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Abstract—Developers often refactor code to improve the
maintainability and comprehension of the software. There are
many studies on refactoring activities in traditional software
systems. However, refactoring in data-intensive systems is not well
explored. Understanding the refactoring practices of developers
is important to develop efficient tool support.We conducted a
longitudinal study of refactoring activities in data access classes
using 12 data-intensive subject systems. We investigated the
prevalence and evolution of refactorings and the association of
refactorings with data access smells. We also conducted a manual
analysis of over 378 samples of data access refactoring instances
to identify the functionalities of the code that are targeted by such
refactorings. Our results show that (1) data access refactorings
are prevalent and different in type. Rename variable is the most
prevalent data access refactoring. (2) The prevalence and type
of refactorings vary as systems evolve in time. (3) Most data
access refactorings target codes that implement data fetching and
insertion. (4) Data access refactorings do not generally touch SQL
queries. Overall, the results show that data access refactorings
focus on improving the code quality but not the underlying data
access operations. Hence, more work is needed from the research
community on providing awareness and support to practitioners
on the benefits of addressing data access smells with refactorings.

Keywords- refactoring; data-intensive systems; data access
classes; database access; empirical study

I. INTRODUCTION

The vast amount of data produced by digital devices and
humans have contributed to the development of data-driven
applications, and they are becoming critical for modern civi-
lization; affecting people in all areas of life [1].

The development of data-intensive systems typically re-
quires the integration of a multitude of specialized frameworks
for data storage (e.g., relational or NoSQL databases), pro-
cessing (e.g., Hadoop, Spark), and learning (e.g., TensorFlow,
Scikit-learn) which poses several design, implementation, and
quality assurance challenges [1]–[3]. Developers of data-
intensive systems also often face the usual challenges of
release pressures which forces them to compromise software
quality; introducing technical debt [2] and code smells [4].
Data-intensive systems devote their main functionality to data
access and manipulation. Hence, they are prone to both
traditional code smells and data access specific code smells
(e.g., SQL code smells [5]) [4]. Code smells can be removed
by developers through refactoring [6].

Although several researchers have investigated the preva-
lence (e.g., [7], [8]), co-occurrence [9], motivation [8], [10]
and impacts [11]–[13] of refactoring in traditional software

systems, refactoring in data-intensive systems is not yet in-
vestigated. The critical nature of data access code in such
systems and the potential susceptibility of such systems to both
traditional and data access specific smells calls for separate
attention to data access refactoring. We define data access
refactoring as refactoring performed on data access classes.
Data access classes are classes that perform direct interactions
with databases or other persistence systems via calls to driver
functions or APIs. Data access classes are responsible for
implementing data access logic in data-intensive systems. We
refer to non data access classes as regular classes and their
refactoring as regular refactoring to differentiate from data
access classes. Refactoring in data access classes introduces
further complexity as it involves read and writes interaction
with a database. Developers must take into account improving
the performance and robustness of data access operations
besides improving the understandability and maintainability
of the source code. Hence separate attention should be given
to refactoring data access classes. The goal of this study
is to address this gap in the literature by investigating the
characteristics of refactoring activities in data access classes.
We conduct a case study on open source data-intensive systems
to answer the following research questions.

RQ1: How prevalent are refactorings in data access classes?
We found that refactorings are prevalent in both data
access classes and regular classes. Specifically, Rename
variable is the most prevalent refactoring in data access
classes while Move attribute is the most prevalent in
regular classes.

RQ2: How do refactoring activities change during the life-
time of the subject systems? We found that refactoring
activities are distributed by type and in time as sys-
tems evolve. Furthermore, data access refactoring has a
tendency to be applied at later stages of the systems’
evolution compared to regular refactoring.

RQ3: What do code elements targeted by data access refac-
torings implement? We identified 36 different function-
alities that focus on data access, database management,
testing, query manipulation, and other functionalities not
specific to data access classes such as initialization of
components and other helper functions. The most preva-
lent functionality is data fetching spanning 27.6% of the
analyzed sample refactorings.
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RQ4: Do data access refactoring activities touch SQL
queries and SQL code smells? We found that data
access refactorings do not generally touch SQL queries
and SQL smells. Using line level matching, only 0.45% of
refactoring instances touched SQL queries. Furthermore,
none of the matched SQL queries had SQL code smell.

II. STUDY DESIGN
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Fig. 1. Overview of the study method

In this section, we describe the design of our case study
that aims to understand refactoring activities in data-intensive
systems. We address the following four research questions:

RQ1: How prevalent are refactorings in data access
classes?

RQ2: How do refactoring activities change during the
lifetime of the subject systems?

RQ3: What do code elements targeted by data access
refactorings implement?

RQ4: Do data access refactoring activities touch SQL
queries and SQL code smells?

A. Data collection

The context of this study is data-intensive systems. To
select our subject systems, we started with the subject systems
identified in the work of Muse et al. [4] in which they studied
the prevalence and impact of SQL smells using data-intensive
systems as subject systems. They studied 150 open source
data-intensive systems collected from GitHub. Our research
questions require analyzing every version of the subject sys-
tems. Hence, we could not use all of the subject systems due
to time and resource constraints. Muse et al. provided the list
of the subject systems together with information about the
number of SQL queries and number of data access classes
per subject system 1. Using the number of SQL queries as a
proxy to pick the most data-intensive systems, we ranked the
systems in decreasing order of the number of SQL queries and
took the first 12 subject systems. Although bio2rdf-scripts2

1https://bit.ly/39RXcPI
2https://github.com/bio2rdf/bio2rdf-scripts

TABLE I
LIST OF SUBJECT SYSTEMS WITH A NUMBER OF COMMITS, NUMBER OF

QUERIES, AND NUMBER OF DATA ACCESS FILES AND NUMBER OF
REFACTORING INSTANCES

Project Name Number of
commits

Number of
Queries

Number of
data access
files

Number of
refactoring

Eclipse-ee4j/eclipselink 10403 1371 43 80, 311
Adempiere/adempiere 15754 941 365 2,104,700
Appirio-tech/direct-app 3073 876 95 1492
DotCMS/core 17957 740 40 60, 211
Wso2/carbon-apimgt 33174 656 12 32,101
Oltpbenchmark/oltpbench 1110 303 131 2396
Mtotschnig/MyExpenses 9065 287 3 9949
Querydsl/querydsl 7874 249 23 38,065
Wordpress-mobile/
WordPress-Android 59048 221 17 31, 647

AppLozic/
Applozic-Android-SDK 2298 202 6 2136

Xipki/xipki 6328 193 21 88, 623
Deegree/deegree3 8692 190 45 21, 459

project has the highest number of queries, the number of
refactoring instances detected was only 6. Hence we removed
this project from our list of subject systems. Table I shows
the summary of our subject systems. We analyzed 2, 473,
090 refactoring instances from 174776 commits. The systems
have an average of 519 queries and 67 data access classes.
Furthermore, the subject systems have 206, 091 refactoring
instances on average.

B. Data Processing

Figure 1 provides an overview of our data extraction ap-
proach. The steps taken in the figure are labeled for easier
tracking. In this sub-section, we describe the details of the
data collection and analysis approach followed to answer our
research questions.

1) Extracting List of revisions: After we cloned each sub-
ject system, we run the git rev-list ‘branch‘ command to get
the list of revisions in the default branch of each system. This
command gets commit ids of revisions from recent to oldest
for the given branch. We focused our analysis on the default
or master branch of each system.

2) Extracting commit information: One of the independent
variables in this study is the commit time. To collect metadata
associated with a commit including the committer time for
each revision, we used PyDriller [14], a python framework
for mining software repositories. This framework provides an
API to collect information from a remote or locally cloned
Github repository.

3) Detecting refactoring: There are many refactoring de-
tection tools available (e.g., [15]–[19]). However, we used
Refactoring Miner [19] to detect refactoring in our subject
systems for the following advantages. One, it has state-of-the-
art average precision of 99.6% and an average recall of 94%,
two, the detection approach does not require code similarity
thresholds with default values obtained from empirical studies.
Those thresholds affect the performance and generalization
of the tools. Third, It does not require building snapshots
before analysis which greatly reduces the data collection time.
Refactoring Miner relies on AST-based statement matching



techniques to list refactoring instances between successive
revisions in a commit history. We deployed the latest version,
2.1, which supports 81 different types of refactoring instances.
Refactoring Miner takes a repository and branch to analyze
and generates a JSON document containing all the detected
refactoring types on the history of the specified branch.

4) Refactoring dataset: We merged the result of the refac-
toring detection for all systems and build the refactoring
dataset. Each row in this dataset contains repository name,
commit id, refactoring id, refactoring type, refactoring descrip-
tion, file name, method lines, refactoring lines. The refactoring
id is automatically generated to give a unique id for each refac-
toring instance; refactoring type takes one of the 81 refactoring
types; refactoring description contains the description of the
refactoring generated by Refactoring Miner; file name contains
the list of files associated with the refactoring; method lines
contains the list of method line ranges for all the methods
associated with the refactoring; refactoring lines contains the
list of lines touched by the refactoring.

5) Identifying data access refactoring instances: We
relied on import statements to identify data access classes
in our subject systems. We particularly looked for import
statements for SQL projects corresponding to the underlying
persistence technologies such as Android SQLite API,
JDBC, and Hibernate. The import statements include
but not limited to, android.database.sqlite,
android.database.DatabaseUtils,
org.hibernate.Query, org.hibernate.SQLQuery,
java.sql.Statement. This approach was used in the
work of Naggy et al. [20] who proposed the SQLInspect tool
for static analysis and SQL code smell detection and on the
work of Muse et al. [4]. To avoid the possibility of unused
import statements in the code, we added another criteria for
a data access class to be associated with at least one SQL
query. Using this approach, we identified 18,892 refactoring
instances as data access refactoring instances.

6) Linking refactoring dataset with commit information:
To answer the second research question, we combined the
refactoring dataset and the collected commit information using
the commit id. The commit information contains author time
and committer time. However, we used committer time for our
analysis to represent the time of a system revision.

7) Manual analysis of sample data access refactoring in-
stances: To answer research question RQ3, we manually
inspected a statistically significant sample of data access
refactoring instances. We have 18,892 potential data access
refactoring instances. We set our sample size to 378 to achieve
a 95% confidence level and 5% margin of error. Hence, we
selected 378 data access refactoring instances using simple
random sampling. The manual analysis aims to identify the
functionalities associated with code artifacts that are targeted
by the data access refactoring activities. We examined the
source code, variable name, method name, and class name
to identify the functionality of the code artifact. We used
open coding to come up with different functional categories.
Two people including the first author and a volunteer with

four years of experience in software development and analysis
labeled all the data and resolved conflicts through discussion.

8) Detecting SQL query and smell: To answer RQ4, we
run SQLInspect [20] on our subject systems, to extract SQL
queries and SQL smells. SQLInspect performs static analysis
to extract SQL queries embedded in java source code and iden-
tify four types of SQL code smells namely: Implicit Columns,
Fear of the Unknown, Random Selection, and Ambiguous
Groups.

Implicit Columns smell occurs when select queries fetch
unnecessary columns from the database by using select all (*).
It may cause performance issues such as bandwidth wastage
and creates unnecessary coupling between the database and
application code [21]. Fear of the unknown smell occurs
when improper handling of null values and null check during
data access causes unexpected error [5]. Ambiguous Groups
occurs when developers misuse the GROUP BY statement by
adding columns in the select statement that are not aggregated
[21]. Random Selection smell occurs when querying a single
random row from the database which forces a full scan which
has a negative performance impact for large size tables [21].

SQLInspect can detect queries from applications that utilize
data access frameworks such as SQLite, JDBC, and Hibernate.
We run SQLInspect on all snapshots that are associated with at
least one data access refactoring instance. We obtain a separate
dataset for query and smell instances. Each query instance is
associated with commit id, class name, query value, and line
number of the query location. Similarly, each smell instance
is associated with commit id, class name, smell type, and
location.

9) Linking refactoring dataset with SQL query and smell
dataset: We linked the data access refactoring dataset and
the query dataset using line-level matching and method-level
matching, respectively. The common criteria for both ap-
proaches is that both the refactoring and query instances must
be from the same repository, the same snapshot, and belong
to the same class. Line level matching is strict in the sense
that the line number of the query should be one of the lines
involved in the target refactoring instance. In method level
matching, we match a query instance whose location is inside
one of the target methods of the target refactoring instance.
We used a similar approach to match the smell dataset with
the refactoring dataset. While line-level matching provides a
more accurate representation of association, many refactoring
instances are applied to a method that contains a query and
the method level matching captures the indirect association
between refactoring activities and queries or smells.

C. Replication Package
We made our dataset, data collection, and data analysis

scripts publicly available at [22], to allow for replications and
extensions of our work.

III. CASE STUDY RESULTS

This section presents the results of our four research ques-
tions. For each research question, we present the motivation
behind the question, the analysis approach and the findings.



A. RQ1: How prevalent are refactorings in data access
classes?

Motivation. Since data access classes are important in
data-intensive systems, studying the prevalence of refactoring
activities in such classes is critical. On one hand, if the
refactorings are not prevalent, it could show that they are
not getting enough attention. On the other hand, if they are
prevalent, we further investigate the characteristics of such
refactorings.

Approach. We use two metrics to measure the prevalence
of refactorings. These metrics are:

• Number of refactoring instances: The absolute number of
refactoring instances in data access or regular classes.

• Refactoring density: defined in Equation 1. Where no of
refactorings is the number of applied refactorings and
average code size is the average number of software lines
of code of the target class overall revisions. We applied
Square root to reduce the scale of the code size to match
the number of refactorings.

Refactoring density =
no of refactorings√
average code size

(1)

We utilize the refactoring dataset to answer this research
question. In addition, we used the tool SlOCCount 3 to
determine the code size of each snapshot of a class involved
in refactoring. SLOCCount can count the physical source line
of code of a java source file. We first compare the average
refactoring frequency between data access and regular classes.
Second, we plot the distribution of refactoring density for
data access classes and regular classes using a violin plot.
Finally, we examine specific types of refactoring instances and
compare their prevalence.

Findings. Results of our analysis show that:
� Refactorings are not equally prevalent in data access

classes and regular classes.
We have 18,892 refactoring instances associated with data

access classes and 2,454,198 refactoring instances associated
with regular classes. The refactoring dataset contains 1318
data access classes and 81,857 regular classes. The average
refactoring in data access classes (14.33) is lower than regular
classes (29.98) showing that data access refactoring is less
prevalent compared to regular refactoring. While the aver-
age refactoring frequency provides insight into the overall
prevalence of refactoring, it gives equal weight to each class.
However, there could be the case that some classes have
more attention from developers compared to other classes.
To investigate this, we plotted the distribution of refactoring
density for data access classes and regular classes.
� The refactoring density of data access classes and

regular classes show a slight but statistically significant
difference in distribution.

Figure 2 shows the distribution of refactoring density among
data access classes denoted by “DAC” and regular classes

3https://dwheeler.com/sloccount/

denoted by “Regular”. The 25, 50, and 75 percentiles are
indicated in the plot. We can see that there is a difference
in the distribution of refactoring density between data access
classes and regular classes. The maximum refactoring density
is 13.8 for data access classes and 1377 for regular classes.
We can see that for both regular and data access classes, the
refactoring density is small with median value of 0.176 and
0.335 respectively. Since the number of regular classes is much
larger than the number of data access classes, we randomly
selected 1318 regular classes and performed a Mann–Whitney
U test to see if there is a statistically significant difference
between the distribution of refactoring densities. We define the
null hypothesis as H0: The distribution of refactoring density
between data access class and regular class is equal. We re-
jected H0 with a p-value < 2.2e-16 indicating the distribution
in refactoring frequencies is not equal. Furthermore, the 95
percent confidence interval is between 0.0823 and 0.1148, with
a difference in location of 0.098 indicating that the refactoring
density of data access classes is only slightly lower than that
of regular classes.

The top five data access classes in refactoring density were
observed to have large code sizes and long methods. Such
classes implemented core data access functions or schema
definitions. The data access class with one of the highest
refactoring densities is ApiMgtDAO.java 4 from the project
Carbon-apimgt. This class implements the API management
data access functionalities with average code size of 11, 156.55
SLOC and a refactoring density of 10.34.
� The most prevalent refactoring type is Rename Variable

for data access and Move Attribute for regular classes.
We further analyzed the specific types of refactoring in-

stances that are prevalent both in data access classes and
regular classes. Table II summarizes the most prevalent refac-
toring types in data access and regular classes. The most
prevalent refactoring type in data access classes is Rename
Variable (10%) which is associated with improving program
comprehension. All the prevalent refactoring types in data
access classes are either variable level or method level which
shows that simpler refactoring activities that do not span more
than one class are preferred by the developers over refactoring
types that require touching multiple classes. Besides program
comprehension, refactoring in data access classes is associated
with simplifying long methods, Extract Method (4.7%) is also
popular refactoring activity in data access classes.

Move Attribute refactoring is the most prevalent spanning
60% of all refactoring in regular classes. Move Attribute refac-
toring is aimed at removing smells such as Shotgun Surgery
and reduces unnecessary class coupling. Another prevalent
refactoring, Change Attribute Access Modifier (25%), focuses
on improving encapsulation. This shows that most of the
refactoring on regular classes is done to improve inter-class
coupling and encapsulation.

4https://bit.ly/36XxUyk



TABLE II
TOP TEN MOST PREVALENT REFACTORING TYPES. THE TABLE SHOWS THE NUMBER OF REFACTORING INSTANCES (COUNT) AND PERCENTAGE AGAINST

THE TOTAL NUMBER OF DATA ACCESS AND REGULAR CLASS REFACTORING INSTANCES.

Data access class Regular class

Refactoring Type count percentage Refactoring Type count percentage

Rename Variable 1880 9.951 Move Attribute 1470365 59.912
Change Variable Type 1539 8.146 Change Attribute Access Modifier 600345 24.462
Add Parameter 1119 5.923 Add Method Annotation 26913 1.097
Add Parameter Modifier 998 5.283 Rename Method 22963 0.936
Change Parameter Type 910 4.817 Change Parameter Type 21618 0.881
Rename Parameter 888 4.7 Change Variable Type 21372 0.871
Extract Method 887 4.695 Change Return Type 19459 0.793
Add Method Annotation 816 4.319 Add Parameter 18528 0.755
Rename Method 705 3.732 Rename Variable 18345 0.747
Change Method Access Modifier 620 3.282 Rename Parameter 16107 0.656
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Fig. 2. Violin Plot of the distribution of refactoring density in data access
classes and regular classes

RQ1 Summary: Refactorings are slightly less prevalent in
data access classes compared to regular classes. Further-
more, Rename Variable is the most prevalent refactoring
type in data access classes. Data access refactoring activi-
ties are concentrated on few core classes.

B. RQ2: How do refactoring activities change during the
lifetime of the subject systems?

Motivation. Software becomes complex as it evolves due to
the added and improved features. It is interesting to study if the
evolution of software determines the type and prevalence of
refactoring activities performed by developers on data access
classes. If the refactoring activities are equally frequent in
all stages, it shows that developers considered refactoring as
a regular activity. Otherwise, it may suggest that refactoring
activities in data-intensive systems are triggered by the in-
creasing complexity introduced during evolution.

Approach. We use relative commit time as a metric to
express when a refactoring happens. Since every refactoring
is associated with a commit, we use the associated commit
time. Due to the variation in the maturity of the subject
systems we use relative time rather than an absolute time for
correct comparison. Relative commit time is computed using

Equation 2 where distance is computed as the number of
commits the subject system has at the time of the refactoring
and totalCommits is the total number of commits the subject
system has at the time of the experiment.

RelativeCommitTime(%) =
distance ∗ 100
TotalCommits

(2)

We linked the commit information and the refactoring
dataset using the commit id. Then, we computed the relative
commit time for each refactoring using Equation 2. We first
show the distribution of relative commit time for data ac-
cess refactoring and regular refactoring instances using violin
plots. Second, we statistically compare the two distributions
using Mann–Whitney U test. Third, we compare the relative
commit time between data access and regular refactorings at
the subject system level. Finally, we show the summary of
the relative commit time distribution for most prevalent data
access refactoring types.

Findings. Results show that:
� The median relative commit time for data access

refactorings is higher compared to regular refactorings.
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Fig. 3. Violin Plot of the distribution of relative commit time in data access
refactorings (DAC) and regular refactorings

Figure 3 shows the distribution of relative commit time for
data access refactorings and regular refactorings. As can be
seen on Figure 3, the relative commit time is different between



data access and regular refactorings. A large number of regular
refactorings occurred in the first 25% relative commit time or
during the beginning stages of the projects. However, for data
access classes, the refactoring activities are distributed across
all project evolution stages with more tendency to later stages.
The median relative commit time for data access refactorings
(48.35%) is higher compared to regular counterparts (16.88%).
Furthermore, 25% of data access refactorings occurred below
relative commit time of 30.31% while 25% of regular refactor-
ings occurred below 9.89%. This shows that developers often
perform regular refactorings during the beginning stages of
the subject systems evolution while they perform data access
refactorings throughout the evolution of the subject systems.
� The difference in the distribution of relative commit

time between data access and regular refactorings is
statistically significant.

We performed Mann–Whitney U test on relative commit
time using all data access refactorings (18886) and equal size
sample of regular refactorings, and rejected the null hypothesis
with (W = 6458096, p-value < 2.2e-16). This indicates that the
difference in distribution between the relative commit time of
data access refactorings and regular refactorings is statistically
significant.
� Data access refactorings have a higher median relative

commit time in the majority of the subject systems.
We further analyzed the relative commit time between data

access refactorings and regular refactorings by splitting the
data by subject systems. The median relative commit time
is higher for data access refactorings compared to regular
refactorings in 7 out of 12 subject systems (58.3%). Four of
the five systems where the regular refactoring commit time is
higher are associated with a low number of data access classes
and data access refactorings. The low number of data access
refactorings is expected given the low number of data access
classes.
� The Add Method Annotation refactoring often occur at

later stages of the evolution of the subject systems and in
data access classes.

Another interesting analysis would be to investigate what
type of data access refactorings are performed by developers
at different stages of the subject systems evolution. We fo-
cused our analysis on the top 10 most prevalent data access
refactoring types from RQ1. Table III shows the summary of
the distribution of relative commit time for the top ten most
prevalent data access refactorings sorted by the median. If we
divide the median of relative commit time into four quartiles,
we can see that Add Method Annotation belongs to the fourth
quartile indicating that this refactoring is often performed by
developers at the latest stage of the evolution of the systems.
The median relative commit time of the other refactoring types
are found at the second and third quartiles, indicating that they
are performed in the middle stages of the evolution of the
subject systems. On the other hand, Add Parameter Modifier
is often performed at the early stages (median=33.668%) of the
evolution of the subject systems with 75% of such refactorings
having relative commit time below 33.683%.

RQ2 Summary: The median relative commit time for data
access refactorings (48.35%) is higher than that of the reg-
ular refactorings (16.88%), indicating that developers have
a tendency to refactor data access classes at later stages
of the evolution of systems compared to regular classes.
Among the most prevalent data access refactoring types,
Add Method Annotation has a tendency to be applied at the
later stages of the software evolution (median=85.47%).

C. RQ3: What do code elements targeted by data access
refactorings implement?

Motivation. In RQ1, we have shown that refactoring ac-
tivities are prevalent in data access classes. However, not all
components of data access classes are directly associated with
data access. It is expected that data access classes could also
contain constructors, accessors, mutators, and non data access
logic implementations. Hence, it is necessary to investigate if
data access refactorings focus on the actual data access logic
or other non data access functionalities.

Approach. To identify functionalities of code artifacts as-
sociated with refactoring in data access classes, we randomly
sampled 378 data access refactoring instances and manually
analyzed the code associated with each refactoring. Out of the
378 analyzed samples, 10 were false positives. In addition,
We were not able to assign functionality to 2 instances
since they were associated with empty methods and their
method name is not descriptive enough. Finally, we remained
with 366 refactoring instances. We first describe each of the
identified functionalities and then discuss the prevalence of the
functionalities using absolute numbers and percentages against
the total sample.

Finding. Fetching data and inserting data were the most
prevalent functionalities implemented by refactored code.

Figure 4 shows the identified functionalities categorized
by seven higher-level categories. The number of refactoring
instances is indicated for the categories as well as each
functionality. We will describe the categories in the following
paragraphs.
� Data Access: Refactoring instances that target code

elements that perform read and write operations on the
data stored in databases are categorized under this category.
We categorized code elements that contain one or more
data manipulation SQL queries (SELECT, INSERT, UPDATE
and DELETE) and code elements that are associated with
managing transactions under data access. A large number
of refactoring instances (46.17%) are associated with data
access. In particular, Fetch data, a functionality associated
with reading some data from database is the most prevalent
(27.6%) followed by Insert data (11.74%) and Update data
(3.55%). One refactoring instance was associated with Manage
Transaction and more specifically rolling back a transaction.
� Initialize fields and components: Refactoring instances

that target code elements that initialize or set data fields, utility
fields, or user interface (UI) components are categorized under
this functionality. Data fields are variables that represent a



TABLE III
DISTRIBUTION OF RELATIVE COMMIT TIME FOR THE TOP TEN PREVALENT DATA ACCESS REFACTORING TYPES.

Refactoring Type count mean std min 25% 50% 75% max

Add Method Annotation 816 69.037 30.263 4.248 44.532 85.470 93.424 98.707
Rename Parameter 888 56.270 30.873 0.024 30.174 57.387 82.016 99.201
Rename Variable 1880 54.250 25.696 0.051 34.077 56.409 76.458 99.243
Extract Method 887 52.945 29.327 0.245 28.157 53.866 77.619 99.193
Change Parameter Type 910 52.266 30.011 0.051 29.075 50.170 81.293 98.994
Rename Method 705 50.903 27.934 0.391 30.028 48.467 74.205 99.201
Change Method Access Modifier 620 51.837 30.693 0.214 21.556 48.467 83.764 99.092
Change Variable Type 1539 49.893 28.986 0.265 27.889 48.139 78.490 98.839
Add Parameter 1119 44.238 29.789 0.051 20.219 39.075 71.615 99.066
Add Parameter Modifier 998 37.624 13.028 9.175 33.652 33.668 33.683 98.016

database entity and whose values are used to capture data from
a database or to populate a database. On the other hand, utility
fields are used to capture non-data access related entities.
The Initialize fields and components functionality is associated
with 19.12% of the refactoring instances. The Store data ele-
ment functionality associated with initializing data fields is the
most prevalent functionality associated with 7.1% refactoring
instances, in this group followed by Class constructor (6.83%)
and Initialize UI element (2.45%), associated with initializing
graphical user interface components with data obtained from
a database or as a result of some intermediate transformation
of data. Data model, a functionality associated with providing
an abstraction of database entities is associated with 1.36% of
the refactoring instances. The remaining functionalities i.e.,
Initialize utility fields, Field accessor (get the value of a
field) and function parameter (storing passed value as function
parameters) make 2.46% of refactoring instances.
� Helper: This category regroups refactoring instances tar-

geting code elements that are involved in the implementation
of business logic that is not directly associated with database
access, such as parsing objects (access elements of complex
objects), validation of user input, and handling UI events. The
Helper functionality is associated with 15.03% of refactoring
instances. Implement non data access business logic is the
most prevalent functionality in this group. It is associated with
9.3% refactoring instances followed by Parse object which is
associated with 4.1% instances. Input validation and Handle
UI event functionalities are less prevalent; each are associated
with only 1 instance.
� Manage query and result set: Refactoring instances that

target code elements associated with manipulating the query,
parsing, and transforming the query result set are grouped
under this category. This group accounts for 7.38% of refac-
toring instances. Specifically, Decorate query, functionality
associated with pre-processing a query before passing to the
database takes the largest share (3.55%) followed by Process
result set (2.19%), associated with parsing and iterating over
query results. Prepare statement, associated with parameter-
izing queries, Implement database dialect, associated with
defining particular features of the SQL query available when
accessing a data entity, and Implement SQL query, associated
with abstracting SQL data access over data sources that do not
directly support SQL queries, account for 1.64% in total.

� Manage database: We categorize refactoring instances
that target code elements involved in connecting with database,
managing the index, managing constraints, managing triggers,
and importing the database under this group. The Manage
database functionality is associated with 6.83% refactoring
instances. Close database connection functionality, associ-
ated with terminating a database connection and releasing
resources, is the most prevalent in this group, followed by
Configure database access (1.09%), associated with setting
the connection parameters and credentials, and Connect to
database (1.09%). The Import database functionality is as-
sociated with creating a database with a template or data
obtained from external files and accounts for 0.82% of the
refactoring instances. Create index, Delete index, change index
functionalities are focused on managing indexes and account
for 1.09% of the refactoring instances. The remaining func-
tionalities (Upgrade table, drop constraint, create trigger and
create database are associated with one refactoring instance
each.)

� Test code: Refactoring instances that target code elements
involved in testing production code elements are categorized
under Test code. The Test code functionality is associated
with 5.46% of the refactoring instances. The most common
functionality in Test code is testing production code involved
in database read and write operations, known as Test data
access. It accounts for 4.37% of refactoring instances. On the
other hand, the Test non data access functionality, associated
with testing production code that is not directly associated with
database access is associated with 1 refactoring instance. Code
elements involved with testing the performance of a certain
query are categorized as Test query performance and they are
associated with only two refactoring instances. Code elements
that specifically test database drivers are categorized as Test
database driver.

RQ3 Summary: Data access functionality is associated
with a large number of refactoring instances accounting for
46.17% of the analyzed data access refactorings. Among
data access functionalities, fetching data takes the largest
share accounting for 27.6% of the analyzed data access
refactorings followed by inserting data.
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Fig. 4. Functionalities of code artifacts associated with refactoring in data
access classes. The sub-categories are ordered from the most prevalent to the
least prevalent.

D. RQ4: Do data access refactoring activities touch SQL
queries and SQL code smells?

Motivation. In RQ3, we showed that fetching data and
inserting data are associated with most of the data access refac-
toring instances. All our subject systems use SQL for database
interactions including fetching and inserting data. Hence, it is
interesting to investigate if SQL statements change during data
access refactoring activities. Furthermore, SQL code smells are
shown to be prevalent in data-intensive systems [4] and it is
also interesting to see if queries that contain such smells are
touched during data access refactorings.

Approach.
To investigate if data access refactoring instances touch SQL

queries and SQL code smells, we matched the refactoring
dataset with query dataset and smell dataset using line level
and method level matching. Line level matching has more strict
criteria than method level matching since the line number of
the query or smell should be the same as the line number of
the code involved in refactoring. On the other hand, Method
level matching is less restrictive as it checks if the query or
smell is part of the method involved with the refactoring. For
both cases, the subject system, revision, and class Name should
match between the query, smell, and refactoring dataset.

Findings. Results show that:
� Only small fractions of data access refactorings touch

code lines containing SQL query.
1) Data access refactoring and SQL queries: Our result

shows that a small number of refactoring instances touched
SQL queries (using line level matching). We have 18, 892 data
access refactoring instances out of which only 86 instances
(0.45%) touched an SQL query. When we further analyze
the types of the 86 refactoring instances involved with SQL
queries, the most prevalent type is Change Return Type with
17 refactoring instances (19.76%), followed by Add Parameter
with 12 refactoring instances (13.95%), Extract Method with
10 refactoring instances (11.63%), and Change Variable Type

with 7 refactoring instances (8.14%).
� 30% of data access refactorings were applied on a method

that contains SQL queries.
When we consider method level matching, we get more

SQL queries associated with the refactoring instances as ex-
pected. Results show that 5607 refactoring instances (29.68%)
contained SQL queries inside the target methods. When we
see the refactoring types, the most prevalent type is Rename
Variable with 821 instances (14.64%), followed by Change
Variable Type with 603 instances (10.75%), Add Parameter
with 409 instances (7.29%), and Change Parameter Type with
355 instances (6.33%). Such types of refactorings focus on
fixing lexical smells or reflecting API changes and are not
associated with modifying query or improving SQL code
smells.

2) Data access refactoring and SQL smells: SQL smells
are detected from SQL queries. Hence, the smell dataset
is a subset of the query dataset. Although SQLInspect can
detect Implicit columns, Fear of the Unknown, Ambiguous
Groups and Random Selection, the smell dataset only contains
instances of Implicit columns smell and Fear of the unknown
SQL smell. Indeed both types of SQL smells are shown to be
more prevalent in data-intensive systems [4].
� 1.35% of data access refactorings were involved with

a method containing queries with a SQL code smell.
Using the line level matching, we did not find any instance

of SQL code smell associated with data access refactoring
instances. On the other hand, we find 256 refactoring instances
(1.355%) whose target method contains a query with SQL
Code smell. From the 256 refactoring instances, Rename
Variable takes the larger share with 60 instances (23.44%),
followed by Extract Method with 30 instances (11.72%),
Rename Method with 26 instances (10.156%), Add Parameter
with 24 instances (9.38%), and Change Variable Type with 21
instances (8.2%).

When examining the specific types of SQL code smells
associated with the refactoring instances, we observe that 200
instances (78.12%) are associated with only Implicit Columns
SQL smell, and 49 instances (19.14%) are associated with only
the Fear of the unknown SQL smell.

RQ4 Summary: We observed that only a small fraction
of data access refactoring instances touched SQL queries
and SQL smells. Using line level matching, only 0.45%
of refactoring instances were involved with SQL queries.
Furthermore, We did not find any SQL code smell instance
associated with refactoring. Using a method level matching,
we found 29.68% refactoring instances associated with
SQL queries and 1.35% refactoring instances associated
with SQL code smells.

IV. IMPLICATION OF FINDINGS

We believe that our findings contribute towards characteriz-
ing refactoring activities in data access classes. Our findings
show that data access refactorings have a small prevalence con-
sidering their importance to the subject systems. Furthermore,



the prevalent refactoring types are mostly simple refactorings
aiming at improving the code understandability. These findings
show that further investigation is needed to identify why data
access refactorings do not focus on improving the data access
performance, by for example fixing SQL code smells, but
rather focus on low-level refactorings like the ones performed
on non data access classes.

Many reasons such as lack of developers’ awareness of
the impacts of SQL code smells and lack of refactoring tool
support could explain the lack of focus on improving data
access performance by refactoring. Hence, we recommend
that the research community examines this issues and work
on proposing and–or improving refactoring recommendation
tools.

Our findings regarding the functionalities implemented by
data access classes that are often targeted by refactoring could
help in the identification of data access specific refactoring
types (Eg. refactoring query statements) and the subsequent
development of refactoring recommendation tools that are
aware of data access specific refactoring types by guiding
on what part of data access operations to focus research and
development effort.

Our findings help practitioners such as developers and
quality assurance teams by providing insights on what aspects
of data access operation issues are addressed by current
refactoring efforts and what aspects are not addressed by
refactoring. This could be leveraged by developers and the
quality assurance team on prioritizing refactoring activities and
defining the standards and objectives to be achieved during
refactoring of data access classes.

V. THREATS TO VALIDITY

A. Threats to construct validity
We relied on state-of-the-art refactoring detection and SQL

code smell detection tools to extract refactoring instances, SQL
queries, and SQL code smells. Refactoring Miner is reported to
achieve 99% precision and 94% recall. However, we could still
miss some refactoring instances and the tool might introduce
false positives. The SQL Inspect tool used to identify SQL
queries and SQL code smells could also miss some queries and
smells. The interpretation of our findings should take this into
account. Another potential threat to construct validity comes
from the potential researcher bias in the manual analysis of
RQ3. To overcome this threat, the manual analysis conducted
by the first author was evaluated by an independent researcher
and all the disagreements in labeling were resolved with
discussion.

B. Threats to internal validity
We did not claim any causation as this is an exploratory

study. This study does not have threats to internal validity.

C. Threats to conclusion validity
Conclusion threat to validity could be associated with the

statistical analysis approach. We only used non-parametric
statistical tests. Hence, our study does not have conclusion
threats to validity.

D. Threats to external validity

Since we performed a longitudinal study, we have to limit
our subject systems to 12. This could limit the external validity
of our study. However, we carefully selected our subject
systems to represent open source data-intensive systems by
considering the number of SQL queries as a proxy. Further-
more, those systems come from different application domains
and rely on different data access technologies including JDBC,
SQLite, and Hibernate. Hence, our findings can be generalized
to the extent of open source data-intensive systems.

E. Threats to reliability validity

To minimize potential threats to reliability, all our subject
systems are open source and available on GitHub. Further-
more, we provided all the necessary materials to replicate our
study in our replication package [22].

VI. RELATED WORK

In this section, we provide an overview of the state of the
art in refactoring detection, empirical study on refactoring, and
empirical studies in data-intensive systems.

1) Empirical studies on refactoring: Many empirical stud-
ies explored the prevalence, nature, co-occurrence, and impact
of refactoring activities on software quality. Since Fowler
proposed a catalog of refactoring types [23], there have been
many studies on refactoring activities. In the following, we will
focus on the most recent studies for brevity. Silva et al. [10],
surveyed open source developers to identify the motivations
behind applying refactoring and found that refactorings are
not motivated by code smells. They are rather motivated by
changes in software requirements such as bug fixing and
feature enhancement. Chavez et al. [11] studied the impact
of refactoring activities on internal quality attributes such as
cohesion, coupling, complexity, and inheritance and found
that 65% of refactoring instances improved the associated
internal quality attributes. Ferreira et al. [12] analyzed 20,689
refactoring instances from 5 open-source projects to study the
relationship between refactoring activity and bugs and found
that code elements involved in floss refactoring are more
bug-prone compared to root canal refactoring. Mahmoudi
et al. [13] conducted an empirical study to investigate the
impact of refactoring activities on merge conflicts using 3000
java subject systems and found that 22% of the refactoring
instances were involved with merge conflicts. Vassallo et al.
[7] studied 200 open source projects belonging to different java
ecosystems and showed that the type of refactoring operations
applied by developers depends on the support of development
environments. Furthermore, they showed that planning for
refactoring activities is done based on the age of the software
component and proximity to software release. Peruma et al.
[8] explored refactoring activities in android applications and
found that rename attribute is the most common refactoring
in android applications. They also found that the overall
motivation of refactoring is quality improvement exploiting
refactoring commit messages. Iammarinoet al. [9] studied the
co-occurrence of refactoring activities and SATD removals



using a curated SATD dataset and the Refactoring Miner tool
and found that refactorings are more likely to co-occur with
SATD removal commits than with other commits, however,
in most cases, they belong to different quality improvement
activities rather than part of the SATD removal. Rename
refactorings are specifically studied given the importance of
such refactorings on program comprehension. Perumaet al.
[24] analyzed 524,113 rename refactorings and found that
most rename refactorings narrow the meaning of the identifiers
for which they are applied. In another study, Perumaet al.
[25] found that rename refactorings are more preferred by less
experienced developers and that developers frequently change
the semantic meaning after a rename refactoring.

2) Refactoring detection approaches: The aforementioned
empirical studies were possible thanks to the introduction of
different refactoring detection approaches based on: object-
oriented metrics [26],vector space information retrieval [27],
clone detection [28], syntactic and semantic analysis of source
code [16], UMLDiff algorithm [17], and template logic query
[15]. Silvaet al. [18] proposed RefDiff 2.0, a multi-language
refactoring detection tool utilizing code structure tree. In our
study, we used Refactoring Miner proposed by Tsantaliset al.
[19] due to its state of the art detection accuracy, faster
execution time, and because it does not require similarity
thresholds as an input.

3) Study on SQL code smells: Data access operations play
a pivotal role in data-intensive systems. The implementation of
data access operations could suffer from data access specific
code smells such as SQL code smells besides traditional
code smells. SQL being primarily used as a data access
language in data-intensive systems, anti-patterns in SQL could
adversely affect the performance and maintainability of such
systems in the long run. The book of Karwin [21] provided
a comprehensive catalog of SQL anti-patterns. Since the
introduction of SQL anti-patterns, few automatic detection
approaches and tools have been proposed. Khumnin et al.
[29] provided a tool for detecting logical database design anti-
patterns from Transact-SQL queries. Another tool, Sharma
et al. [30] provided DbDeo for the detection of database
schema smells. Furthermore, Nagy and Cleve [5] proposed
a SQL code smell detection approach using static analysis to
extract SQL queries embedded in java code and to detect SQL
code smells. They proposed the SQLInspect [20] tool based
on this approach. There are also several SQL analysis and
smell detection tools such as SQL Prompt5 and SQL Enlight6.
However, such tools require users to provide SQL queries
and therefore can’t analyze queries embedded in source code.
Hence, we relied on SQLInspect to detect SQL code smells
in our subject systems.

There are very few empirical studies on SQL code smells.
De Almeida Filho et al. [31] investigate the prevalence and
co-occurrence of SQL code smells in PL/SQL projects. Arza-
masovaet al. [32]. proposed a detection approach to capture

5https://www.red-gate.com/hub/product-learning/sql-prompt
6https://sqlenlight.com/

anti-patterns in SQL logs. They were able to detect six anti-
patterns by analyzing skyServer log dataset. Museet al. [4]
studied the prevalence and impact of SQL code smells on
150 open source java projects. They showed that SQL code
smells are prevalent in data-intensive systems but they have
a weak co-occurrence with other code smells and with bugs.
Furthermore, they provided evidence indicating that SQL code
smells are persistent across the evolution of subject systems.
Shao et al. provided a catalog of performance anti-patterns in
database-backed web applications [33].

VII. CONCLUSION

In this study, we investigated the prevalence, evolution,
functionality, and co-occurrence of refactoring activities with
data access code smells by conducting a longitudinal study on
12 open source data-intensive projects. We analyzed 174,776
commits and extracted 2,473,090 refactoring instances to build
the refactoring dataset. We also extracted SQL queries and
SQL data access smells from the same subject systems and
linked them with the refactoring dataset. First, we compared
the type of refactoring activities between data access classes
and regular classes to investigate if developers perform differ-
ent types of refactoring between them. Second, we computed
the distribution of refactoring instances over the evolution of
the subject systems to investigate if the refactoring applied
by developers vary between data access classes and regular
classes and varies across systems evolution. Third, we con-
ducted a manual analysis of over 378 sample data access
refactoring instances to identify the functionality of their
target codes. Finally, we investigated if data access refactoring
activities touch SQL queries and SQL smells.

Our results show that different types of refactoring instances
are prevalent in data access classes and regular classes. The
most prevalent refactoring is Rename variable in data access
classes and Move attribute in regular classes, respectively.
Furthermore, data access refactoring tends to be applied at later
stages of the subject systems evolution compared to non data
access refactoring. The result of the manual analysis showed
that a large number of data access refactoring instances target
code that implements data access in general and data fetching
in particular. We also find that data access refactoring instances
do not generally touch both SQL queries and SQL code smells.

Overall our results show that data access refactorings al-
though prevalent, do not directly target statements that directly
interact with databases (e.g., SQL statements). This calls for
future research on refactoring detection of data access specific
smells and on the characteristics of such data access smell
refactorings. or do to the lack of tool support to perform
complex refactorings. We plan to examine this hypothesis as
a future work.
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