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Abstract—The task of finding the best developer to fix a bug
is called bug triage. Most of the existing approaches consider the
bug triage task as a classification problem, however, classification
is not appropriate when the sets of classes change over time
(as developers often do in a project). Furthermore, to the best
of our knowledge, all the existing models use textual sources of
information, i.e., bug descriptions, which are not always available.

In this work, we explore the applicability of existing solutions
for the bug triage problem when stack traces are used as the
main data source of bug reports. Additionally, we reformulate
this task as a ranking problem and propose new deep learning
models to solve it. The models are based on a bidirectional
recurrent neural network with attention and on a convolutional
neural network, with the weights of the models optimized using
a ranking loss function. To improve the quality of ranking,
we propose using additional information from version control
system annotations. Two approaches are proposed for extracting
features from annotations: manual and using an additional neural
network. To evaluate our models, we collected two datasets of
real-world stack traces. Our experiments show that the proposed
models outperform existing models adapted to handle stack
traces. To facilitate further research in this area, we publish
the source code of our models and one of the collected datasets.

I. INTRODUCTION

Software bugs are an inevitable part of the development
process. Bugs can lead to security problems, loss of company
profit, and in the worst case, even fatal accidents [1]. For these
reasons, bugs need to be swiftly fixed, which requires choosing
the most appropriate developer. The problem of finding such
a developer for a particular bug is called bug triage [2].

The developer who should fix the bug can be assigned
manually, however, such an approach has several significant
disadvantages. Firstly, it is tedious and time-consuming work,
and the situation gets more and more complicated as the
number of developers grows. In large companies, hundreds
of bug reports are received every day, which makes manual
developer assignment very difficult if not impossible. For
example, 333,371 bugs were reported for the Eclipse IDE from
October 2001 to December 2010, averaging at about 100 bugs
every day [3]. Secondly, it is important to assign the most

suitable developer right from the start to reduce the time of
bug fixing [2]. Otherwise, the error gets reassigned from one
developer to another [4], and as a result, the time of each
developer in such a chain is wasted, while the error remains
in the system longer, which can be critical.

A large number of approaches have been proposed to solve
the bug triage problem automatically. Existing models can be
roughly divided into three groups: based on heuristics [5]–
[8], based on classic machine learning [9]–[11], and based on
deep learning (DL) [12]–[15]. The works of Guo et al. [13]
and Mani et al. [14] demonstrated that deep learning helps
with the task of assigning a developer better than other
approaches. This is to be expected, since the bug triage task
is based on natural language processing, where deep learning
shows promising results [16]. An additional advantage of deep
learning algorithms is that they do not require sophisticated
feature extraction methods [17].

However, it should be noted that bugs can be reported
in different forms. For example, in a bug tracking system,
errors are usually present in the form of a bug report: a
name, a small description in some natural language, and some
additional meta information (the date the error was introduced,
priority, severity, etc.). To the best of our knowledge, all
the existing solutions are based on working with this kind
of error representation. At the same time, errors can also
come in the form of stack traces: sequences of function calls
(called frames) that lead to an error in the system. Developers
commonly use stack traces during debugging, and users can
usually see a stack trace displayed as part of an error message.
Stack traces help to solve the bug localization problem [18]–
[20] and the bug report deduplication problem [21]–[23]. The
example of a single stack frame is presented in Figure 1.

Stack traces are a data source that is often easy to obtain:
most modern software systems are able to automatically send
back stack traces of the error that has occurred. In such a
setting, predicting the assignee by the textual description of
the error would require labeling all the error reports, which
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{
  "name": ,"org.mockito.internal.MockitoCore.mockStatic"
  "file_name": ,"MockitoCore.java"
  "line_number": , 89
  "commit_hash": ,"cca73123976b3f38663dc5a4da834452d188a8cc"
  "subsystem": "org.mockito.internal"
}

Fig. 1. An example of a stack frame. The frame consists of the name of the
function that led to the error, as well as various information about it.

is almost impossible since the number of such reports per
day could be enormous. Another important reason to process
stack traces automatically is that they are more complicated
to analyze manually by people who did not participate in
the development of a particular system component, since the
information is presented in a rather raw form. Thus, a new
approach is needed that solves the bug triage problem for the
case where only the stack trace information is available.

Another important limitation of the existing approaches
is that they consider the bug triage task as a classification
problem. The classification setting might not be the best choice
in practice, since the set of classes (developers) can change
over time: developers can leave and join the team responsible
for the product of even the company itself.

To the best of our knowledge, no one has previously sug-
gested using bug stack traces as the main source of information
for the bug triage problem. In this work, we strive to fill this
gap in research to support working with the systems where
stack traces are the primary type of data. To that end, we
collected two datasets of real-world bug stack traces from
JetBrains,1 the developer of a wide array of software products
including IntelliJ-based IDEs. The larger dataset contains
11,139 stack traces, however, it contains proprietary company
code, so we also curate the second dataset — a smaller public
subset of the first one that contains 3,361 stack traces that we
release for researchers and practitioners. The datasets consist
of a labeled set of bug reports and annotations from the version
control system (developer IDs and timestamps) that we apply
to improve the quality of our model.

We propose a new approach to solve the bug assignee
prediction problem based on stack traces — a DL-based
ranking model called DapStep (an RNN ranking model with
manual frame-based & stack-based features). We compared
the proposed model with existing approaches adapted for stack
trace processing. The proposed model shows Acc@1 of 0.34
and MRR of 0.43 on the public dataset and Acc@1 of 0.60
and MRR of 0.70 on the private dataset.

The main contributions of this paper are as follows:
• We propose bug stack traces as a self-sufficient source

of information for the assignee prediction task and carry
out the first study in comparing various approaches in
this setting.

• We introduce two bug triage ranking models based on
recurrent neural networks (RNN) with the attention mech-
anism and convolutional neural networks (CNN). The

1JetBrains: https://www.jetbrains.com/

models outperform the existing classification approaches
by 15–20 percentage points on the public dataset, and
17–18 percentage points on the private dataset.

• We publish the source code of all the studied models,
as well as the public dataset, for future researchers and
practitioners: https://github.com/Sushentsev/DapStep.

The remaining sections of this paper are organized as
follows. Section II provides a brief overview of existing
solutions, and in Section III, we propose a new deep learning
solution. We evaluate our approach in Section IV, followed
by a discussion of the threats to validity in Section V. Finally,
Section VI summarizes the results of the paper.

II. RELATED WORK

The bug triage task is a well-established area of research,
with a large number of proposed approaches. Previous works
can be broadly divided into three large groups: based on
heuristics, on classic machine learning, and on deep learning.

Heuristic-based approaches tend to consider the relevance
scores of developers and errors based on domain knowledge.
Kagdi et al. [24], Shokripour et al. [25], [26], and Vásquez
et al. [27] use the information about code authorship, commit
messages, comments in the source code, etc. Also, various in-
dexing and NLP techniques are used to search for files related
to the query bug report. The most appropriate developers are
then selected based on their activities in the relevant files.

Since the software development process is impossible with-
out team work, developers often interact with each other. The
result is a collaboration network that can be used as another
source of information. Hu et al. [8] and Zhang et al. [28] use
collaboration networks and information retrieval techniques on
graphs to choose the most appropriate developer.

As the influence of machine learning spread, it became
actively applied in the assignee recommendation as well.
Often, such approaches vectorize the text of the bug summary
and description using TF-IDF or Bag-of-words (BOW), and
classify them using a machine learning algorithm: Naive
Bayes, Random Forest, or SVM [2], [29]–[31].

Recently, deep learning solutions also became popular. Lee
et al. [12] present one of the first DL models based on the CNN
and Word2Vec embeddings used for assigning a developer
to fix the bug. Their approach achieved higher accuracy in
industrial projects at LG compared to an open source project.

The application of CNN for the bug triage problem has been
reported to be useful in more recent approaches. Guo et al. [13]
compare the CNN-based model to the models based on Naive
Bayes, SVM, kNN, and Random Forest. The experimental
results show that the CNN-based approach outperforms other
solutions. Since some of the developers can change jobs or
leave the company indefinitely, the authors also propose to
reorder developers based on their activity.

Zaidi et al. [32] explore different word embeddings for the
CNN model: Word2Vec [33], GloVe [34], and ELMo [35].
The experimental results suggest that the ELMo embeddings
are the best for the bug triage problem.

https://www.jetbrains.com/
https://github.com/Sushentsev/DapStep


Chen et al. [36] extend the work on incident triaging (un-
planned interruptions or outages of the service) and perform an
empirical study on the datasets provided by Microsoft. They
explore different bug triage techniques: based on machine
learning, deep learning, topic modeling, tossing graphs, and
fuzzy sets. On average, the DL technique performs best.

An alternative to CNNs are RNNs, which are one of
the most popular and effective approaches for processing
sequences of variable length. Mani et al. [14] use RNNs for
assigning the developer to fix a bug. To address the common
issue of RNNs “forgetting” long sequences [37], they propose
to apply a bidirectional network with an attention mechanism.
Moreover, the neural network learns syntactic and semantic
features in an unsupervised manner, which means that it has
the ability to use unfixed bug reports. Their work shows that
the proposed approach provides a higher average accuracy
rank than BOW features with softmax classifier, SVM, Naive
Bayes, and cosine distance.

Finally, Xi et al. [15] propose to use a bug tossing sequence
to improve the DL model that helps to reassign the bug if the
assignment was incorrect. The proposed approach was evalu-
ated on three different open-source projects and outperforms
baseline RNN and CNN models.

In our work, we strive to overcome the limitations of
the existing approaches: namely, their reliance on textual
descriptions and their use of classification models.

III. APPROACH

In this section, we describe our algorithm for assignee
prediction. We consider bug triage as a ranking problem, which
we believe to be more appropriate here, because it does not
depend on the current set of developers. The classifying setting
requires an immutable set of predicted classes. If a developer
leaves the project, they should be filtered out of the resulting
prediction afterwards, and when a new developer joins, the
classifying model will have to be retrained to take them into
account. Since developers in the project may come and go, a
more suitable option is the ranking problem setting, in which
it is necessary to evaluate the relevance function f(q, d) for a
bug q and a developer d.

More formally, given a query q (bug) and a collection D of
documents (developers) that match the query, the task is to find
a function f such that (q, d) ≺ (q, d′) ⇔ f(q, d) < f(q, d′),
where (q, d) ≺ (q, d′) means that d has a rank lower than d′.
Function f maps query-documents pairs to a relevance score.

The proposed model uses bug stack traces as the primary
source of information for predicting assignees. In order to
obtain better results, we also build features from the version
control system (VCS) annotations, which provide information
on which developer modified each line of the file and when.
For example, Git annotations can be obtained via the git blame
or git annotate commands.

The overall pipeline of the proposed algorithm is presented
in Figure 2. Using deep learning methods, the bug and the
developer are mapped to a vector of a fixed size (embedding).
We transform each bug stack trace into a sequence of text

Bug Developer

Neural network 1 Neural network 2

Bug embedding Developer embedding

Comparison module

Score

Fig. 2. The overall pipeline of the approach.

tokens (Section III-A) and apply the ideas from text sequences
processing to obtain embeddings of bugs (Section III-B). Then,
to create an embedding of a developer, we process all the
files in the given stack trace to find files that the developer
edited, and use this information to map this developer into
the stack trace embedding space (section III-C). After all
the embeddings are extracted, they are compared using the
comparison module (Section III-F), and the score is obtained,
which shows the relevance of the bug and the developer. To
get the most appropriate developers for a given bug, we simply
have to rank all the developers by their score.

To improve our model, we use additional features based on
the VCS annotations and propose to process the annotations
in two different ways: manually (Section III-D) and using an
additional neural network (Section III-E) that allows us to
avoid complex feature engineering. Let us now describe these
steps in greater detail.

A. Preprocessing

The stack trace is represented as a sequence of frames
ST = {f1, f2, . . . , fn}, where fi is the i-th stack frame. Every
frame has a method name, a file name, a subsystem name, a
commit hash, and an error line. An example of a stack frame
is presented in Figure 1.

Our preliminary experiments showed that stack trace pre-
processing is an essential step that can significantly improve
the model quality. In our work, we used the following data
processing steps.

Firstly, we noticed that the length of the stack trace can
sometimes be quite large. For instance, the maximum stack
trace length in our dataset reached as many as 15,000 frames. It
is difficult to make a neural network remember all the informa-
tion as the frames are processed one by one. On the other hand,
long stack traces tend to relate to a StackOverflowException
error. Oftentimes, such a stack trace contains a loop: a set
of frames that repeat at a specific frequency. Replacing the
loop with the first occurrence of the loop element allows us
to significantly reduce the length of the trace stack without
degrading the model’s quality. We did this for every stack
trace in the dataset where it is applicable.



Secondly, because of the way the dataset was collected, not
all information is available for every frame, the frame fields
can be null. If the text token received from the frame is null,
then we skip this frame.

In order to apply existing approaches, we propose to rep-
resent a stack trace as a sequence of text tokens using the
following technique. Firstly, we extract the method name, the
file name, or the subsystem name from each frame of the
stack trace. For example, the stack frame in Figure 1 can
be mapped to org.mockito.internal.MockitoCore.mockStatic,
MockitoCore.java, or org.mockito.internal, respectively. Thus,
the stack trace will be presented as a sequence of text tokens,
which can be processed with various deep learning approaches.
We conducted experiments with all three options (method
name, file name, or subsystem), and since the difference was
insignificant, we decided to extract the stack trace file name.

B. Representing Stack Traces as Vectors

To represent a stack trace with a vector of a fixed length (i.e.,
embedding), we were inspired by the architectures applied
in the previous works, namely, RNNs with attention and
CNNs [12]–[14], [32]. These two types of neural networks
are among the most popular in the natural language processing
field. In our study, we experimented with both of them.

1) Recurrent Neural Network: An RNN architecture called
LSTM [38] is frequently used to handle sequential data.
It takes a sequence of text tokens as input and produces
the resulting vectors. However, LSTMs may have problems
remembering long sequences [39], which can be fixed with
a bidirectional network [40] with attention. The attention
technique allows to focus on important parts of the input
data [41]. For instance, frames that are at the top of the stack
trace are usually more informative and useful.

We use the neural network architecture from the work of
Maini et al. [14]. The input of the model is a sequence of
vector representations of words, x = {x1,x2, . . . ,xn}. In
our approach, we use trainable embeddings for every text
token. The network is bidirectional, therefore, the sequence is
processed in both directions. The RNN produces a sequence
of outputs y = {y1,y2, . . . ,yn} from each direction. After
that, the attention mechanism is applied, which is the weighted
sum of the RNN outputs:

an =

n∑
i=1

αiyi, (1)

where αi represents an attention weight for the i-th output
vector.

The final representation r is obtained as follows:

r = yn ⊕ an︸ ︷︷ ︸
forward LSTM

⊕ yn ⊕ an︸ ︷︷ ︸
backward LSTM

, (2)

where ⊕ represents the concatenation of vectors. It is easy
to see that if the output vector has dimension d, then the
embedding r will be of size 4× d.

2) Convolutional Neural Network: Another possible ap-
proach to represent a stack trace with a vector is to use
CNN. CNNs are most commonly applied to analyze visual
information, however, they can also solve natural language
processing tasks [42].

In a CNN-based network, for each sequence of text tokens,
we build a matrix S ∈ Rs×d, where s is the sequence length
and d is the embedding dimension. We were inspired by the
work of Lee et al. [12] when building the model architecture.
Similarly to them, we use trainable embeddings for text tokens.
After that, a convolution layer with 1D convolutions is used
to extract different patterns from the sequence of tokens. After
applying each convolution filter, a feature vector is obtained.
In the extracted feature vector, the subsampling process called
max-pooling is applied, which is the operation of extracting
the maximum element from a vector. The final representation
r is obtained by concatenating max-pooling values and has a
dimension equal to the total number of convolutions.

C. Representing Developers as Vectors

Obtaining an embedding of a given bug is pretty straightfor-
ward, since each bug has a stack trace that can be transformed
into a sequence of text tokens. However, the process of
extracting the embedding of a developer is not that obvious.

One possible solution is to represent the developer as all the
code they wrote in the system. This approach has a significant
drawback: the need to regularly re-index a large amount of
data. If the developer has written new code in the system,
then this must be taken into account. Continuous and efficient
updates of the developer’s embedding is a challenging task.

To address this problem, we propose to map every developer
to a specific synthetic stack trace, more specifically, a sequence
of stack frames that they edited. In order not to deal with
large-scale re-indexing, we do not use all the available stack
traces, but only the stack trace of the current (query) bug.
This way, the developer embedding will be bug-dependent:
different vector representations are built for different errors,
there is no single developer representation. This approach
allows us to build the embedding of a developer much faster.
The average length of a stack trace in our datasets is 50 frames,
therefore, it is enough to look at about 50 files in order to map
the developer to their stack trace. Furthermore, the resulting
“developer stack trace” can be handled in the exact same way
as the bug stack trace, and it is possible to use the same
network architecture for the bug and for the developer, because
each of them is represented in the same form.

Algorithm 1 shows the pseudo-code for the building of this
developer stack trace. In this algorithm, we look at all frames
from the stack trace of the current bug from first to last. If the
developer has edited at least one line from the file of the given
frame, then this frame is included in the developer stack trace.
Each stack trace is an ordered sequence of frames, they are
numbered starting from the top of the stack. While building the
developer stack trace, the order of the frames is preserved. The
order of the frames is significant, because generally frames at
the top of the stack are more revealing.



Algorithm 1 The building of the developer stack trace.
Input: Developer dev, stack trace stack
Output: Developer stack trace dev stack

dev stack ← emptyList
for frame in stack do

file ← getFrameFile(frame)
authors ← getFileAuthors(file)
if dev ∈ authors then dev stack.append(frame)

return dev stack

It is important to note that the inner frames in the stack
trace can include files from various libraries, in which case
they will not have been edited by any of the developers in the
project. We leave dealing with this case specifically for future
work, for example, it might be possible to use the history of
the developer’s work to see whether they fixed bugs that relate
to this particular library.

Overall, for each bug and each developer, we obtain a
special stack trace that contains only the frames that concern
files that this developer has edited. This allows us to compare
the resulting embeddings.

D. Additional Features

To improve the performance of the model, we enrich the
embedding with the features built from the VCS annotations.
The annotations provide information about who was the last
person to have changed each line in the file, and when this
change took place. The rationale behind using annotations is
the following: if a developer has recently edited some file, it
is more likely that their changes resulted in a bug. Therefore,
such a developer should probably fix the current bug.

An example of the first five lines of an annotation is shown
in Figure 3. Each developer is encoded with a unique identifier,
and the time is represented in the Unix epoch format.

Line # Commit hash Author ID Timestamp

1 367e005e1f28e093a664ce2fda4791862f475b65 55194 1585575447000

2 7460e5adae69c7b17c951f1198a6b6900721a1ee 9 1105649070000

3 7460e5adae69c7b17c951f1198a6b6900721a1ee 9 1105649070000

4 5e2c29d3146b1fc777a1e3cc5978fe770e2a7171c 55194 1595312119000

5 c25d825c4e69c75ab94a1373568e185d483d48c7 55 1151846082000

Fig. 3. An example of the first lines of an annotation.

Additional features can be constructed both on the level of
individual stack frame (e.g., how many lines in the file of a
specific frame the developer edited) and on the level of the
entire stack trace (e.g., how many stack frames have files that
the developer edited), and are applied in different ways.

Features that relate to individual frames can be concate-
nated to the trainable embeddings before applying the RNN
(Section III-B). Figure 4 shows the proposed approach: a text
token is extracted from the frame, each text token is associated
with a trainable embedding, and the additional feature vector is
concatenated to the embedding. The resulting vector becomes
the input of the RNN.

Stack trace

Token1 Embedding1 Features1Token1

Token1 Embedding2 Features2Token2

Token1 EmbeddingN FeaturesNTokenN

Fig. 4. The application of the frame-based features.

The features that relate to the entire stack trace can be con-
catenated to the bug embedding and the developer embedding
as presented in Figure 5. The resulting vector is the input of
the comparison module.

Developer embedding FeaturesBug embedding

Fig. 5. The application of the stack-based features.

We performed feature engineering on the private dataset,
trying different combinations of metrics and their normaliza-
tion methods. We ended up with 15 frame features and 24
stack trace features that worked best in our setting. They
are presented in Table I. For example, from the first line
of the table, we get three different features: a raw value of
the minimum distance and two normalizations (by annotation
length and by the minimum value).

E. Neural Annotation Processing

Manual feature engineering is a complex process that re-
quires domain knowledge and expertise. As an alternative, we
also propose using another neural network to extract features
from annotations automatically.

The idea behind the annotation processing is as follows:
each line of an annotation is labelled with a timestamp of
its last change. We suggest to represent annotation lines as
elements of a time series — a sequence of values indexed in
the chronological order. We propose to use the distance from
the current line to the error line (simply subtracting the line
numbers) as the values of the time series, and timestamps of
the last modification as the corresponding time. The considered
time series is irregular: code lines could be changed at any
time. Since this is the first work using DL-based annotation
processing, we decided to start with simple things first and
use the most popular and straightforward solution for irregular
time series processing: concatenate the time information to the
time series value to form a vector of size 2.

Figure 6 shows an example of the annotation processing for
developer Mike, this will be done for each developer and for
each stack frame:
• Select lines from the annotation that were edited by Mike.
• Sort the lines by time. Each annotation line is mapped

to a vector of length 2. The first component of the
vector is the distance to the error line |error line −
current line| (in out example, the error line is line
3, highlighted in red). The second component of the



TABLE I
ADDITIONAL FEATURES OBTAINED FROM THE VCS ANNOTATIONS AND THEIR NORMALIZATIONS.

Category Description Normalizations

Frame

Minimum distance from the edited line to the error line Raw; annotation length; min
Did the developer edit the error line? Raw
Normalized number of edited lines in the file Annotation length; max
Normalized number of edited lines weighted by time Annotation length; max
Normalized number of edited lines in the window of size 10 Window size; max
Number of different developer’s timestamps Raw; max
Time passed since the last edit Exp(-x); Log(x)
Time passed since the first edit Log(x)

Stack

The order of the first edited frame Raw; stack length; number of annotated frames; min
Normalized number of edited error lines Stack length; max
Normalized number of edited lines Total number of lines; max
Normalized number of edited lines in the frame with maximum IDF Annotation length
Normalized number of edited frames Stack length; number of annotated frames; max

Line # Author Timestamp

1 John October

2 Mike October

3 John January

4 Bob March

5 Mike January

6 Mike February

Line # Author Timestamp

2 Mike October

5 Mike January

6 Mike February

Distance: 2 | Time: January

Distance: 3 | Time: February

Distance: 1 | Time: October

RNNAnnotation embedding

Author:

Mike

Sort by time

Fig. 6. The example processing of an annotation.

vector is the coded line timestamp. In our data,
time is measured in milliseconds, therefore we use
log (report timestamp− line timestamp) to account
for the order of magnitude.

• The sequence of such vectors is processed using the RNN
with attention as described in Section III-B.

The obtained annotation embedding can be used as an
alternative to manual features extracted from annotations.

F. Similarity of Vector Representations

After obtaining the embeddings of the bug and the devel-
oper, we feed them into a comparison module. Here, we have
applied the approach from the work of Severyn et al. [43],
proposing to form the following vector:

xjoin = [xT
q ;xsim;xT

d ;xT
feat], (3)

where xq , xd, xfeat stand for the bug embedding, the de-
veloper embedding, and additional stack trace features de-
scribed in Sections III-D and III-E. A scalar value xsim is
obtained from xT

q Mxd with a trainable matrix M, which
captures syntactic and semantic aspects between the queries
and documents.

After that, a feed-forward neural network with one hidden
layer and ReLU activation function is applied, and the score
is obtained which is used to rank developers.

IV. EVALUATION

We evaluated our approach on stack traces collected from
the internal system of JetBrains, a large software company.
We aim to answer the following research questions:

RQ1: How do ranking models work in comparison with
classifying models?

RQ2: Do frame-based features built from VCS annotations
improve the model quality? Which of them affect the perfor-
mance more, the manual ones or the features learned by the
neural model automatically?

RQ3: How does adding stack-based features to frame-based
features affect the model?

A. Dataset Collection

To collect data for the evaluation, we used the crash report
processing system that handles reports from various JetBrains
products. When a crash occurs in the user’s product (i.e., an
IDE), an anonymous crash report is formed. If the user agreed
to send such reports to the company, then it gets sent and
is stored in the processing system. Since we are not able to
publish internal company data, we have collected two datasets:
from the company’s private and public code repositories. Our
datasets were created from stack traces that are automatically
created after every crash of a product. The public dataset is
a subset of the private dataset that contains stack traces that
relate to public repositories. The public dataset is published for
further research and can be found in the DapStep repository:
https://github.com/Sushentsev/DapStep.

The larger, private dataset contains a total of 11,139 bug
reports from the crash system from October 2018 to April
2021. These bug stack traces include files from three JVM
languages: Java, Kotlin, and Scala. The proposed solution is
language-agnostic, files in different languages are processed
in the same way. The developer who fixed the bug in the
system will be referred to as the target developer. For each
error from the dataset, the target developer is known. As
mentioned earlier, we use annotations to improve the quality of
our model. Annotations can be obtained from the Git version
control system using the file name and the file commit hash.

https://github.com/Sushentsev/DapStep


The private dataset contains annotations for all files that are
present in the stack trace, with the total number of annotations
being 99,591. However, not all annotations are present in
public repositories, only 32,908 of them. The public dataset
contains stack traces, in which at least 75% of the annotations
are present publicly. This results in 3,361 different stack traces.
Thus, a public dataset consists of a subset of reports from a
private dataset, for which a sufficient number of annotations
are available. We believe that this dataset can be useful for
further research in the field and can facilitate the development
of models, which work with the systems that process the
reports in the form of stack traces.

B. Baseline Implementations

To compare our stack-trace-based approach with approaches
that use reports description, we implement several baseline
models. It is important to note that we are comparing models
from the point of view of stack trace processing, because we
have no textual descriptions of bugs. We apply preprocessing
(Section III-A) that converts a stack trace into a set of text
tokens that can be processed as text data. As baseline models,
we chose Logistic Regression and Random Forest. In addition,
we have implemented a heuristic solution, which is based on
counting the number of edited files by each developer. Let us
describe these baselines in more detail.

Logistic regression [44] is one of the simplest and most pop-
ular machine learning models that demonstrated its capabilities
in the bug triage problem [11]. Logistic regression performs a
linear transformation on a vector of features; to obtain the
distribution of probabilities by class, the sigmoid function
is used. In addition to logistic regression, we used Random
Forest [45] as a baseline model. Unlike Logistic Regression,
Random Forests are capable of constructing a non-linear
decision boundary. Thus, Random Forest is able to capture
more complex data dependencies. We used SGDClassifier
and RandomForestClassifier from the scikit-learn package
as the implementations of the models. To apply classification
algorithms, each stack trace must be represented with a feature
vector. One of the most popular approaches that works well
in practice is the TF-IDF approach [46].

We also propose a baseline model based on a simple heuris-
tic. For each frame of the stack trace, we know exactly which
line in the file caused the bug. From the VCS annotation, we
can find out which developer edited the given line last. Thus,
for each developer, we count the number of edited lines that
led to an error. The developer who edited the most error lines
should be assigned to fix the bug. Additionally, we use the
following ideas to improve the quality of this solution. Firstly,
the frames at the top of the stack are usually more explanatory,
therefore we can consider not all frames in the trace stack, but
only Top-20 frames. Secondly, we consider each line edit with
a weight that depends on the edit time: the later the line edit
happened, the higher the weight is. As a weight function, we
used f(x) = e−x, where x stands for the time elapsed from
editing a line until a bug occurred in the system.

TABLE II
PARAMETERS USED FOR DIFFERENT MODELS.

Parameter Public dataset Private dataset

Logistic Regression

Loss log log
Regularization coefficient 1e-5 1e-5

Random Forest

Number of estimators 100 100
Maximum depth ∞ ∞
Minimum samples in a leaf 1 1

CNN

Number of convolutional filters 32 64
Size of trainable embeddings 50 70

RNN

Hidden size 70 100
Size of trainable embeddings 50 70

C. Model Parameters

Since we collected two different datasets from public and
private repositories, for each dataset, the parameters of the
models were selected independently. The model parameters
are selected according to the results on the validation datasets.

The detailed information about the parameters can be found
in Table II. In the proposed neural network models, the
dropout [47] and weight decay [48] are applied to prevent
overfitting. We used the Adam optimizer [49] with a learning
rate of 1e−3 and a weight decay of 1e−3, dropout rate was
0.2. The classifying models were trained for 25 epochs, and
the ranking models were trained for 10 epochs because our
experiments have shown that a larger number of epochs leads
to the model overfitting.

D. Loss Function

Since we considered bug triage as a ranking problem, it
is necessary to prepare labels for the ranking problem: the
target developer must be the first in the list of the ranked
developers. For our problem statement, a pairwise approach
to RankNet [50] loss is often used.

The RankNet algorithm assumes that the training data
consists of pairs of documents (d1, d2) together with a target
probability P̄ of d1 being ranked higher than d2. For each
query, there is only one relevant document (target developer),
all other documents (developers) are considered irrelevant.

As a result, the final loss function with simplification for
several pairs (di, dj) and query q has the following form:

L =
∑

di≺dj

log
(

1 + e−(f(q,di)−f(q,dj))
)

(4)

To evaluate our approach, we take a random query (bug
stack trace) q and a set of documents (developer vector rep-
resentations) {d1, . . . , dn}, and make a gradient descent step
according to (4). Furthermore, we use the following heuristic
observation: if the developer stack trace is empty, then they
did not edit any file from the bug stack trace. It is unlikely that



this developer will fix the current bug, therefore, we exclude
such a developer from the list of possible assignees. It is also
essential that the calculation of the loss function requires the
score of the target developer. However, the target developer
representation in the stack trace form may be empty, therefore,
in such cases we remove such reports from the training data.

E. Performance Metrics

To answer the research questions, we compared the pro-
posed ranking model with the classification models adapted for
stack traces. The most common quality metric for classification
problems is Accuracy at K. Accuracy at K corresponds to
the number of relevant results among the first K positions.
However, this metric does not take into account the position
of the relevant document, therefore, we used different values
of k from the {1, 5, 10} set. More formally, the Accuracy at
K metric is defined as follows:

acc@k =
1

|D|
∑

(d,q)∈D

I
(
d ∈ {dqi}ki=1

)
, (5)

where I stands for the indicator function and {dqi} is the
ranked list of documents for query q.

In the ranking problem, we use mean reciprocal rank (MRR)
for evaluation, which corresponds to the harmonic mean of
the relevant documents’ ranks. It should be noted that only
the rank of the first relevant document is considered in MRR.
However, it is suitable for our task, since there is always one
relevant document for each query. MRR can be calculated
using the following formula:

MRR =
1

|D|
∑

(d,q)∈D

1

rankqd
, (6)

where rankqd refers to the rank position of the target document
d for the query q.

F. Experiment Methodology

To evaluate our models, we divided both datasets into three
sets: train, validation, and test. For the private dataset, the sizes
of the train, validation, and test sets were 8139, 1500, and 1500
bug stack traces, respectively. For the public dataset, the split
was 2461, 450, and 450, respectively. This corresponds to the
validation and test sets being about 15% of the sizes of the
entire datasets, which is a common practice. This partitioning
helps to prevent overfitting of the model. Since the data has
a time component, the dataset is divided by time in order to
avoid data leakage.

Our methodology for the experiment with the classification
models is as follows: we select hyperparameters using the
validation datasets, then fit the model on the training and
validation datasets, and, finally, evaluate the quality of the
models on the test datasets. If the developer is found only
in the test dataset, then we cannot correctly classify the bug,
since the model was not trained for this class. In this case, we
consider that the bug was assigned incorrectly.

For the ranking problem, the model was evaluated as
follows. During the training, a random stack trace is taken

from the training dataset. Then, for each developer, their stack
trace representation is built. If the target developer has an
empty stack trace representation, then this means that the
developer did not fix frames from this stack trace. In this case,
we exclude this stack trace from the training dataset. When
evaluating, the model considers only those developers whose
stack trace representation is not empty. If the developer’s stack
trace representation is empty, then his score is equal to the
minimum score predicted by the model.

To test the statistical significance of our results, we use
bootstrap [51] to construct the confidence intervals. When
comparing two models, we form 100 bootstrapping resam-
plings with the same size as the test dataset. Next, a 95%
confidence interval for the difference of the metric scores is
calculated. If zero falls into the constructed interval, then there
are no statistically significant differences between the models,
otherwise, we say that there is statistical significance.

All the experiments were run on a server with the following
technical characteristics: 8-core Intel Xeon CPU @2.3 GHz,
NVidia K80 GPU, and 60 GB of RAM.

G. Results

The experimental results of running various models on
both datasets are presented in Table III. Resulting confidence
intervals for all the experiments can be found in the online
appendix: https://doi.org/10.5281/zenodo.5596294.

First of all, it can be seen that the results are different
for the public and the private datasets. We assume that this
happened for three reasons. Firstly, the public dataset is several
times smaller than the private dataset, which can affect the
approaches that rely on a lot of data. Secondly, not all
annotations are available for the public dataset, with the miss-
ing annotations likely containing some important information.
Thirdly, we found that the test set from the public dataset
contains more target developers who have not edited files from
stack traces than the private dataset. Thus, their stack trace
representation will be empty, and the result of the model will
be incorrect on these reports.

1) Research Question 1: To answer RQ1, let us evaluate
and compare the quality of the classifying and ranking models.
Our results show that classifying models based on classical
machine learning algorithms perform as well as classifying
algorithms based on RNNs or CNNs (Table III, lines 2–5).
We believe that this can be explained by the fact that neural
networks are most likely to extract features similar to TF-IDF
features, so the results are similar.

The RNN ranking model performs better than the others
(Table III, line 7, 0.21 Acc@1 on the Public dataset, 0.46
Acc@1 on the Private dataset), but the differences would be
more significant if there were many developers in the test
dataset that were not in the training dataset. We found that
for the public and private datasets, there were 27 bug reports
in the test data with developers that were not presented in train
data. Thus, this represents only 6% and 1.8% of the total size
of the test data, and the advantage of the ranking approach
is not very noticeable. On the other hand, for projects that

https://doi.org/10.5281/zenodo.5596294


TABLE III
COMPARISON OF THE MODELS ON THE PUBLIC AND PRIVATE DATASETS.

№ Model Public dataset Private dataset

Acc@1 Acc@5 Acc@10 MRR Acc@1 Acc@5 Acc@10 MRR

1 Heuristics 0.26 0.50 0.52 0.36 0.41 0.73 0.80 0.54
2 Logistic Regression 0.19 0.35 0.45 0.27 0.43 0.56 0.62 0.50
3 Random Forest 0.16 0.33 0.40 0.25 0.42 0.57 0.64 0.50
4 CNN classification 0.14 0.29 0.38 0.22 0.42 0.55 0.60 0.48
5 RNN classification 0.14 0.27 0.34 0.21 0.42 0.54 0.60 0.48
6 CNN ranking (without VCS) 0.13 0.37 0.47 0.25 0.35 0.60 0.72 0.48
7 RNN ranking (without VCS) 0.21 0.37 0.50 0.30 0.46 0.69 0.76 0.57

8 CNN ranking (VCS: manual frame-based) 0.28 0.48 0.54 0.38 0.53 0.79 0.84 0.65
9 CNN ranking (VCS: neural frame-based) 0.29 0.48 0.54 0.39 0.54 0.80 0.84 0.66

10 RNN ranking (VCS: manual frame-based) 0.35 0.52 0.60 0.44 0.58 0.82 0.86 0.68
11 RNN ranking (VCS: neural frame-based) 0.27 0.46 0.56 0.37 0.54 0.79 0.83 0.65

12 CNN ranking (VCS: manual frame-based & stack-based) 0.31 0.49 0.56 0.40 0.57 0.82 0.87 0.68
13 RNN ranking (VCS: manual frame-based & stack-based) 0.34 0.52 0.56 0.43 0.60 0.83 0.87 0.70

have a larger variety of developers (for example, some large
open-source projects) the ranking approach can be expected
to significantly improve the quality of the models.

Another interesting observation is that the heuristic-based
baseline shows the quality comparable to the ML-based ap-
proaches. Such high performance of the heuristic solution can
be explained by the fact that the data was collected from
industrial projects of a large software company with well-
functioning bug fixing pipelines, and the proposed heuristic
might be a good fit for such a pipeline. In open-source
projects, error processing workflows might be different, and as
a result, such a heuristic solution might work worse. However,
this observation suggests that sometimes a simple heuristic
might work better than complex statistical models that are not
interpretable and need a lot of sophisticated data to train on.

Answer to RQ1: On our datasets, the ranking models
perform slightly better, but the difference can be more
significant in other settings, future research is required.

2) Research Question 2: Next, let us address RQ2 and
investigate the significance of manual and neural frame-based
features built from the VCS annotations. We trained a ranking
model with only manual frame-based features and another
model with only neural frame-based features. It can be seen
(Table III, lines 8–11 compared to lines 6–7) that frame-based
features increase the model quality, but the impact of the
neural features is not as significant as in the case of manually
extracted features in the RNN model (0.27 and 0.35 Acc@1
on the public dataset, 0.54 and 0.58 Acc@1 on the private
dataset, respectively). However, in the case of the CNN-based
approaches, manual and neural features show similar results.
CNN captures the entire stack trace, rather than processing it
in a sequential form like the RNN does. Therefore, feature
normalization in the case of CNN may be necessary, since a
lot of raw values are harmful. The difference between manual
frame-based features and neural frame-based features turned
out to be statistically significant for RNN and not significant
for CNN on both datasets.

An important disadvantage of the neural network annotation
processing is the slow model training (one epoch takes 3-
4 times longer compared to the manual features): each pass
requires hundreds of annotations to be processed, each of them
can contain thousands of lines, and since we use RNN, it
takes a significant amount of time. On the other hand, the
DL approach learns annotation embeddings automatically, and
these embeddings could be useful in other related tasks (bug
localization, bug report deduplication, etc.). This seems like a
promising direction for future work.

Answer to RQ2: Adding frame-based features from the
VCS annotations improves the quality of models. Manual
features worked better for the RNN models, while in
CNN models, the difference between manual and learned
features is insignificant. Learning features takes notice-
ably more time, but leads to obtaining embeddings of
annotations, which might be useful for other tasks.

3) Research Question 3: Finally, to answer RQ3, we trained
models with both the frame-based and stack-based features
from the VCS annotations. Since manual frame-based features
demonstrated better results than neural features, we only used
manual features. First, we can notice that the RNN-based
model outperforms the CNN-based one by 3 percentage points
according to Acc@1 (Table III, lines 12–13), however, in the
case of the public dataset, this difference is not statistically
significant. Better performance of RNNs compared to CNNs
may be attributed to the CNN training pipeline: to reduce
the training time, stack traces are processed in batches. At
the same time, CNN is not designed to process sequences of
different lengths in batches, therefore, padding is necessary.
Moreover, the length of the sequences must not be shorter than
the size of the convolution kernel, that is, 5. It is possible that
padding in the training data leads to worse results.

Secondly, we can see that adding stack-based features
has a positive statistically significant effect on the model
performance (Table III, lines 8, 10, 12–13). We believe that
frame-based features are not taken into account in the best



way in CNN models, therefore, stack-based features add new
information to the model. However, in the case of RNN mod-
els, stack-based features do not lead to such improvements.
Perhaps, better feature engineering could help us overcome
this issue, future research is required.

Answer to RQ3: Combining stack-based and frame-
based has a positive effect on the CNN-based appoaches,
but for the RNN-based models the effect is not significant.

In the end, the RNN ranking model with frame-based and
stack-based manual features obtained from the VCS anno-
tations turned out to be the best performing model for bug
assignee prediction based on the stack traces data. It outper-
forms all the other models on the private dataset (Table III,
line 13, 0.60 Acc@1 and 0.70 MRR) and achieves a significant
boost in all metrics (17–18 percentage points) compared to the
classical machine learning approaches. We release this model
as DapStep and plan to conduct more thorough experiments
on it in the future work.

Thus, the results of our experiments demonstrate that re-
formulating bug triage as a ranking problem is appropriate.
Moreover, adding features from VCS annotations to the model
has a positive effect on its performance, and the RNN-based
models work slightly better in this setting than the CNN-
based ones. From the practical standpoint, the RNN ranking
model with all the features can be trained on the data of any
specific project or company and be employed there. As for
the research implications, the results show that more research
is needed to improve the state-of-the-art solutions to the bug
triage problem, employing more information about the stack
traces. We hope that our results of using VCS annotations as
the sources of features and the provided dataset can assist in
conducting such research.

V. THREATS TO VALIDITY

Our study suffers from the following threats to validity.
Subject selection bias. The performance of the model

depends on the data. Since stack traces for the bug triage task
are being used for the first time, there is no dataset available for
this task. We collected a dataset from the products of a large
software company and evaluated the proposed approach on
them. However, applying the model to other dataset may lead
to different results. For instance, workflows in open-source
projects could be more volatile and unstable. The results for
such datasets can be noticeably lower.

Limited scope of application. Our solution is applicable
for software systems that report stack traces when a bug
happens, which might be not be typical for some projects and
companies. However, we believe this practice to be common
enough for our approach to be helpful in practice. Secondly,
deep learning models are over-parameterized. A modern neural
network contains thousands or millions of parameters. A
sufficient amount of data is required to train a neural network.
We use 11,139 different stack traces in our private dataset and
regularization techniques to prevent overfitting. However, in
cases when this amount of data is not available, the results may

differ. We hope our research will encourage other researchers
and practitioners to invest time and effort into collecting a
larger dataset of such kind.

Programming language bias. Our datasets consist of stack
traces that were obtained from the JVM languages. Therefore,
the results of our models for other languages may differ.
Firstly, stack trace characteristics change from one language to
another. The performance of the model depends on the average
length of the stack trace, as well as the variety of methods and
files used. Secondly, an essential component of our approach
is the use of features from annotations. The characteristics
of these files also strongly affect the model performance. The
distribution of developers for each file can vary between teams,
companies, and maybe even programming languages. Future
research is needed to assess how much all of this affects the
resulting model.

While these threats to validity are important to note, we
believe that they do not invalidate the overal results of our
study and its practical usefulness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore the applicability of using stack
traces for solving the bug triage problem.

Firstly, we suggest an approach for handling error reports
that do not have text descriptions, but only a stack trace for
the given error. We transform each stack trace into a set of
text tokens, which are processed as sequences. As a result,
existing solutions can be applied to such data as well.

Secondly, we collected two datasets—the public one and the
private one—from the data of JetBrains. The public dataset is
a subset of the private dataset that only contains stack frames
that relate to public repositories, with a total of 3,361 stack
traces. To facilitate further research in this area, the source
code of all the models, as well as the public dataset, are
available online at https://github.com/Sushentsev/DapStep.

Thirdly, we propose a ranking neural network model that
outperforms classifying models by 15-20 percentage points of
the Acc@1 metric on the public dataset, and 17-18 percentage
points on the private dataset. The significant advantage of this
model is the independence from the fixed set of classes (the list
of developers working on a given project). Finally, we suggest
to use an additional source of information (VSC annotations),
which significantly improves the performance of the models.
We propose two ways features could be built from such
annotations. First of all, features can be extracted manually
from annotations — this approach shows better results, but
requires effort and domain knowledge. On the other hand, it
is possible to use an additional neural network to learn the
annotation-based features. This approach requires to train an
additional neural network, so it takes more time compared
to the manual approach, however, this way we obtain explicit
embeddings of annotations, which might be employed in other
related research tasks.

We hope that our work will be of use for researchers and
practitioners, especially in the tasks that rely on stack traces.

https://github.com/Sushentsev/DapStep


REFERENCES

[1] W. E. Wong, X. Li, and P. A. Laplante, “Be more familiar with our
enemies and pave the way forward: A review of the roles bugs played
in software failures,” Journal of Systems and Software, vol. 133, pp.
68–94, 2017.

[2] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” Pro-
ceedings of the 28th international conference on Software engineering,
2006.

[3] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization
in bug repositories,” 2012 34th International Conference on Software
Engineering (ICSE), pp. 25–35, 2012.

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in ESEC/FSE ’09, 2009.

[5] Y. Tian, D. Wijedasa, D. Lo, and C. L. Goues, “Learning to rank for
bug report assignee recommendation,” 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pp. 1–10, 2016.

[6] A. Tamrawi, T. Nguyen, and J. M. Al-Kofahi, “Fuzzy set and cache-
based approach for bug triaging,” in ESEC/FSE ’11, 2011.

[7] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “A time-based
approach to automatic bug report assignment,” J. Syst. Softw., vol. 102,
pp. 109–122, 2015.

[8] H.-J. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage
based on historical bug-fix information,” 2014 IEEE 25th International
Symposium on Software Reliability Engineering, pp. 122–132, 2014.
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