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Abstract—Testing and code reviews are known techniques to
improve the quality and robustness of software. Unfortunately,
the complexity of modern software systems makes it impossible
to anticipate all possible problems that can occur at runtime,
which limits what issues can be found using testing and reviews.
Thus, it is of interest to consider autonomous self-healing software
systems, which can automatically detect, diagnose, and contain
unanticipated problems at runtime. Most research in this area
has adopted a model-driven approach, where actual behavior
is checked against a model specifying the intended behavior,
and a controller takes action when the system behaves outside
of the specification. However, it is not easy to develop these
specifications, nor to keep them up-to-date as the system evolves.
We pose that, with the recent advances in machine learning, such
models may be learned by observing the system. Moreover, we
argue that artificial immune systems (AISs) are particularly well-
suited for building self-healing systems, because of their anomaly
detection and diagnosis capabilities. We present the state-of-the-
art in self-healing systems and in AISs, surveying some of the
research directions that have been considered up to now. To
help advance the state-of-the-art, we develop a research agenda
for building self-healing software systems using AISs, identifying
required foundations, and promising research directions.

Index Terms—self-healing, artificial immune systems, anomaly
detection, runtime diagnosis, fault containment, dependability.

I. INTRODUCTION

Despite considerable investments in software verification and
validation (V&V), we frequently read about software issues
that cause severe damage: airplanes have crashed, rockets have
self-destructed, financial systems have stalled, cars have been
recalled, and patients have died from incorrect medication [1].

Conventional V&V techniques such as code reviews, static
source code analysis, and (dynamic) software testing aim
to ensure that software products satisfy their functional re-
quirements and expected quality attributes. However, one of
the main challenges with these techniques is that they only
target anticipated faults: it is inherent to their design that
they can only check for known or expected issues (or their
generalizations) [2]. The increased complexity of modern
software-intensive systems makes it difficult to anticipate all
possible problems that the system could encounter at runtime.

A recent study analyzed thirty prominent software failures
since 2015 to examine how failures occur, and how they
were detected, investigated and mitigated [3]. Main findings
include that tests often fail to detect errors that are triggered
by combinations of interactions, and test environments often
do not represent the production environment due to the scale
and complexity of software in production.

Thus, we need complementary techniques that target the
unanticipated faults (anomalies) that remain after conventional
V&V. A promising direction is that of autonomous self-healing
software systems. Such systems monitor their own behavior,
detect when an anomaly occurs, diagnose the root cause of
the anomaly, and perform an intervention to contain it.

Although the terminology of self-healing systems draws on
the healing of cells and tissue in the biological domain [4], the
majority of research in this area does not use bio-inspired com-
puting but a model-driven approach, where actual behavior is
checked against a formal model specifying intended behavior,
and a controller takes action when the system behaves out-
side of the specification [5]. A significant drawback of this
approach is that it is challenging to develop such models for
large and complex software-intensive systems, and to keep
them up-to-date as the system evolves [6].

We argue that, with the recent advances in machine learning,
such behavioral models need no longer be explicitly specified,
but can be learned in a data-driven fashion, by observing
the system in a suitably instrumented environment. Moreover,
we argue that artificial immune systems (AISs), a machine
learning paradigm inspired by the principles and processes
of biological immune systems, are a particularly well-suited
for building self-healing software systems, because of their
inherent focus on anomaly detection. We take inspiration from
earlier work that surveyed the application of AISs in the do-
main of manufacturing and process technology for the purpose
of fault detection, diagnosis and recovery (FDDR) [7]. Their
overall objectives are very similar to ours in building self-
healing software systems, and the authors argue that also in
that domain, the majority of existing methods are model-based
diagnostic systems that are hard to implement due to their
complexity. They show how data-driven, quantitative methods
such as AISs are well-suited for FDDR, which strengthens our
belief that they will suit self-healing software systems as well.
Contributions: We make the case for more research on
data-driven self-healing software systems based on AISs. To
further stimulate this line of work, we survey the concepts
and state-of-the-art in self-healing systems (Section II), as
well as artificial immune systems (Section III). Next, we
develop a research agenda for self-healing systems using AISs
(Section IV), identifying required foundations and promising
research directions, and highlighting areas where the SANER
community has specific expertise to further this domain.
Finally, we conclude in Section V.

This work is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.
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II. SELF-HEALING SYSTEMS

Background: Ganek et al. define self-healing systems as
“systems [that] discover, diagnose, and react to disruptions.
For a system to be self-healing, it must be able to recover from
a failed component by first detecting and isolating the failed
component, taking it off line, fixing or isolating the failed com-
ponent, and reintroducing the fixed or replacement component
into service without any apparent application disruption” [8].
The goal is improving system qualities such as robustness,
availability, reliability and survivability [9]. The concept
evolved from various ideas introduced in the late 20th cen-
tury, such as fault-tolerant systems [10], self-stabilizing sys-
tems [11], survivable systems [12], self-adaptive systems [13],
and autonomic computing [8]. In addition, there are ideas with
largely overlapping goals, such as intrusion-tolerant systems,
recovery-oriented computing, and self-repair [14]. Self-healing
systems are generally realized by extending a software system
with a MAPE-K feedback loop, illustrated in Figure 1, which
Monitors the system during execution, gathering data that
exposes the actual behavior, Analyzes this data to detect if the
observed behavior violates desired behavior, and then Plans
and Executes an intervention to contain the violation, based
on Knowledge about the system [15]. The combination of
Analysis and Planning is also referred to as diagnosis.
State-of-the-art: We focus on studies from the last decade,
using keyword search, snowballing and reverse citation search.
Most of the studies use a model-based approach, which cap-
tures the knowledge about the desired behavior of the system,
information needed to diagnose and plan which interventions
are needed, and the architectures to enable interventions. Ben-
como et al. review the literature on model-based approaches at
runtime [5]. Their review covers a larger scope than just self-
healing systems and includes 275 papers, where more than
half of those target fault-tolerance and self-adaptation.

There are two dominant approaches for analysis and plan-
ning: First, rule-based reasoning approaches combine the
two stages into a single diagnosis stage where interventions
are executed when events occur that match specific rules or
conditions. The strengths include readability and the efficient
processing of the rules, resulting in a scalable approach.
Farahani et al. present a self-healing architecture for industrial
paint robots that uses rule-based reasoning [16]. The authors
show an improvement in reliability and quality of the painting
process. Drawbacks include that interventions are typically not
optimal and rules have limited expressiveness [17].

Second, utility-driven approaches use optimization tech-
niques to determine the optimal intervention strategy using a
utility function that evaluates how valuable the result of each
possible intervention is. These approaches are characterized
by optimal decisions, but the optimization limits scalability to
large and complex configurations. Ghahremani et al. present a
hybrid that combines both approaches to achieve optimal deci-
sions, while being scalable to large dynamic architectures [18].

Runtime verification can be seen as a formal approach
to developing model-based self-aware, and self-healing sys-
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Fig. 1. MAPE-K feedback loop for self-healing systems (adapted from [15]).

tems [19]. In runtime verification, the desired behavior is
generally specified via logic formulae, often a form of linear
temporal logic (LTL), and the monitor checks if the formulae
hold for the events generated by the current execution. Tamura
et al. [20] analyze the benefits, challenges, and concerns of
using runtime verification to implement self-adaptive and self-
healing systems. Recent applications include a self-healing
extension for Node-RED, a visual programming solution for
the Internet-of-things [21], and a self-healing cloud computing
infrastructure that uses a hybrid of logic formulae and ‘tradi-
tional’ models for diagnosis and containment [22].
Evaluation: The evaluation of self-healing systems, i.e., the
analysis whether proposed self-healing approaches work as
intended, is an area of particular significance for researchers.
Graph grammars and graph transformations have been pro-
posed as a way to formally model and verify the changes
in self-healing and self-adaptive systems [23, 24]. Vogel et
al. [25] propose an extensible simulator for model-based
architectural self-healing systems called mRUBIS. The system
simulates an architectural runtime model of the system which
can be manipulated by adaptation engines to execute (simu-
lated) interventions. It also supports injecting faults into the
model which can be used for validation. Porter et al. propose
a testbed for automatic generation of distributed software
architectures and corresponding runtime applications [26]. The
system collects variety of failure recovery and adaptation
metrics which can be used for scientific analysis of the system.
Ghahremani et al. [27] reviewed the scientific literature to
examine the state-of-the-art in evaluating self-healing systems.
One of their main findings is that inputs used for evaluation
are often not representative of the type of failures that the
system is intended to handle. They show that incorrect as-
sumptions about the characteristics of failures result in large
performance prediction errors, inadequate selection of self-
healing approaches, and suboptimal parameter tuning.

III. ARTIFICIAL IMMUNE SYSTEMS

Background: Artificial immune systems (AISs) are a machine
learning paradigm inspired by the principles and processes
of biological immune systems. Like the biological immune
system, AISs are adaptive, self-learning systems that can learn
what is the normal situation, and use this knowledge to detect
emergence of abnormal situations, i.e., anomalies, in real-time.
The idea of using AISs to guard processes from undesired
influences has been around since the 1980s [28]. For most of
that time, the available processing power and machine learning
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Fig. 2. MAPE-K architecture for a self-healing artificial immune system.

technology were not sufficient to adaptively learn the complex
patterns involved in real systems, nor extrapolate them into
more generally applicable ones. However, recent advances
have increasingly enabled researchers to replicate the biolog-
ical immune system’s learning and memory capabilities for
progressively complex tasks, and AISs have found applications
in a wide range of domains [7, 29, 30].

Different features and analogies of the biological immune
system have inspired a variety of AIS mechanisms. The main
categories include: (1) immune response models, that lend
themselves well to anomaly detection and diagnosis, (2) clonal
selection algorithms, that are more geared towards (multi-
objective) optimization problems, and (3) immune network
algorithms, which allow for more complex interactions that en-
able searching for solutions of problems such as classification,
clustering and optimization [31]. In addition to these ‘pure’
approaches, researchers have increasingly worked on hybrid
approaches, that either enhance AISs with techniques such
as fuzzy set theory, Bayesian inference, information theory,
and kernel methods, or create ensembles of AISs with other
machine learning paradigms, such as artificial neural networks,
k-Nearest Neighbors, and support vector machines [31].

Figure 2 illustrates how the MAPE-K feedback loop can be
instantiated for a self-healing AIS using an immune-response
model. The Knowledge is a representation of the problem
domain that fits the AIS paradigm. A common representation
is that of a collection of antibodies. Each antibody is a
tuple consisting of matching conditions and corresponding
actions, and antibodies have weighted connections to each
other (known as their affinity). The Monitor acquires data
from the sensors and encodes it for matching in the Analysis
phase. Analysis aims to recognize pathogens (anomalies) by
computing an antibody “concentration” metric, based on the
data acquired and the matching conditions and affinities of the
antibodies. Planning selects the antibody that has the highest
concentration in the acquired data, and Execution responds
with the actions corresponding to the selected antibody. This
has two potential effects: it can trigger an intervention in
the Managed System, and it can result in updates of the
affinities between the selected and non-selected antibodies.
This feedback loop serves to make the system adaptive and,
for example, can be used to learn how to react more strongly
to anomalies and less strongly to normal behavior.

State-of-the-art: We focus on studies that use AISs in a self-
healing fashion. Note that although familiar terms such as fault
detection and fault diagnosis are used, most of these studies
are from different domains than self-healing software systems.

As mentioned in the introduction, Bayar et al. discuss
the application of AISs for fault detection, diagnosis, and
recovery (FDDR) in the domain of industrial manufacturing
and process engineering [7]. The authors show how data-
driven, quantitative methods such as AISs are well-suited for
FDDR, which strengthens our belief that they will suit self-
healing software systems as well. They discuss the challenges
and requirements of industrial FDDR, and classify the AIS
mechanisms used in three categories of AISs with increasing
complexity: (1) one-signal approaches based on self/non-self
(SNS) discrimination. These are simple models (as sketched
above) that select a single antibody as signal that a fault
occurred, but as a result may suffer from false positives; (2)
two-signal approaches that combine SNS discrimination with
the danger model of immune systems. This danger model
establishes an overall danger signal based on all triggered
antibodies, not just the one with the highest concentration. In
two-signal approaches, the first SNS signal is a necessary but
not sufficient condition to raise an alarm, and a second danger
signal is required as confirmation that a fault occurred, thereby
reducing false positives; and (3) immune network approaches,
which are more complex configurations of the above, where
fault information is propagated through a network representing
the system. This not only allows for fault detection, but
depending on the network configuration, also allows for fault
localization, fault classification, or root cause analysis [7].

Immune networks have been used, for example, to address
the problem of power system reconfiguration for effective
service restoration in a smart self-healing power grid [32].
The AIS is used for locating and isolating the fault, as well as
reconfiguring the network topology to reduce potential harm.

A considerable number of studies have focused on the
applications of self-healing AISs in robotics [33]. A recent
study proposes a robot immune system (RIS) as a basis for
developing self-healing robots [34]. The RIS addresses both
fault detection and fault recovery and its functionality was
evaluated through a series of increasingly complex simulation
scenarios using the Robot Operating System and Virtual Robot
Experimentation Platform. Swarm robotics is an approach for
the decentralized organization and coordination of a collection
of relatively simple robots with limited communication and
interaction abilities. Recent work proposed a new self-healing
mechanism for robotic swarms that builds on the granuloma
formulation process in biological immune systems, which is
the process of encapsulating pathogens in a protective layer to
prevent the pathogen from spreading [35]. When applied in an
AIS for swarm robotics, the granuloma formulation concept
is used for fault containment by isolating defective robots.

The anomaly detection capabilities of AISs have been
successfully applied in computer and network security [36]:
Swimmer et al. use an AIS based on the danger model for
protecting a network from external threats such as computer



viruses and worms, and argue that a two-signal based approach
is essential in this context to achieve quick responses and
reduce false positives [37]. Fernandes et al. survey applica-
tions of AISs to computer security, ranging from intrusion
detection systems, network flooding/(D)DOS detection, fraud
detection, spam detection, and phishing detection to malware
detection [38]. The survey study concludes that AISs serve
well as especially-tailored tools to address security issues,
but their adoption in practice has been lacking. A recent
study by Aldhaheri et al. presents a comprehensive survey of
AIS approaches to secure the Internet-of-Things (IoT) [39].
The study covers various self-* aspects, such as self-learning,
self-tolerance, self-adaptation, self-organizing and self-healing
systems. They conclude that AIS approaches fit well in the
context of dynamic environments such as IoT but scaling
problems still exist. Some of the challenges they raise have to
do with obtaining realistic datasets, and obtaining a realistic
ground truth for evaluation.

IV. RESEARCH DIRECTIONS

When looking at the literature on self-healing systems, we see
that data-driven approaches such as AISs are underdeveloped
in the context of self-healing software systems. While most
AIS studies concentrate on other application domains, the
majority of research on self-healing software systems uses a
model-driven approach. However, these models are hard to
develop for large and complex software-intensive systems, and
are difficult to keep up-to-date as the system evolves [6].

In this section, we focus on data-driven self-healing soft-
ware systems based on AISs, and explore a number of promis-
ing research directions that can help to advance the state-of-
the-art in AISs and self-healing software systems.
Monitoring: The appropriate data should be collected from
managed systems [40, 41]. We see the following questions:

• What observational data is needed for anomaly detection?
• What are effective methods to collect this data?
• Can runtime observational data be augmented with soft-

ware development data to increase detection accuracy?
We believe the SANER community has specific expertise to
answer the third question, for example, through its connections
with earlier work on conceptual coupling.
Anomaly Detection: We have seen that AISs have success-
fully been used for anomaly detection in various domains, and
their ability to adapt to changing environments may suit evolv-
ing software systems as well. The following questions arise
when considering the use of AISs for self-healing software:

• To what extent can we successfully learn models of normal
behavior purely from runtime observational data?

• To what extent can we detect, and quantify, anomalies in
the observational data to identify (potential) faults?

• Can we successfully recognize anomalies in a system that
is being evolved and therefore changes behavior?

Fault Diagnosis: Fault diagnosis aims to identify the root
causes of a detected anomaly, and investigate its impact on the
system’s components [42]. This process becomes a challenging
task for large and complex software-intensive systems, due

to their distributed, heterogeneous, and sometimes highly
dynamic architecture [43]. Yet, also for these systems we need
to be able to accurately find the causes and potential effects
of faults at runtime. This raises the following questions:

• What are effective techniques to investigate and identify
the root causes of a detected fault/anomaly?

• What are successful strategies for root cause analysis in dis-
tributed, heterogeneous, and highly dynamic architectures,
where diagnostic information may be scattered across a
dynamically changing collection of components?

• What proactive actions can be taken to make the subject
system easier to diagnose? At what cost?

Starting points include diagnosis techniques such as spectrum-
based fault localization (SFL) [44, 45], and more recent
approaches based on convolutional neural networks [46].
Fault Recovery: A successful self-healing software system
should mitigate faults and their observable side-effects to the
extent that this is possible. The recovery should include all
affected components of the managed system to avoid cascad-
ing failures. Moreover, the impact and risk of the recovery
mechanisms should be assessed before applying it at runtime.
In this context, the following questions arise:

• What are the possible mechanisms to recover from a faulty
state to a normal state? Which recovery techniques are
effective for which level of the subject system?

• To what extent is it possible to recover from a faulty state?
Is it sufficient to only address the original root cause of
the failure, or should the recovery process “cascade” to all
affected components, similar to cascading failures?

• How is a recovery mechanism verified at runtime? To what
extent can we learn patterns from failure records and take
proactive actions for containment of faults?

Starting points include earlier work on dependable computing
and fault-tolerant architectures [47–49]
Evaluation: An important research area in the domain of
self-healing software systems is evaluation of the self-healing
technology itself. Proper validation of self-healing technology
requires realistic datasets and, ideally, systems that can be
shared as test subjects, so that approaches can be bench-
marked and compared. This raises the following questions:

• How, and at what scale, can realistic faults scenarios be
modeled and executed to enable effective and repeatable
evaluation and validation of self-healing technology?

• To what extent do we need real world observational data
and failure traces, or can we simulate or synthesize these?

• What are effective methods for generating the data needed
to evaluate and validate self-healing technology?

The SEAMS community has recently started collecting so-
called examplars that could form a starting point for this line
of work [50].

V. CONCLUDING REMARKS

This paper argues for more research on data-driven self-
healing software systems, and identifies artificial immune
systems as a particularly well-suited paradigm because of
its inherent anomaly detection and diagnosis capabilities. We



explore the state-of-the art in self-healing systems as well as
artificial immune systems, and identify a series of promising
research directions, highlighting initial research questions and
connections to expertise in the SANER community.
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