge Acquisition

Mapping of Smell 
Definitions from 

Paper to Documents

Se
ve

ra
l R

ea
l 

ex
am

p
le

s 
 o

f 
ea

ch
 o

f 
fi

ve
 

sm
el

ls
 w

it
h

 
co

m
p

le
te

 
ag

re
em

en
t 

am
o

n
g 

te
am

 
m

em
b

er
s

Feasibility Analysis
API 

Documents

Focus Group 

Literature

B
en

ch
m

ar
k 

o
f 

th
e 

fi
ve

 
Sm

el
ls

Benchmark Creation
Collect Large Samples of 
API Documentation Units

Filter Potential Smelly API 
Documentation Units

Recruit Coders

Create Coding Guide

Fig. 3. The three major steps in benchmark creation process.

Knowledge Acquisition. Similar to code and design smells
that do not directly introduce a defect or a bug into a software
system, documentation smells refer to presentation issues that
do not make a documentation incorrect, rather they hinder
its proper usage due to the lack of quality in the design of
the documented contents. As such, we studied extensively
the API documentation literature that reported issues related
to API documentation presentation and usability [7], [81].
For example, the most recent paper on this topic was by
Aghajani et al. [6], [7], who divided the ‘how’ problems in
API documentation into four categories: maintainability (e.g.,
lengthy files), readability (e.g., clarity), usability (e.g., infor-
mation organization like dependency structure), and usefulness
(e.g., content not useful in practice). Previously, Uddin and
Robillard [81] studied 10 common problems in API documen-
tation by surveying 323 IBM developers. They observed four
common problems related to presentation, i.e., bloated (i.e., too
long description), tangled (complicated documentation), frag-
mented (i.e., scattered description), and excessive structural
information (i.e., information organization like dependency
structure). Given that the four problems appeared in both stud-
ies, we included each as a documentation smell in our study.
In addition, we added lack of proper description of an API
method as a ‘lazy’ documentation smell, because incomplete
documentation problems are discussed in literature [6], [81]
as well as in online developer discussions (see Fig. 4).

Feasibility Analysis. Once we decided on the five smells,
we conducted a feasibility study by looking for real-world
examples of the smells in official and instructional API
documentation. This was important to ensure that the smells
are prevalent in API documentation and that we can find

https://github.com/disa-lab/SANER2021-DocSmell


Fig. 4. Tweet complaining about lazy documentation of API method.

those with reasonable confidence, because otherwise there is
no way we can design automated techniques to detect those
automatically. We combined our knowledge of the five smells
gained from API documentation literature with active explo-
ration of the five smells in the API official documentation. We
conducted multiple focus group discussions where all the four
authors discussed together by analyzing potential examples
of the five smells in API documentation and by mapping the
characteristics of such API documentation with the description
of the smells in the literature/developer discussions. Before
every such focus group meeting, the first two authors created
a list of 50 API documentation units with their labels of the
five smells in the units. The four authors discussed those labels
together, refined the labels, and identified/filtered the labeling
criteria. This iterative process led to increased understanding
among the group members on the specific characteristics of the
five documentation smells. From multiple discussion sessions,
the final output was a list of 50 labeled datapoints.

Benchmark Creation. In the last step of the benchmark
creation process, we expanded our initial list of 50 API
documentation units with smell labels as follows. We col-
lected documentations of over 29K methods belonging to over
4K classes of 217 different packages. We extracted these
documentations from the online JAVA API Documentation
website [1] through web crawling and text parsing techniques.
Since a documentation can contain multiple smells at the
same time, this is a multi-labeled dataset. We produced the
benchmark as follows. First, all the authors mutually discussed
the documentation smells. Then, we randomly selected 950
documentations from a total of 29K that we extracted. Then
the first two authors labeled the first 50 documentations
separately. When they finished, they consulted other co-
authors and resolved the disagreement based on the discussion.
Then they continued with the next 50 documentations and
repeated the same process. Their agreement of labeling has
been recorded using Cohen’s Kappa Coefficient [45] for each
iteration, i.e., labeling 50 documentations (Table I). After the
third iteration, both the authors reached a perfect agreement
level with Cohen’s Kappa Coefficient of 0.83. Then they
prepared a coding guideline for the labeling task which was
later presented to 17 computer science undergraduate students.
The students labeled the remaining 800 documentation units.
During the entire coding sessions by the 17 coders, the first
two authors remained available to them via Skype/Slack. Each
coder consulted their labels with the two authors. This ensured

TABLE I
MEASURE OF AGREEMENT BETWEEN TWO LABELERS

Iteration ID Documentation Unit # Cohen κ

1 50 .49
2 50 .67
3 50 .83

quality and mitigated subjective bias in the manual labeling of
the benchmark.

B. The Five Documentation Smells in the Benchmark

Bloated Documentation Smell. By ‘Bloated’ we mean the
documentation whose description (of an API element type) is
verbose or excessively elaborate. It is difficult to understand
or follow a lengthy documentation [81]. Moreover, it cannot
be effectively managed that makes it hard to modify when
needed, e.g., in case of any update in the API source code.
In our benchmark, we found many documentations that are
larger than necessary. For example, the documentation shown
in Fig. 5 is so verbose and lengthy that it is hard to follow
and use it. Hence, it is a bloated documentation.

Fig. 5. Example of Bloated Smell.

Excess Structural Information Smell. Such a description of a
documentation unit (e.g., method) contains too many structural
syntax or information, e.g., the Javadoc of the java.lang.Object
class. Javadoc lists all the hundreds of subclasses of the
class. In our study, we find this type of documentation to
contain many class and package names. For instance, the
documentation of Fig. 6 contains many structural information
(marked in red rectangle) that are quite unnecessary for the
purpose of understanding and using the underlying method.



Fig. 6. Example of Excess Structural Information.

Tangled Documentation Smell. A documentation of an API
element (method) is ‘Tangled’ if it’s description is tangled with
various information (e.g., from other methods). This makes it
complex and thereby reduces the readability and understand-
ability of the description. Fig. 7 depicts an example of tangled
documentation which is hard to follow and understand.

Fig. 7. Example of Tangled Smell.

Fragmented Documentation Smell. Sometimes it is seen
that the information of documentation (related to an API
element) is scattered (i.e., fragmented) over too many pages
or sections. In our empirical study, we found a good number
of documentation that contain many URLs and references
that indicate possible fragmentation smell. For example, the

documentation of Fig. 8 is fragmented as it refers the readers
to other pages or sections for details.

Fig. 8. Example of Fragmented Smell.

Lazy Documentation Smell. We categorize a documentation
as ‘Lazy’ if it contains very small information to convey to
the readers. In many cases, it is seen that the documentation
does not contain any extra information except what can be
perceived directly from the function name. Hence, this kind of
documentation does not have much to offer to the readers. We
see a lazy documentation in Fig. 9 where the documentation
says nothing more about the underlying method than what is
suggested by the prototype itself.

Fig. 9. Example of Lazy Smell.

C. Distribution of API Documentation Smells in Benchmark

We calculated the total number of smells in our dataset
(Fig. 10). We found that 778 documentations (almost 78%)
of our dataset contain at least one smell. While most (524)
of the smelly documentations contain only one type of smell,
a small number (19) of documentations show as high as four
smells at the same time. We also determined the distribution
of different smells in our dataset (Fig. 11). It shows that all
the five types of smells discussed occur in the dataset with a
considerable frequency where the most frequent smell in our
dataset is ‘Lazy’ with 275 occurrences and the least frequent
smell is ‘Bloated’ with 141 occurrences.

In multi-label learning, the labels might be interdependent
and correlated [31]. We used Phi Coefficients to determine
such interdependencies and correlations between different
documentation smells. The Phi Coefficient is a measure of
association between two binary variables [15]. It ranges from
-1 to +1, where ±1 indicates a perfect positive or negative
correlation and 0 indicates no relationship. We report the Phi
Coefficients between each pair of labels in Fig. 12. We find
that there is almost no correlation between ‘Fragmented’ and
any other smell (except ‘Lazy’). By definition, the information



Fig. 10. Smell distribution by # of documentation units.

Fig. 11. Distribution of different smells in our dataset.

of fragmented documentation is scattered in many sections or
pages. Hence, it has little to do with smells like ‘Bloated’,
‘Excess Structural Information’, or ‘Tangled’. We also observe
that there is a weak positive correlation (+0.2 to +0.4) among
the ‘Bloated’, ‘Excess Structural Information’, and ‘Tangled’
smells. One possible reason might be that if a documentation is
filled with complex and unorganized information (Tangled) or
unnecessary structural information (Excess Structural Informa-
tion), it might be prone to become bloated as well. On the other
hand, ‘Lazy’ smell has a weak negative correlation (-0.2 to -
0.3) with all other groups since these kinds of documentation
are often too small to contain other smells. However, none of
these coefficients is high enough to imply a strong or moderate
correlation between any pair of labels. Hence, all types of
smells in our study are more or less unique in nature.

III. DEVELOPERS’ SURVEY OF DOCUMENTATION SMELLS

Four out of the five API documentation smells in our
study were previously reported as commonly observed by
IBM developers [81]. The other smell (lazy documentation)
is reported as a problem in API documentation in multiple
studies [6], [61]. Given that we extended previous studies by
creating a benchmark of the smells with real-world examples,
we needed to further ensure that our collected examples
of smelly documentation units do resonate with software
developers. We, therefore, conducted a survey of professional
software developers (1) to validate our catalog of the five API
documentation smells and (2) to understand whether, similar to
previous research, developers agree with the negative impact

Fig. 12. Correlation between different documentation smells in our bench-
mark. Red, Blue, and Gray mean positive, negative, and no correlation.
Intensity of color indicates the level of correlation.

of the documentation smells. In particular, we explore the
following two research questions:
RQ1. How do software developers agree with our catalog and

examples of the five API documentation smells?
RQ2. How do software developers perceive the impact of the

detected documentation smells?

A. Survey Setup

We recruited 21 professional software developers who are
working in the software industry. We ensured that each de-
veloper is actively involved in daily software development
activities like API reuse and documentation consultation. The
participants were collected through personal contacts. First,
each participant had to answer two demographic questions:
current profession and years of experience in software de-
velopment. We then presented each participant two Javadoc
examples of each smell and asked him/her whether they agreed
that this documentation example belonged to that particular
smell. Then, we asked them about how frequently they faced
these documentation smells. Finally, we inquired them of
the negative impact of the documentation smells on their
overall productivity during software development. Out of the
21 participants, 14 participants had experience less than 5
years and the rest had more than 5 years. Majority of the
participants had experience less than 5 years because they are
likely to be more engaged in studying API documentation as
part of their software programming responsibility. Developers
with experience more than five years are more engaged in
design of the software and its architecture.

B. How do software developers agree with our catalog and
examples of the five API documentation smells? (RQ1)

We showed each participant two examples of each smell,
i.e., 10 examples in total. For each example, we asked two
questions: (1) Do you think the documentation mentioned
above is [smell, e.g., lazy]? The options are in Likert scale, i.e.,
strongly agree, agree, neutral, disagree, and strongly disagree.
and (2) Based on your experience of the last three months,



Fig. 13. Survey response on whether the software developers agreed with our
labeled documentation smell examples.

Fig. 14. Survey response on how frequently the participants faced the
documentation smells in the last three months.

how frequently did you observe this [smell, e.g., lazy] in
documentation? The options are: never, once or twice, occa-
sionally, frequently, and no opinion. The options are picked
from literature [81]. Two examples per smell ensure increased
confidence on the feedback we get from each participant.

Fig. 13 shows the responses of the participants to the first
question. More than 75% participants agreed to the examples
of three smells: bloated, tangled, and excess structural info.
At least 50% of the participants agreed to the examples of the
other two smells. Only 5-25% of the participants disagreed to
the examples. Overall, each example of the API documentation
smell was agreed by at least 50% of the participants. This
validates out catalog of API documentation smells based on
feedback from the professional developers.

Fig. 14 shows the frequency of the documentation smells the
developers observed in the last three months (second question).
We found that 50% of the participants had faced all the
smells and lazy smell was the most frequently encountered.
On the other hand, half of the participants did not face bloated
documentation smells in the last three months, while 60%-65%
of the participants faced tangled, excess structural info, and
fragmented API documentation. This study reveals that API
documentation is becoming less explicable, more complex,
and unnecessarily structured to keep the documentation short.
To solve this problem, API documentation needs to be more

understandable and elaborated to explain the API functionality.

C. How do software developers perceive the impact of the
detected documentation smells? (RQ2)

We asked the participants how severely the documenta-
tion smells impact their development tasks. The responses
were taken on a scale of five degrees: “Blocker”, “Severe”,
“Moderate”, “Not a Problem”, and “No opinion”. The options
were picked from similar questions on API documentation
presentation problems from literature [81].

Fig. 15. The perceived impact of the five documentation smells by severity
and frequency. Circle size indicates the percentage of participants who
strongly agreed or agreed to the smells.

We analyzed the impact of the documentation smells with
respect to the frequency of the smells the participants had
observed over the past three months (see Fig. 15). For each
smell, we compute the frequency scale (x-axis) as the percent-
age of response “Frequently”, “Occasionally”, and “Once or
twice”. For example, regarding whether the participants had
observed lazy documentation in the past three months, 25%
answered “Frequently”, 35% answered “Occasionally”, and
30% answered “Once or twice”, leading to a total 90% in
the frequency scale. We constructed the severity scale (y-axis)
by combining the percentage of the participants responded
with “Blocker”, “Severe”, and “Moderate”. For example, due
to fragmented documentation smells, 5% of the participants
could not use that particular API and picked another API
(“Blocker”), 20% of the participants believed that they wasted
a lot of time figuring out the API functionality (“Severe”),
and 25% of the participants felt irritated (“Moderate”) with
the fragmented documentation. The circle size indicates the
percentage of the participants “Strongly Agree” or “Agree”
with the examples containing documentation smells.

From Fig. 15, we observed that lazy documentation had the
most frequent and the most negative impact (90%). Tangled
documentation was identified as the second most severe smell
(85%). Although bloated documentation was considered more
severe (65%) than excess structural info (55% severity) and
fragmented (50% severity) documentation, bloated occurred
less frequently than the later two. The most important finding
of this survey is that the coordinates of all the circles (referring
to documentation smells) in Fig. 15 were above or equal to



50. This indicates that according to the majority of the partic-
ipants, these documentations smells are occurring frequently
and hindering the productivity of the development tasks.

IV. AUTOMATIC DETECTION OF THE SMELLS

The responses from the survey validate our catalog of
API documentation smells. The perceived negative impact
of the smells on developers’ productivity, as evidenced by
the responses from our survey participants, necessitates the
needs to fix API documentation by removing the smells.
To do that, we first need to detect the smells automatically
in the API documentation. The automatic detection offers
two benefits: (1) we can use the techniques to automatically
monitor and warn about bad documentation quality and (2) we
can design techniques to fix the smells based on the detection.
In addition, manual effort can also be made for improving
detected examples. With a view to determine the feasibility
of techniques to detect API documentation smells using our
benchmark, we answer three research questions:
RQ3. How accurate are rule-based classifiers to automatically

detect the documentation smells?
RQ4. Can the shallow machine learning models outperform

the rule-based classifiers?
RQ5. Can the deep machine learning models outperform the

other models?
The shallow and deep learning models are supervised, for
which we used 5-fold iterative stratified cross-validation as
recommended for a multilabel dataset in [67]. Traditional
k-fold cross-validation is a statistical method of evaluating
machine learning algorithms which divides data into k equally
sized folds and runs for k iterations [59]. In each iteration, each
of the k folds is used as the held-out set for validation while
the remaining k − 1 folds are used as training sets. Stratified
cross-validation is used to make sure that each fold is an
appropriate representative of the original data by producing
folds where the proportion of different classes is maintained
[51]. However, stratification is not sufficient for multi-label
classification problems as the number of distinct labelsets
(i.e., different combinations of labels) is often quite large. For
example, there can be 32 combinations of labels in our study
as there are 5 types of documentation smells. In such cases,
original stratified k-fold cross-validation is impractical since
most groups might consist of just a single example. Iterative
stratification, proposed by [67], solves this issue by employing
a greedy approach of selecting the rarest groups first and
adding them to the smallest folds while splitting.

We report the performances using four standard metrics
in information retrieval [43]. Accuracy (A) is the ratio of
correctly predicted instances out of all the instances. Precision
(P) is the ratio between the number of correctly predicted
instances and all the predicted instances for a given smell.
Recall (R) represents the ratio of the number of correctly
predicted instances and all instances belonging to a given class.
F1-score (F1) is the harmonic mean of precision and recall.

P =
T P

T P + FP
, R =

T P
T P + FN

, F1 = 2 ∗
P ∗ R
P + R

, A =
T P + T N

T P + FP + T N + FN

Fig. 16. Flowchart of rule-based classification approach.

TP = Correctly classified as a smell, FP = Incorrectly
classified as a smell, TN = Correctly classified as not a smell,
FN = Incorrectly classified as not a smell.

A. Performance of Rule-Based Classifiers (RQ3)

Based on manual analysis of a statistically significant
random sample of our benchmark dataset (95% confidence
interval and 5 levels), we designed six metrics to establish
five rule-based classifiers as described below.

1) Rule-based Metrics: (a) Documentation Length. We use
the length of every documentation in order to capture the
extensiveness of the bloated documentations. (b) Readability
Metrics. We measure Flesch readability metrics [25] for the
documentations to analyze the understandability of docu-
mentation. This feature might be useful to detect tangled
documentations. (c) Number of Acronyms and Jargons. Since
acronyms and jargons increase the complexity of a reading
passage [10], we use the number of acronyms and jargons
in every documentation to detect the tangled documentation.
(d) Number of URLs is computed because URLs are hints
of possible fragmentation in the documentation. (e) Number
of function, class, and package name mentioned in documen-
tation is computed to capture excess structural information
smell. (f) Edit Distance. The edit distance (i.e., measure of
dissimilarity) between the description of a lazy documentation
and its’ corresponding unit definition (i.e., method prototype)
can be smaller than non-lazy documentations. We calculate
the Levenshtein distance [38] between the documentation
description and method prototype.

2) Rule-based Classifiers: Fig. 16 shows flowchart of the
rule-based classification approach. For each metric, we study
average, 25th, 50th, 75th, and 90th percentiles as thresholds.

3) Results: In Table II, we reported the performances of
the baseline models for each documentation smell. Different
thresholds of features achieved higher performance for differ-
ent documentation smells. For example, taking 90th percentiles
of the features’ values, baseline model achieved the higher
performance for bloated documentation detection, while lazy



TABLE II
CLASS-WISE PERFORMANCE OF RULE-BASED BASELINE MODELS BY THE METRIC THRESHOLDS (P STANDS FOR PERCENTILE)

Bloated Lazy Excess Struct Tangled Fragmented

Model Threshold A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Rule
Based

AVG .77 .38 .86 .52 .58 .39 .71 .51 .68 .35 .34 .34 .49 .13 .18 .15 .65 .33 .52 .40
25P .39 .18 .64 .29 .96 .96 .93 .95 .67 .38 .30 .34 .54 .09 .09 .09 .52 .31 .90 .47
50P .64 .28 .79 .41 .77 .55 .84 .66 .75 .37 .50 .42 .45 .20 .40 .26 .61 .34 .71 .46
75P .89 .56 .93 .70 .52 .36 .67 .47 .65 .32 .31 .31 .37 .25 .75 .37 .67 .29 .27 .28
90P .95 .97 .85 .90 .37 .30 .56 .39 .75 .50 .17 .25 .33 .26 .96 .41 .72 .27 .10 .15

and excess structural information smell detection required
25th percentile and 50th percentile, respectively. Notably, the
performance of the baseline models in detecting bloated (.90
F1-score) and lazy (F1 = .95) documentation were higher than
detecting excess structural info (F1 = .42), tangled (F1 = .41),
and fragmented (F1 = .47) documentations.

B. Performance of Shallow Learning Models (RQ4)

1) Shallow Learning Models: Since documentation smell
detection is multi-label classification problem, we employed
different decomposition approaches: One-Vs-Rest (OVR), La-
bel Powerset (LPS), and Classifier Chains (CC) [18], [79],
[80], [89] with Support Vector Machine (SVM) [14] as the
base estimator. We chose SVM and OVR-SVM since those are
successfully used for multi-label text classification [22], [23],
[28], [35], [79]. Each model trains a single classifier per class,
with the samples of that class as positive samples and all other
samples as negatives. Each individual classifier then separately
gives predictions for unseen data. We used linear kernel for
the SVM classifiers as recommended by earlier works [86],
[90]. [33], [87]. We also evaluated adapted approaches like
Multi label (ML) kNN [88] in this study. It finds the k
nearest neighborhood of an input instance using kNN, then
uses Bayesian inference to determine the label set of the
instance. We studied this method because it has been reported
to achieve considerable performance for different multi-label
classification tasks in previous studies [8], [88]. For each
algorithm, we picked the best model using standard practices,
e.g., hyper parameter tuning in SVM as recommended by
Hsu [83], choice of K in ML-kNN as recommended by [8].

2) Studied Features: We used two types of features: (1)
rule-based metrics (described in Section IV-A1) and (2) bag of
words (BoW) [32]. Bag of words (BoW) is a common feature
extraction procedure for text data and has been successfully
used for text classification problems [46], [66].

3) Results: Table III presents the performance of the
shallow learning models. The best performer is OVR-SVM,
followed closely by CC-SVM. CC-based models are generally
superior to OVR-based models because of the capability of
capturing label correlation [58]. Since the labels (types) of
the presentation smells are not correlated (see Section II-C),
the CC-based SVM could not exhibit higher performance
than the OVR-based SVM. Using rule-based features, OVR-
SVM achieved a higher F1-score (0.88) than the other models
for bloated documentation detection. Because documentation

length (a rule-based) was more effective in detecting bloated
documentation than bag of words. On the other hand, LPS-
SVM achieved a higher F1-score (0.58) for fragmented doc-
umentation detection using bag of words, as bag of words
more successfully determined whether the documentation was
referring to other documentation than any rule-based features.
Overall, the shallow models outperformed the rule-based clas-
sifiers for four smell types (except for lazy documentation
smell). Therefore, the documentation smell detection does
not normally depend on a single rule-based metric, rather,
it depends on a combination of different metrics and their
thresholds. The shallow learning models attempted to capture
this combination of thresholds, and therefore, achieved better
performances than the baseline models.

4) Feature Importance Analysis: We verified the impor-
tance of our rule-based features by applying permutation
feature importance technique [9], [24] in the best performing
shallow model, i.e., OVR-SVM. We first train OVR-SVM
with all the features. While testing, we randomly shuffle the
values of one feature at a time while keeping other feature
values unchanged. A feature is important if shuffling its values
affects the model performance. We calculate the change in
performance in two ways. First, we measure the change in the
average F1-score of the OVR-SVM model for the permutation
of a feature. Second, we report the change of the specific
class that the feature was intended for (i.e., ‘Documentation
Length’ for ‘Bloated’). We observe that the permutation of
any of our rule-based features degrades the model performance
(see Table IV). For example, after permutation of the values of
the ‘Documentation Length’ of test data, the average F1-score
decreases by 0.17 (from 0.62 to 0.45) and the F1-score of
the desired class (i.e., ‘Bloated’) decreases by 0.46 (from 0.88
to 0.42). This analysis confirms the importance of combining
rule-based metrics as features in the models.

C. Performance of Deep Learning Models (RQ5)

1) Deep Learning Models: We evaluated two deep learning
models, Bidirectional LSTM (Bi-LSTM) and Bidirectional En-
coder Representations from Transformers (BERT). We picked
Bi-LSTM, because it is more capable of exploiting contextual
information than the unidirectional LSTM [30]. Hence, the
Bi-LSTM network can detect the documentation smell by
capturing the information of the API documentations from
both directions. BERT is a pre-trained model which was
designed to learn contextual word representations of unlabeled



TABLE III
CLASS-WISE PERFORMANCE OF SHALLOW MACHINE LEARNING MODELS

Bloated Lazy Excess Struct Tangled Fragmented

Feature Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Rule
Based
Feats

OVR-SVM .96 .88 .89 .88 .94 .86 .94 .90 .74 .45 .23 .31 .82 .67 .56 .61 .80 .69 .25 .37
LPS-SVM .94 .86 .70 .77 .91 .77 .97 .86 .74 .44 .21 .28 .80 .70 .40 .51 .81 .73 .32 .45
CC-SVM .96 .88 .87 .88 .92 .79 .97 .87 .75 .47 .24 .32 .82 .68 .54 .60 .80 .71 .27 .39
ML-kNN .93 .73 .89 .80 .91 .86 .80 .83 .75 .49 .31 .38 .80 .63 .54 .58 .79 .57 .50 .53

BoW
Feats

OVR-SVM .93 .84 .66 .74 .95 .87 .96 .91 .75 .49 .47 .48 .78 .57 .54 .56 .79 .55 .54 .55
LPS-SVM .93 .89 .63 .74 .94 .83 .97 .89 .75 .50 .49 .50 .79 .59 .58 .58 .80 .59 .58 .58
CC-SVM .93 .85 .67 .75 .94 .85 .96 .90 .74 .48 .47 .48 .78 .57 .54 .56 .78 .54 .54 .54
ML-kNN .93 .86 .60 .71 .88 .75 .83 .79 .73 .44 .29 .35 .79 .59 .53 .56 .80 .63 .41 .50

TABLE IV
OVR-SVM PERFORMANCE DECREASE IN FEATURE PERMUTATION

Permuted Desired Decrease in F1
Feature Class C Overall Desired C

Doc Length Bloated .17 .46
Readability Tangled .06 .11
#Acronym&Jargon Tangled .05 .07
#URLs Fragmented .03 .11
#Method, Class, Package Excess Struct .17 .08
Edit Distance Lazy .09 .37

texts [21]. We picked BERT, because it is found to significantly
outperform other models in various natural language process-
ing and text classification tasks [4], [29], [39], [40], [48],
[52], [76]. We constructed a Bi-LSTM model with 300 hidden
states. We used ADAM optimizer [37] with an initial learning
rate of 0.001. We trained the model with batch size 256 over
10 epochs. We used BERT-Base for this study which has 12
layers with 12 attention heads and 110 million parameters.
We trained it on benchmark for 10 epochs with a mini-batch
size of 32. We used early-stop to avoid overfitting [56] and
considered validation loss as the metric of the early-stopping
[55]. The maximum length of the input sequence was set to
256. We used AdamW optimizer [41] with the learning rate
set to 4e-5, β1 to 0.9, β2 to 0.999, and ε to 1e-8 [21], [73]. We
used binary cross-entropy to calculate the loss [63].

2) Studied Features: We used word embedding as feature
which is a form of word representation that is capable of
capturing the context of a word in a document by mapping
words with similar meaning to a similar representation. For
Bi-LSTM, we used 100-dimensional pre-trained GloVe em-
bedding which was trained on a dataset of one billion tokens
(words) with a vocabulary of four hundred thousand words
[53]. We used the pre-trained embedding in BERT model [21].

3) Results: Table V shows the performance of the deep
learning models. BERT outperformed Bi-LSTM, the shallow,
and rule-based classifiers to detect each smell (F1-score). The
increase in F1-score in BERT compared to the best perform-
ing shallow learning model per smell is as follows: bloated
(5.7% over OVR-SVM Rule), lazy (6.6% over OVR-SVM
BoW), Excess Structural Information (52% over ML-kNN
BoW), tangled (36.1% over OVR-SVM Rule), and fragmented
(36.4% over OVR-SVM BoW). SVM and kNN-based models

produced more false-negative results because the number of
positive instances for an individual smell type is lower than the
number of negative instances for that type. As a result, SVM
and kNN-based models showed low recalls for some types
(Excess structural information, Tangled, and Fragmented) and
consequently resulted in low F1-scores. On the other hand, Bi-
LSTM and BERT achieved better performance because they
focused on capturing generalized attributes for each smell type.
We manually analyzed the misclassified examples of Excess
Structural Information and fragmented documentation where
BERT achieved below 0.8 accuracy. For the Excess Structural
Information smell detection, BERT falsely considered some
java objects and methods as structural information; therefore,
the model produced some false positive cases. In some ex-
amples, BERT could not identify whether the information of
documentation was referring to other documentation. As a
result, the model misclassified the fragmented documentation.

V. DISCUSSIONS

Implications of Findings. Thanks to the significant research
efforts to understand API documentation problems using em-
pirical and user studies, we now know with empirical evidence
that the quality of API official documentation is a concern both
for open source and industrial APIs [7], [26], [27], [62], [81].
The five API documentation smells we studied in this paper
are frequently referred to as documentation presentation/de-
sign problems in the literature [7], [81]. Our comprehensive
benchmark of 1,000 API official documentation units has
778 units each exhibiting one or more of the smells. The
validity of the smells by professional software developers
proves that this benchmark can be used to foster a new area
of research in software engineering on the automatic detection
of API documentation quality - which is now an absolute
must due to the growing importance of APIs and software
in our daily lives [54], [62]. The superior performance of our
machine learning classifiers, in particular the deep learning
model BERT, offers promise that we can now use such tools
to automatically monitor and warn about API documentation
quality in real-time. Software companies and open source
community can leverage our developed model to analyze the
quality of their API documentation. Software developers could
save time by focusing on good quality API documentation



TABLE V
CLASS-WISE PERFORMANCE OF DEEP LEARNING MODELS

Bloated Lazy Excess Struct Tangled Fragmented

Feature Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Word
Embed

Bi-LSTM .92 .92 .92 .91 .89 .90 .89 .90 .76 .72 .76 .73 .78 .74 .78 .74 .67 .64 .67 .63
BERT .93 .93 .93 .93 .97 .97 .97 .97 .76 .75 .76 .76 .83 .83 .83 .83 .75 .75 .75 .75

9.5% Maybe
90.5% Yes

smells should be
fixed in API

documentation

Fig. 17. Survey responses on whether the five documentation smells should
be fixed to improve API documentation quality.

instead of the bad ones as detected by our model. Based on
such real-time feedback, tools can be developed to improve the
documentation quality by fixing the smells. Indeed, when we
asked our survey participants (Section III) whether the five
smells need to be fixed, more than 90% responded with a
‘Yes’, 9.5% with a ‘Maybe’, 0% with a ‘No’ (see Fig. 17).
Threats to Validity. Internal validity threats relate to authors’
bias while conducting the analysis. We mitigated the bias in
our benchmark creation process by taking agreement from
17 coders and co-authors and by consulting API documen-
tation literature. The machine learning models are trained,
tested, and reported using standard practices. There was no
common data between the training and test set. Construct
validity threats relate to the difficulty in finding data to create
our catalog of smells. Our benchmark creation process was
exhaustive, as we processed more than 29K unit examples
from official documentation. External validity threats relate to
the generalizability of our findings. We mitigated this threat by
corroborating the five smells in our study with findings from
state-of-the-art research in API documentation presentation
and design problems. Our analysis focused on the validation
and detection of five API documentation smells. Similar to
code smell literature, additional documentation smells can be
added into our catalog as we continue to research on this area.

VI. RELATED WORK

Related work is divided into studies on understanding (1)
documentation problems and (2) how developers learn APIs
using documentation, and developing techniques (3) to detect
errors in documentation and (4) to create documentation.
Studies. Research shows that traditional Javadoc-type ap-
proaches to API official documentation are less useful
than example-based documentation (e.g., minimal man-
ual [13]) [68] Both code examples and textual description
are required for better quality API documentation [19], [26],
[49]. Depending of the types of API documentation, reability
and understandability of the documentation can vary [77].
Broadly, problems in API official documentation can be
about ‘what’ contents are documented and ‘how’ the contents
are presented [6], [7], [61], [62], [81]. Literature in API

documentation quality discussed four desired attributes of
API documentation: completeness, consistency, usability and
accessibility [77], [91]. Several studies show that external
informal resources can be consulted to improve API official
documentation [20], [34], [36], [50], [74], [82], [85]

The five documentation smells studied in this paper are
taken from five commonly discussed API documentation de-
sign and presentation issues in literature [6], [81]. In contrast
to the above papers that aim to understand API documentation
problems, we focus on the development of techniques to
automatically detect documentation smells.

Techniques. Tools and techniques are proposed to automati-
cally add code examples and insights from external resources
(e.g., online forums) into API official documentation [5],
[72], [78]. Topic modeling is used to develop code books
and to detect deficient documentation [12], [69], [70]. API
official documentation and online forum data are analyzed
together to recommend fixes API misuse scenarios [60]. The
documentation of an API method can become obsolete/incon-
sistent due to evolution in source code [16], [84]. Several
techniques are proposed to automatically detect code comment
inconsistency [57], [75], [92]. A large body of research is
devoted to automatically produce natural lanugage summary
description of source code method [44], [47], [65], [71].

Unlike previous research, we focus on the detection of five
API documentation smells that do not make a documentation
inconsistent/incorrect, but nevertheless make the learning of
the documentation difficult due to the underlying design/pre-
sentation issues. We advance state-of-the-art research on API
documentation quality analysis by offering a benchmark of
real-world examples of five documentation smells and a suite
of techniques to automatically detect the smells.

VII. CONCLUSIONS

The learning of an API is challenging when the official
documentation resources are of low quality. We identify five
API documentation smells by consulting API documentation
literature on API documentation design and presentation is-
sues. We present a benchmark of 1,000 API documentation
units with five smells in API official documentation. Feedback
from 21 industrial software developers shows that the smells
can negatively impact the productivity of the developers during
API documentation usage. We develop a suite of machine
learning classifiers to automatically detect the smells. The best
performing classifier BERT, a deep learning model, achieves
F1-scores of 0.75 - 0.97. The techniques can help automati-
cally monitor and warn about API documentation quality.



REFERENCES

[1] Javadoc SE 7. https://docs.oracle.com/javase/7/docs/api/, 2020.
[2] M. Abidi, M. Grichi, F. Khomh, and Y. G. Guéhéneuc. Anti-patterns

for multi-language systems. In 24th European Conference on Pattern
Languages of Programs, page Article No. 42, 2019.

[3] M. Abidi, M. Grichi, F. Khomh, and Y. G. Guéhéneuc. Code smells
for multi-language systems. In 24th European Conference on Pattern
Languages of Programs, page Article No. 12, 2019.

[4] A. Adhikari, A. Ram, R. Tang, and J. Lin. Docbert: Bert for document
classification. arXiv preprint arXiv:1904.08398, 2019.

[5] E. Aghajani, G. Bavota, M. Linares-Vásquez, and M. Lanza. Auto-
mated documentation of android apps. IEEE Transactions on Software
Engineering, page 17, 2019.

[6] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota,
M. Lanza, and D. C. Shepherd. Software documentation: The prac-
titioners’ perspective. In 42nd International Conference on Software
Engineering, page 12, 2020.

[7] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza. Software documentation issues
unveiled. In 41st International Conference on Software Engineering,
page 1199–1210, 2019.

[8] W. Alkhatib, C. Rensing, and J. Silberbauer. Multi-label text clas-
sification using semantic features and dimensionality reduction with
autoencoders. In International Conference on Language, Data and
Knowledge, pages 380–394. Springer, 2017.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[10] O. M. Bullock, D. Colón Amill, H. C. Shulman, and G. N. Dixon.

Jargon as a barrier to effective science communication: Evidence from
metacognition. Public Understanding of Science, 28(7):845–853, 2019.

[11] I. Cai. Framework Documentation: How to document object-oriented
frameworks. An Empirical Study. PhD in Computer Sscience, University
of Illinois at Urbana-Champaign, 2000.

[12] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller. Deficient
documentation detection: A methodology to locate deficient project doc-
umentation using topic analysis. In Proceedings of the 10th International
Working Conference on Mining Software Repositories, pages 57–60,
2013.

[13] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-
Rimetz. The minimal manual. Journal of Human-Computer Interaction,
3(2):123–153, 1987.

[14] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[15] H. Cramér. Mathematical methods of statistics, volume 43. Princeton
university press, 1999.

[16] B. Dagenais. Analysis and Recommendations for Developer Learning
Resources. PhD in Computer Sscience, McGill University, 2012.

[17] B. Dagenais and M. P. Robillard. Using traceability links to recommend
adaptive changes for documentation evolution. IEEE Transactions on
Software Engineering, 40(11):1126–1146, 2014.

[18] A. C. de Carvalho and A. A. Freitas. A tutorial on multi-label
classification techniques. In Foundations of computational intelligence
volume 5, pages 177–195. Springer, 2009.

[19] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira. A study of
the documentation essential to software maintenance. In 23rd annual
international conference on Design of communication: documenting &
designing for pervasive information, pages 68–75, 2005.

[20] F. Delfim and M. M. Klérisson Paixão, Damien Cassou. Redocumenting
apis with crowd knowledge: a coverage analysis based on question types.
Journal of the Brazilian Computer Society, 29(1), 2016.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[22] S. Dumais et al. Using svms for text categorization. IEEE Intelligent
Systems, 13(4):21–23, 1998.

[23] A. Elisseeff and J. Weston. A kernel method for multi-labelled
classification. In Advances in neural information processing systems,
pages 681–687, 2002.

[24] A. Fisher, C. Rudin, and F. Dominici. All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class
of prediction models simultaneously. Journal of Machine Learning
Research, 20(177):1–81, 2019.

[25] R. Flesch and A. J. Gould. The art of readable writing, volume 8.
Harper New York, 1949.

[26] A. Forward and T. C. Lethbridge. The relevance of software documen-
tation, tools and technologies: A survey. In Proc. ACM Symposium on
Document Engineering, pages 26–33, 2002.

[27] G. Garousi, ahid Garousi-Yusifoǵlu, G. Ruhe, J. Zhi, M. Moussavi, and
B. Smith. Usage and usefulness of technical software documentation:
An industrial case study. Information and Software Technology, 57:664–
682, 2015.

[28] T. F. Gharib, M. B. Habib, and Z. T. Fayed. Arabic text classification
using support vector machines. Int. J. Comput. Their Appl., 16(4):192–
199, 2009.

[29] S. González-Carvajal and E. C. Garrido-Merchán. Comparing bert
against traditional machine learning text classification. arXiv preprint
arXiv:2005.13012, 2020.

[30] A. Graves and J. Schmidhuber. Framewise phoneme classification
with bidirectional lstm and other neural network architectures. Neural
networks, 18(5-6):602–610, 2005.

[31] Q. Gu, Z. Li, and J. Han. Correlated multi-label feature selection. In
Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 1087–1096, 2011.

[32] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
[33] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support

vector classification, 2003.
[34] H. Jiau and F.-P. Yang. Facing up to the inequality of crowdsourced api

documentation. ACM SIGSOFT Software Engineering Notes, 37(1):1–9,
2012.

[35] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In European conference on machine
learning, pages 137–142. Springer, 1998.

[36] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov.
Using and asking: Apis used in the android market and asked about in
stackoverflow. In In Proceedings of the INTERNATIONAL CONFER-
ENCE ON SOCIAL INFORMATICS, pages 405–418, 2013.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[38] V. I. Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[39] X. Li, L. Bing, W. Zhang, and W. Lam. Exploiting bert for end-to-
end aspect-based sentiment analysis. arXiv preprint arXiv:1910.00883,
2019.

[40] Y. Liu. Fine-tune bert for extractive summarization. arXiv preprint
arXiv:1903.10318, 2019.

[41] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[42] H. V. D. Maij. A critical assessment of the minimalist approach to
documentation. In Proc. 10th ACM SIGDOC International Conference
on Systems Documentation, pages 7–17, 1992.

[43] C. D. Manning, P. Raghavan, and H. Schütze. An Introduction to
Information Retrieval. Cambridge Uni Press, 2009.

[44] P. W. McBurney and C. McMillan. Automatic documentation generation
via source code summarization of method context. In 22nd International
Conference on Program Comprehension, pages 279 – 290, 2014.

[45] M. L. McHugh. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica, 22(3):276–282, 2012.

[46] M. McTear, Z. Callejas, and D. Griol. Spoken language understanding.
In The Conversational Interface, pages 161–185. Springer International
Publishing, 2016.

[47] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker. Automatic generation of natural language summaries for Java
classes. In Proceedings of the 21st IEEE International Conference on
Program Comprehension, pages 23–32, 2013.

[48] M. Munikar, S. Shakya, and A. Shrestha. Fine-grained sentiment
classification using bert. In 2019 Artificial Intelligence for Transforming
Business and Society (AITB), volume 1, pages 1–5. IEEE, 2019.

[49] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and
M. Gordon. What programmers really want: Results of a needs
assessment for SDK documentation. In Proc. 20th Annual International
Conference on Computer Documentation, pages 133–141, 2002.

[50] C. Parnin and C. Treude. Measuring api documentation on the web. In
Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering, pages 25–30, 2011.

[51] V. L. Parsons. Stratified sampling. Wiley StatsRef: Statistics Reference
Online, pages 1–11, 2014.

https://docs.oracle.com/javase/7/docs/api/


[52] Y. Peng, S. Yan, and Z. Lu. Transfer learning in biomedical natural lan-
guage processing: An evaluation of bert and elmo on ten benchmarking
datasets. arXiv preprint arXiv:1906.05474, 2019.

[53] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[54] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza.
Prompter: Turning the IDE into a self-confident programming assistant.
Empirical Software Engineering, 21(5):2190–2231, 2016.

[55] L. Prechelt. Automatic early stopping using cross validation: quantifying
the criteria. Neural Networks, 11(4):761–767, 1998.

[56] L. Prechelt. Early stopping-but when? In Neural Networks: Tricks of
the trade, pages 55–69. Springer, 1998.

[57] F. Rabbi and M. S. Siddik. Detecting code comment inconsistency using
siamese recurrent network. In Proceedings of the 28th International
Conference on Program Comprehension, pages 371–375, 2020.

[58] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for
multi-label classification. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 254–269.
Springer, 2009.

[59] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. Encyclopedia
of database systems, 5:532–538, 2009.

[60] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun. Demystify official api
usage directives with crowdsourced apimisuse scenarios, erroneous code
examples and patches. In 42nd International Conference on Software
Engineering, page 12, 2020.

[61] M. P. Robillard. What makes APIs hard to learn? Answers from
developers. IEEE Software, 26(6):26–34, 2009.

[62] M. P. Robillard and R. DeLine. A field study of API learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[63] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss
functions all the same? Neural Computation, 16(5):1063–1076, 2004.

[64] M. B. Rosson, J. M. Carrol, and R. K. Bellamy. Smalltalk scaffolding:
a case study of minimalist instruction. In Proc. ACM SIGCHI Conf. on
Human Factors in Computing Systems, pages 423–430, 1990.

[65] A. M. S. Haiduc, J. Aponte. Supporting program comprehension with
source code summarization. In In Proceedings of the 32nd International
Conference on Software Engineering, pages 223–226, 2010.

[66] F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

[67] K. Sechidis, G. Tsoumakas, and I. Vlahavas. On the stratification of
multi-label data. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 145–158. Springer, 2011.

[68] F. Shull, F. Lanubile, and V. R. Basili. Investigating reading techniques
for object-oriented framework learning. IEEE Transactions on Software
Engineering, 26(11):1101–1118, 2000.

[69] L. Souza, E. Campos, , and M. Maia. On the extraction of cookbooks
for apis from the crowd knowledge. In Proceedings of the 28th Brazilian
Symposium on Software Engineering, pages 21–30, 2014.

[70] L. B. Souza, E. C. Campos, F. Madeiral, K. P. ao, A. M. Rocha, and
M. de Almeida Maia. Bootstrapping cookbooks for apis from crowd
knowledge on stack overflow. Information and Software Technology,
111:3749, 2019.

[71] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker.
Towards automatically generating summary comments for java methods.
In Proceedings of the IEEE/ACM international conference on Automated
software engineering, pages 43–52, 2010.

[72] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API documen-
tation. In Proceedings of 36th International Conference on Software
Engineering, pages 643–652, 2014.

[76] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp
pipeline. arXiv preprint arXiv:1905.05950, 2019.

[73] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text
classification? In China National Conference on Chinese Computational
Linguistics, pages 194–206. Springer, 2019.

[74] J. Sunshine, J. D. Herbsleb, , and J. Aldrich. Searching the state space:
A qualitative study of api protocol usability. In Proceedings of the
International Conference on Program Comprehension, pages 82–93,
2015.

[75] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. tcomment: Testing
javadoc comments to detect comment-code inconsistencies. In Inter-
national Conference on Software Testing, Verification, and Validation,
pages 260 – 269, 2012.

[77] C. Treude, J. Middleton, and T. Atapattu. Beyond accuracy: Assessing
software documentation quality. In ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering - Vision and Reflections Track, page 4, 2020.

[78] C. Treude and M. P. Robillard. Augmenting api documentation with in-
sights from stack overflow. In Proc. IEEE 38th International Conference
on Software Engineering, pages 392–402, 2016.

[79] G. Tsoumakas and I. Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining (IJDWM),
3(3):1–13, 2007.

[80] G. Tsoumakas and M.-L. Zhang. Learning from multi-label data. 2009.
[81] G. Uddin and M. P. Robillard. How API documentation fails. IEEE

Softawre, 32(4):76–83, 2015.
[82] W. Wang and M. W. Godfrey. Detecting api usage obstacles: A study of

ios and android developer questions. In In Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 61–64,
2013.

[83] C. wei Hsu, C. chung Chang, and C. jen Lin. A practical guide to
support vector classification.

[84] F. Wen, C. Nagy, G. Bavota, and M. Lanza. A large-scale empirical study
on code-comment inconsistencies. In 27th International Conference on
Program Comprehension, page 53–64, 2019.

[85] D. Yang, A. Hussain, and C. V. Lopes. From query to usable code:
an analysis of stack overflow code snippets. In In Proceedings of the
13th International Conference on Mining Software Repositories, pages
391–402, 2016.

[86] Y. Yang and X. Liu. A re-examination of text categorization methods. In
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 42–49, 1999.

[87] B. Yekkehkhany, A. Safari, S. Homayouni, and M. Hasanlou. A com-
parison study of different kernel functions for svm-based classification
of multi-temporal polarimetry sar data. The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
40(2):281, 2014.

[88] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to
multi-label learning. Pattern recognition, 40(7):2038–2048, 2007.

[89] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning
algorithms. IEEE transactions on knowledge and data engineering,
26(8):1819–1837, 2013.

[90] W. Zhang, T. Yoshida, and X. Tang. Text classification based on
multi-word with support vector machine. Knowledge-Based Systems,
21(8):879–886, 2008.

[91] J. Zhia, V. Garousi-Yusifoǵlubc, B. Sun, G. Garousi, S. Shahnewaz,
and G. Ruhe. Cost, benefits and quality of software development
documentation: A systematic mapping. Journal of Systems and Software,
99:175–198, 2015.

[92] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall.
Analyzing apis documentation and code to detect directive defects. In
39th International Conference on Software Engineering, pages 27 – 37,
2017.


	I Introduction
	II A Benchmark of API Documentation Smells
	II-A Benchmark Creation Methodology
	II-B The Five Documentation Smells in the Benchmark
	II-C Distribution of API Documentation Smells in Benchmark

	III Developers' Survey of Documentation Smells
	III-A Survey Setup
	III-B How do software developers agree with our catalog and examples of the five API documentation smells? (RQ1)
	III-C How do software developers perceive the impact of the detected documentation smells? (RQ2)

	IV Automatic Detection of The Smells
	IV-A Performance of Rule-Based Classifiers (RQ3)
	IV-A1 Rule-based Metrics
	IV-A2 Rule-based Classifiers
	IV-A3 Results

	IV-B Performance of Shallow Learning Models (RQ4)
	IV-B1 Shallow Learning Models
	IV-B2 Studied Features
	IV-B3 Results
	IV-B4 Feature Importance Analysis

	IV-C Performance of Deep Learning Models (RQ5)
	IV-C1 Deep Learning Models
	IV-C2 Studied Features
	IV-C3 Results


	V Discussions
	VI Related Work
	VII Conclusions
	References

