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A Lightweight Approach of Human-Like Playtest for Android Apps

Yan Zhao

(ABSTRACT)

Testing is recognized as a key and challenging factor that can either boost or halt the game

development in the mobile game industry. On one hand, manual testing is expensive and

time-consuming, especially the wide spectrum of device hardware and software, so called

fragmentation, significantly increases the cost to test applications on devices manually. On

the other hand, automated testing is also very difficult due to more inherent technical issues

to test games as compared to other mobile applications, such as non-native widgets, non

determinism , complex game strategies and so on. Current testing frameworks (e.g., Android

Monkey, Record & Replay) are limited because they adopt no domain knowledge to test

games. Learning-based tools (e.g., Wuji) require tremendous resources and manual efforts

to train a model before testing any game. The high cost of manual testing and lack of

efficient testing tools for mobile games motivated the work presented in this thesis which

aims to explore easy and efficient approaches to test mobile games efficiently and effectively.

A new Android mobile game testing tool, called LIT , has been developed.

LIT is a lightweight approach to generalize playtest tactics from manual testing, and to adopt

the tactics for automatic game testing. LIT has two phases: tactic generalization and tactic

concretization. In Phase I, when a human tester plays an Android game G for awhile (e.g.,

eight minutes), LIT records the tester’s inputs and related scenes. Based on the collected

data, LIT infers a set of context-aware, abstract playtest tactics that describe under what

circumstances, what actions can be taken. In Phase II, LIT tests G based on the generalized



tactics. Namely, given a randomly generated game scene, LIT tentatively matches that scene

with the abstract context of any inferred tactic; if the match succeeds, LIT customizes the

tactic to generate an action for playtest.

Our evaluation with nine games shows LIT to outperform two state-of-the-art tools and a

reinforcement learning (RL)-based tool, by covering more code and triggering more errors.

This implies that LIT complements existing tools and helps developers better test certain

games (e.g., match3).
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(GENERAL AUDIENCE ABSTRACT)

Testing is recognized as a key and challenging factor that can either boost or halt the game

development in mobile game industry. On the one hand, manual testing is expensive and

time-consuming, especially the wide spectrum of device hardware and software significantly

increase cost to test applications on devices manually. On the other hand, automated testing

is also very difficult due to more inherent technical issues to test games as compared to other

mobile applications. The two factors motivated the work presented in this thesis.

A new Android mobile game testing tool, called LIT , has been developed. LIT is a lightweight

approach to generalize playtest tactics from manual testing, and to adopt the tactics for

automatic game testing. A playtest is the process in which testers play video games for

software quality assurance. When a human tester plays an Android game G for awhile (e.g.,

eight minutes), LIT records the tester’s inputs and related scenes. Based on the collected

data, LIT infers a set of context-aware, abstract playtest tactics that describe under what

circumstances, what actions can be taken. In Phase II, LIT tests G based on the generalized

tactics. Namely, given a randomly generated game scene, LIT tentatively matches that

scene with the abstract context of any inferred tactic; if the match succeeds, LIT customizes

the tactic to generate an action for playtest. Our evaluation with nine games shows LIT

to outperform two state-of-the-art tools and a reinforcement learning (RL)-based tool, by

covering more code and triggering more errors. This implies that LIT complements existing

tools and helps developers better test certain games (e.g., match3).
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Chapter 1

Introduction

1.1 Introduction

Mobile application and game business grows incredibly over the past few years. Until De-

cember 2019, the number of available mobile applications in the Google Play store is over

2.9 million[7] and 25% of them are mobile games. The mobile game is also a high user

engagement app category, which accounts for 43% of all Smartphone use and 68% of all App

revenue[17]. The growth speed of mobile industry has lead to decreased quality in the apps.

Testing tools has not kept up with the growth and the quality. A study shows that popular

games receive a large number of reviews each day. Bugs in a mobile game bring bad user

experiences, and also cost the game company excessively for bug fixing and user losing[31].

Hence, early-stage testing is a critical stage for detecting bugs and ensuring the reliability

of mobile games.

Testing such mobile games is a challenge, because covering sufficiently exercising a game

often requires heavy user interactions and complicated input behaviors. Some games even

contain execution paths that can be exercised only after the user has passed certain difficult

intermediate tasks. Owing to these reasons, most game companies heavily rely on manual

testing without systematic solutions[3]. However, these manual testing solutions are often

time-consuming and inefficient, which require intensive manpower.
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Automatic testing techniques have been widely studied, such as search-based testing [4], [16],

coverage-guided fuzzing [1], symbolic execution [8], random-based testing (Monkey [24]) and

model-based testing (Stoat [35]) . However, such techniques are challenging in testing games

as the game playing is a continuous interaction process with rich graphical user interfaces

(GUIs) between the gamer and the game. These techniques are not effective in game testing

since they are not “smart” to accomplish the complicated goal of the game.

In recent years, scientists applied machine learning, specifically reinforcement learning, to

play games and made a great progress, like IBM’s Deep Blue[ 6 ] and DeepMind’s AlphaGo[

24 ].But the existing DRLs mostly focus on winning the game rather than testing game.

So researcher are also investigating how to test mobile applications automatically with the

intelligence of various machine learning modules and algorithms, like Wuji[]. we know that

reinforcement learning requires millions of attempts before learning to solve a task such as

playing an game.It has a high requirement of hardware and computing resource which might

not work well with frequent iterative development of Mobile games. In this paper, we try to

present an light weight solution for game playtest.

In the video game industry, playtest refers to the process of exposing a game to its intended

audience, so as to reveal potential software flaws during the game prototyping, development,

soft launch, or after release. Game vendors sometimes recruit human testers from playtest

platforms [1, 2, 44] and pay testers money for game playing.

In our research, there are three challenges:

1. Different games define distinct rules and require users to play games by taking special-

ized actions (e.g., “long tap” or “swipe”). Our approach needs to mimic game-specific

user actions to test games like a human.



2. A game scene is an image to display different information related to one program

state (see Fig. 2.1). Scenes can be non-deterministic, so our approach should flexibly

react to the changing program states.

3. Games usually define various customized UI items or game icons (i.e., pictures) which

are not recognizable by most automatic testing frameworks. To effectively play games,

our approach should identify those icons.

To overcome the above-mentioned challenges, we developed LIT to have two phases: tactic

generalization and tactic concretization. Here, a tactic describes in what context (i.e.,

program states), what playtest action(s) can be taken and how to take those actions.

Phase I requires users to (1) provide snapshots of game icons and (2) play the game G for

awhile. Based on the provided snapshots, LIT uses image recognition [15] to identify relevant

icons in a given scene. When users play G, LIT recognizes each user action with respect

to game icon(s) and further records a sequence of ⟨context, action⟩ pairs. Here, context

removes scenery background but keeps all recognized game icons. From the recorded pairs,

LIT generalizes tactics by (1) identifying abstract contexts AC = {ac1, ac2, . . .} and major

action types AT = {at1, at2, . . .} and (2) calculating alternative parameters and/or functions

to map each abstract context to an action type. Phase II takes in any generalized tactics and

plays G accordingly. Given a scene s, LIT extracts the context c, and tentatively matches c

with any abstract context ac ∈ AC involved in the tactics. If there is a match, LIT randomly

picks a corresponding parameter setting and/or synthesized function to create an action for

game testing.

For evaluation, we applied LIT , two state-of-the-art testing tools (i.e., Monkey [24] and

Sapienz [34]), and a reinforcement learning (RL)-based tool to a set of game apps. Our

evaluation shows that with an eight-minute user demo for each open-source game, LIT out-



performed all tools by achieving higher test coverage and triggering more runtime errors.

Specifically, we tested three famous commercial mobile games, including Angry Birds, Ketchapp

Basketball, and Pop Star. With about 8-minute user-playing demos that achieve level 2 and

get 179294 points in Angry Birds, LIT infers reacting tactics and covers various scenarios

that achieve level 7, and get 1184084 points. Choudhary et al.[14] present that Monkey

achieves higher test coverage and reports more failures than other testing tools, but it can

only get 52667 points and achieve level 0.

We further evaluate LIT on popular open-source games, such as Android 2048, Archery,

CasseBonbons [52] (a game similar to Candy Crush Saga etc. The results show that LIT

significantly improves the testing coverage and trigger two runtime errors. In average, our

framework improved line coverage by 58.14% and branch coverage by 100% over Monkey.

The average coefficient of variation is reduced by 97.27%.

Our experiments show that LIT is capable of testing games of three popular categories:

match3, shooting, and basic board games. As there are hundreds of games belonging to

these categories [35, 37], we believe that LIT can tremendously help many game developers

to efficiently test games and improve software quality.

To sum up, we made the following contributions:

• We designed and implemented a novel algorithm to generalize tactics from user-provided

icons and short game-playing demos. The algorithm identifies user actions, records

⟨context, action⟩ pairs, and derives functions or parameters to map game contexts to

feasible actions.

• We designed and implemented a novel algorithm to test games based on the generalized

tactics. LIT reacts to any randomly generated game scene by matching the scene with



context in tactics, and taking actions accordingly.

• We compared LIT with two state-of-the-art tools and one RL-based tool using a dataset

of nine games. Our evaluation comprehensively compared the test coverage of different

tools in terms of source lines, branches, Java classes, and Java methods. We also

compared different tools in terms of earned game scores, passed difficulty levels, and

triggered errors. LIT outperformed all tools.

At https://figshare.com/s/c7ac3cfa300e3ede1202, we open-sourced our program and

data.

https://figshare.com/s/c7ac3cfa300e3ede1202


Chapter 2

Background

2.1 Smartphone and Mobile Operating System

From around 2010, the touchscreen smartphone revolution had a major impact on sales of

basic feature phones, as the sales of smartphones increased from 139 million units in 2008 to

1.54 billion units in 2019. In 2020, smartphone sales decreased to 1.38 billion units due to

the coronavirus (COVID-19) pandemic. Apple, Samsung, and lately also Xiaomi, were the

big winners(Table 2.1) in this shift towards smartphones; BlackBerry and Nokia were among

the losers. Nokia’s focus on hardware rather than software specifications is one reason their

net sales fell by around 30 billion euros in just three years.

Android and iOS are the two mostly used operating systems (OS) for smartphones. Android

maintained its position as the leading mobile operating system worldwide in June 2021,

controlling the mobile OS market with a close to 73 percent share. Google’s Android and

Apple’s iOS jointly possess over 99 percent of the global market share. This thesis will

concentrate on Android, because at the moment it is dominating the mobile OS niche, see

Table 2.1: Smartphone shipment market shares

Brands 2019Q1 2019Q2 2019Q3 2019Q4 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1 2021Q2
Samsung 21% 21% 21% 18% 20% 20% 22% 16% 22% 18%
Xiaomi 8% 9% 8% 8% 10% 10% 13% 11% 14% 16%
Apple 12% 10% 12% 18% 14% 14% 11% 21% 17% 15%
Other 59% 60% 59% 56% 56% 56% 54% 52% 47% 52%

6
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Figure 2.1: Mobile Operating Systems’ Market Share Worldwide

Figure 2.1.

2.1.1 Fragmentation

Fragmentation refers to a concern over the number of distinct devices with different com-

binations of software and hardware. The number of distinct Android devices is increasing

and there were 24093 distinct devices in August 2015. Figure 2.2 shows state of Android

Fragmentation. Each cell represent a device and its market share.

A major challenge in mobile application development is the inability to ‘write once and run

anywhere’. Developers often have to customize a mobile application to suit a multitude

of diverse mobile devices. This increases the effort required in all aspects of application

development, such as testing. Android fragmentation truly emphasizes the need for cross-

browser testing. Because the operating system versions, hardware specifications, screen sizes,

and system UI all differ from device to device and brand to brand, test results will vary in

the same way.



Figure 2.2: The Sorry State of Android Fragmentation

Manual testing is extremely expensive and time-consuming. Having a test automation tool,

is truly a good way to optimize usability for various Android devices in order to be inclusive

of their current market as well as their potential market of mobile users.

2.2 Mobile Games

Mobile application and game business grows incredibly over the past few years. Until De-

cember 2019, the number of available mobile applications in the Google Play store is over

2.9 million[7] and 25% of them are mobile games. When gaming becomes an all-around en-

tertainment, the mobile game is also a high user engagement app category, which accounts

for 43% of all Smartphone use[17].

There are around 2.7 billion mobile gamers worldwide. The Earth’s population is 7.8 bil-



Figure 2.3: App Store Revenue by Categories

lion. Mobile games market size statistics show that of the world citizens, nearly 3 billion are

avid phone game players. By the way, the modern-day gamer is clinically healthy, civically

engaged, educated, and socially active. What’s more, the increasing number of smartphone

users ensures that the mobile games industry continues to receive massive amounts of atten-

tion from game developers worldwide. And mobile games player penetration will be 53.3%

by 2025.

It’s no secret that the mobile game market is booming. As shown in Figure 2.3, games

account for more than half revenue in recent year. In 2020 the mobile games market generated

close to $160 billion. The mobile gaming industry brought in $159.3 billion in revenue in

2020. That is a $39.2 billion increase from the previous year and up to $43.8 billion compared

to 2018’s income. The global mobile game revenue increased by 50% in 2020. According

to mobile game statistics, in 2019, the mobile game industry had total revenue of $64.4

billion, representing a 10% YoY increase from 2018. In 2020, the coronavirus kept many at

home. This subsequently led to increased activity of mobile gamers. As such, the industry



experienced a 13.3% YoY growth from 2019.

In 2021, the casual game genre is by far the most popular genre downloaded with 78% of

the games downloaded falling into this category. Casual games include simple games like

match-3 games, bubble shooters, hidden object games, word games, and puzzle games[21].

Considering that the game play of casual games is easy to understand and very addictive, it’s

easy to understand why this genre is being downloaded the most. As App Annie explains,

this genre plays a significant part in turning “non-gamers” into gamers.

2.3 Mobile Game Testing

Application quality is a real concern for companies around the world these days. If the

application has low quality, the users can easily uninstall it. 79 percent of the users will

remove the application if it does not work within the first two or three attempts. For 84

percent of the users the rating of the application in app store is important. So if a game

application has a bad rating in the app store, it will affect the downloads. However, due

to the complexity and heavy user interactions of games, currently, game testing is mainly

dependent on human testers. Most game companies adopt some ad-hoc manual testing

without using systematic and automated testing solutions [3]. The ad-hoc manual testing is

costly and is inefficient in discovering bugs for large games. As a result, many bugs are still

discovered long after the official release. Unfortunately, most of these bugs are discovered

by gamers. A study shows that popular games receive a large number of reviews each

day, making it very time-consuming for developers to handle them [24] Meanwhile, Mobile

games require frequent updates especially in the early-stage of their development process for

adding features and fixing bugs. Even after release, companies still want to have a continuous

deployment to attract users, such as releasing a deployment for every week



On the other hand, Game testing has been long recognized as a notoriously challenging task.

The following list shows difficulties of the mobile game test automation.

• Domain Knowledge

A key challenge is that game testing often requires to play the game as a sequential

decision process. A bug may only be triggered until completing certain difficult inter-

mediate tasks, which requires a certain level of intelligence. And sufficiently testing

a game often requires agilely generating complicated input behaviors that can com-

plete certain difficult intermediate game tasks. This challenge is aggravated when it

is required to adapt to changes in the game during its development process.

• Non-deterministic Process The game environments are often non-deterministic and

time-sensitive, making the testing process unstable and hard to reproduce. Take Candy

Crush as an example, the layout of candies are always random. Some testing tools,

like record and replay, are not able to handle the situation.

• Game Widgets

Another challenge is that various customized game widgets in these apps are very

difficult to recognize with most existing test frameworks. We take Google Chrome

browser and Angry Birds as examples to explain the difference.

Figure 2.4 shows test tools can recognize Android built-in widgets of Chrome. With

this information, test tools can test their functions with corresponding inputs like

typing, clicking.

On the contrast, Figure 2.5 shows test tools were not able to recognize any widgets of

game Angry Birds. Test tools have no idea these colorful birds are widgets and should



Figure 2.4: The Widgets of Chrome Figure 2.5: The Widgets of Angry Birds

drag and drop them.

2.4 tools

OPENCV[15]: OpenCV is an open source computer vision library which includes several

hundreds of computer vision algorithms. It was originally developed by Intel[12]. It has C,

C++, Java, Python and MATLAB interfaces and it supports Linux, Android, Mac OS and

Windows.

Android Debug Bridge (ADB)[23] : is a toolkit for Android development. ADB can control

emulator instances or real device from command line. It is a client-server program which

consists of three components, client, server and daemon. Client runs on the development

machine and it is connected to the server. Server runs also in development machine and is

connected to the daemon which runs in the target instance.

GYM[40]: is a toolkit for developing and comparing reinforcement learning algorithms. It

supports teaching agents everything from walking to playing games like Pong or Pinball.



Chapter 3

Review of Literature

The related work of our research includes automated testing for Android apps, empirical

studies on automated testing for Android apps, and automated game testing.

3.1 Automated Testing for Android Apps

Various tools were proposed to automate testing for Android apps [4, 5, 11, 22, 24, 28, 30,

32, 33, 34, 45, 48].

Random-based tools [24, 32] test apps by generating random UI events and system events.

Given an app to test, model-based tools [4, 28, 48] use static or dynamic program analysis

to build a model for the app as a finite state machine (FSM). An FSM represents activities

as states and models events as transitions. The built model is then used to generate events

and explore program behaviors. Since random-based and model-based tools cannot trigger

certain program behaviors that require for specific inputs, systematic exploration tools [5, 33]

were proposed to reveal such hard-to-trigger behaviors in order to increase test coverage. In

particular, ACTEve [5] is a concolic-testing tool that symbolically tracks events from the

point where they originate to the point where they are handled, infers path constraints

accordingly, and generates test inputs based on the inferred constraints. However, these

approaches do not recognize customized UI items, neither do they observe domain-specific

rules to test games.
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Record-and-replay tools [22, 45] record inputs and program execution when users manually

test apps, and then replay the recorded data to automatically repeat the testing scripts.

The record-and-replay methodology assumes that GUIs are always organized in a determin-

istic way and UI items are always put at fixed locations. However, when game scenes are

randomly generated and game icons move, the above-mentioned assumptions do not hold.

Humanoid [30] is closely relevant to LIT . It uses deep learning to train a model with the

recorded human-computer interaction traces from lots of existing apps. To test a new app

A based on the model, Humanoid generates input events depending on (1) A’s similarity

with existing apps and (2) the frequent actions users take given similar GUIs. However, Hu-

manoid cannot test games when there is no Android widget (e.g., buttons); it is insensitive

to any app-specific interaction modes because the trained model focuses on the commonality

between apps.

3.2 Empirical Studies on Android App Testing

Researchers conducted studies on automated testing for Android apps [14, 38, 42, 56, 57].

Specifically, Choudhary et al. [14] studied test-input generation tools for Android. Among

the seven tools explored, Monkey [24] was found to execute or test most code. Based on

the study, Zeng et al. [57] applied Monkey to WeChat—a popularly used Android app,

and revealed two limitations of Monkey. First, Monkey generated many redundant events.

Second, Monkey is oblivious to the locations of widgets (e.g., buttons) and GUI states.

Mohammed et al. [38] recruited eight users to test five Android apps, and also applied

Monkey to the same apps. They revealed that Monkey could mimic human behaviors, when

apps have UIs full of clickable widgets to trigger logically independent events. However,

Monkey was insufficient to test apps that require information comprehension and problem-

solving skills like games. Our research was inspired by prior work. Some of our observations



and experience corroborate prior findings.

3.3 Automated Game Testing

Several approaches were introduced to automate game testing [9, 27, 50, 53, 54, 59]. Specifi-

cally, online testing (e.g., TorX [50] and Spec Explorer [53]) is a form of model-based testing.

With online testing, testers use a specification (or model) M of the system’s behavior to guide

testing and to detect the discrepancies between the implementation under test (IUT) and

M . Both IUT and M are viewed as interface automata to establish formal conformance re-

lations between them. However, these testing methods require users to use domain-specific

languages to prescribe models. Sikuli [47] is an open-source GUI based test automation tool.

It uses techniques like “Image Recognition” and “Control GUI” to interact with elements

of web pages and windows popups. Sikuli requires users to script the testing procedure for

automation. In comparison, LIT does not require users to prescribe any model or script; it

infers playtest tactics from user demos and uses the tactics to automate testing.

Deep learning-based approaches train models with lots of playtest data and use those mod-

els to predict the most “human-like” action in a given game scene [9, 27, 59]. For instance,

Wuji [59] is the state-of-the-art tool that uses evolutionary algorithms, deep reinforcement

learning, and multi-objective optimizations to perform automatic game testing. When test-

ing a game, Wuji intends to balance between winning the game and exploring the space.

Since Wuji is not available even though we contacted the authors, we could not compare LIT

with it empirically. These learning-based approaches usually (1) consume lots of computing

time and resources for game-specific training, and (2) require users to build DNN archi-

tectures and tune hyperparameters. When developers cannot afford the time, resource, and

effort required by the usage of learning-based tools, LIT can serve as a lightweight alternative



that generates human-like inputs to test games efficiently and effectively.



Chapter 4

Motivating Example

4.1 Motivating Example

A report from Influencer Marketing Hub, a media company, pointed out that, ”In 2021,

the casual game genre is by far the most popular genre downloaded with 78% of the games

downloaded falling into this category. Casual games include simple games like match-3

games, target shooters, hidden object games, word games, and puzzle games”[21]. Our

research will focus on the dominating category and implement test automation for majority.

This section uses a target shooter game, a subcategory of casual games, as an example to

intuitively explain our research. Archery [51] is an open-source Android game. As shown

in Fig. 4.1, the game rule is to shoot a target board with a bow and arrows in order to

make a great score. The game is challenging because the target board is placed randomly

after each target hit. Suppose that a developer Alex wants to automatically test this game.

A naïve record-and-replay approach does not help because the game scenes are generated

nondeterministically. Neither random testing nor model-based testing works for two reasons.

First, arrow and board are game-specific graphic objects instead of standard GUI items;

existing tools cannot recognize game-specific icons. Second, a user scores only if s/he pulls

the arrow, shoots the arrow towards the board, and has the arrow hit the board; existing

tools blindly test games without following any scoring rule.

17



Figure 4.1: A snapshot of the game Archery

Our insight is that when a user plays a game, user actions reflect the game-play tactics that

are usable for automatic game testing. Thus, we designed LIT to work in two modes: demo

mode and test mode. LIT monitors users’ playtest in the demo mode and mimic game

play in the test mode. To use LIT , Alex should provide two inputs: (i) snapshots of all game

icons and (ii) a demo for a limited timespan. For the first input, Alex can take a snapshot of

the game and cut out images of board and arrow (see regions marked with red rectangles

in Fig. 4.1); Alex may also specify the arrow to be actionable (i.e., manipulable) and the

board to be target (i.e., unmanipulable). For the second input, Alex can play the game in

the demo mode such that LIT records game scenes and traces Alex’s finger gestures. This

process continues until timeout.

Recognition of Contexts and Actions Based on the inputs and recorded data, LIT

analyzes traces to identify Alex’s action sequence and analyzes each scene snapshot to identify

the context. By indexing actions and contexts based on their timestamps, LIT creates

a sequence of ⟨context, action⟩ pairs P = {p1, p2, . . . , pn}. The information captured by

a ⟨context, action⟩ pair pi (i ∈ [1, n]) is illustrated in Fig. 4.2. Namely, every pixel of a
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Figure 4.2: Visualizing any ⟨context, action⟩ pair for Archery
display is represented with an xy-coordinate. The location of each game icon o is represented

with the coordinate of o’s centroid, such as (x1, y1) for arrow and (x2, y2) for board. The

swipe operation is represented with a starting point (x1, y1) and an ending point (x3, y3), as

indicated by the red dotted directed edge. Our goal of tactic inference is to generalize

mappings from contexts to actions.

Tactic Inference Based on recognized pairs, LIT analyzes three things for automated

testing:

• What is the commonality between contexts?

• What kind of actions are frequently applied?

• How is each context mapped to the corresponding action?

LIT infers any common context by comparing collected contexts, and finds the board and

arrow to always exist while Alex plays the game. Similarly, LIT compares all identified actions

and recognizes arrow-swiping as the major action type. In our research, we differentiate

between two types of swipe operations: target-oriented swipes and swipes without target.

Because board is specified as target, LIT infers all arrow-swiping operations to be target-
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Figure 4.3: Tactic inference from any ⟨context, action⟩ pair
oriented.

LIT then characterizes three properties for each target-oriented swipe: (i) distance dist, (ii)

direction dir, and (iii) duration dur. For simplicity, here we only explain the calculation of

properties (i) and (ii) for any pair pi. As shown in Fig. 4.3, LIT computes dist based on

the coordinates of the start and end points. LIT calculates dir by fitting functions to the

coordinates of all three points, because such functions reflect Alex’s potential angles to shoot

the arrow. Intuitively, LIT fits a linear function f1(x) = kx + b to the coordinates; it also

fits a quadratic function f2(x) = ax2 + bx + c. For each linear function, LIT records k as

the inferred direction because k decides the slope of f1’s line. For each quadratic function,

LIT records a because a decides the width and direction (up or down) of a parabola’s

opening [36]. To sum up, LIT generates a tactic from Alex’s inputs (see Table 4.1).

Table 4.1: The tactic inferred from Alex’s inputs
”Abstract Context”: Actionable (arrow)

Target (board)
”Action Type”: Swipe (actionable)
”Swipe Distance”: dist1, dist2, . . . , distn
”Swipe Direction”: Linear (k1, k2, . . . , kn)

Quadratic (a1, a2, . . . , an)
”Swipe Duration”: 0.26 (second), 1.26, …, 0.33)
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Figure 4.4: Tactic application given a random scene of Archery

Tactic Application When testing Archery, given a randomly generated scene, LIT first

identifies all game icons (i.e., arrow and board). To swipe an arrow towards the board, LIT

needs to decide the end point (x′, y′) for the swipe operation (see Fig. 4.4). To do that,

LIT randomly picks a distance disti, a direction parameter p, and a duration durj from the

inferred tactic. If p = kj, LIT solves the equations below to get (x′, y′):


(y′ − y′1)

2 + (x′ − x′
1)

2 = dist2i

y′1 − y′ = kj × (x′
1 − x′

1)

Otherwise, if p = al, LIT solves the following equations:


(y′ − y′1)

2 + (x′ − x′
1)

2 = dist2i

y′1 − y′ = al × (x′2
1 − x′2) + b× (x′

1 − x′)

y′2 − y′1 = al × (x′2
2 − x′2

1 ) + b× (x′
2 − x′

1)

Due to the random combination between inferred parameters, LIT does not guarantee all

arrows to hit the board. However, all generated actions are valid arrow-shootings and some



actions are highly likely to score. By diversifying the generated actions, LIT can test the

game like humans, and save Alex significant amount of time and effort for manual testing.



Chapter 5

Approach

5.1 Approach

The purpose of LIT is to implement test automation for mobile games and this section

describes how LIT is designed and implemented. Section 5.1 shows the high level system

design and the rest sections, digs deeper into the system.

5.1.1 System overview

As shown in Fig. 5.1, LIT consists of two phases and seven steps to implement two phases.

In this section,

Phase I: Tactic Generalization (Demo Mode)

• LIT records information while a user plays game G.

Recording
Game 
Icons

Screenshots Trace

Recognition of 
Contexts and Actions

<Context, 
Action> Pairs

Tactic Inference Tactic(s)

Screenshot Taking

Screenshots

Context 
RecognitionContexts

Context 
Matching

Matched Objects

Tactic ApplicationRule Library

Phase I: Tactic Generalization Phase II: Tactic Concretization

Figure 5.1: LIT consists of two phases: tactic generalization and tactic concretization
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• Based on the recorded data and user-specified game icons, LIT recognizes game contexts

C and related actions A.

• LIT infers tactics by extracting abstract contexts AC and action types AT , and re-

vealing mappings from each context c ∈ C to the related action a ∈ A.

Phase II: Tactic Concretization (Test Mode)

• When playing G, LIT periodically takes snapshots for game scenes; it repeats the steps

below for each snapshot.

• LIT recognizes concrete context c′ in the snapshot.

• LIT tentatively matches c′ with any ac ∈ AC.

• If a match is found successfully, LIT concretizes the related tactic for action generation

to play the game.

The following sections explain each step in detail. (Section 5.1.2–Section 5.1.7).

5.1.2 Recording

To record the screenshots and traces while a user plays game G, we used Android Debug

Bridge (adb) [23]—a command-line tool to collect human-computer interaction data from

an Android device, and to save the data to our computer. The length of demo time can

affect both manual workload and automated testing effectiveness. Due to time limit, we set

the length to eight minutes. During the demo, in every nine seconds, LIT reads the system

time t, takes a screenshot, and saves it as “png.t”. Depending on how complex a game scene

is, LIT may spend 1–2 seconds creating an image file. Afterwards, LIT creates a trace file

“txt.t” to record finger movements. At a terminal, LIT then prompts the user to taken an



Figure 5.2: An excerpt of a trace file

action and records all corresponding input events in the trace file. In this way, screenshots

and trace files can be aligned based on their common timestamps. We set the time interval

to nine seconds based on our observations on (1) users’ response time and (2) the cost of

automatic screenshot-taking.

Fig. 5.2 shows an excerpt of a trace file. In the file, the first column lists the timestamps

of events, although these timestamps cannot be mapped to the system-level timestamp t

mentioned above. All ABS_MT events report details on how an object (e.g., a finger) touches

the screen and makes movements. Particularly, ABS_MT_POSITION_X and ABS_MT_POSITION_Y

events show the xy-coordinates of contact points in a temporal order. When a finger moves

on the screen, multiple xy-coordinates are recorded for the trajectory.

5.1.3 Recognition of Contexts and Actions

LIT recognizes contexts based on user-specified game icons. Currently, users are supported

to specify three types of icons:

• Actionable—the icons that a user controls or manipulates to score (e.g., arrow in

Archery),

• Target—the icons that a user does not operate but are helpful for the user to decide

how to operate actionable icons (e.g., board in Archery), and



Figure 5.3: Exemplar function icons in Angry
Birds Figure 5.4: A screenshot of An-

droidLinkup [16]

• Function—the icons that a user manipulates to switch between major game phases,

such as moving on to the next difficulty level or retrying the current level. Fig. 5.3

lists some function icons used in Angry Birds.

The user-specified categorized icons serve two purposes. First, they enable LIT to generalize

context-aware tactics. If no icon is specified, LIT infers tactics solely based on traces. Second,

if the user demo presents only a subset of specified icons, the category information allows

LIT to generalize inferred tactics from seen icons to unseen ones. For instance, suppose

that a demo only uses two of the four function icons shown in Fig. 5.3. LIT generalizes any

tactic inferred from these two icons to other same-typed icons. This approach design enables

LIT to effectively infer tactics without requiring a long demo. Theoretically, the task of

icon specification can be automated, but the inaccuracy of automatic icon recognition can

substantially compromise LIT ’s performance later on. To avoid data noise, we required users

to specify icons. We expect such manual effort to be little, because game developers need

to define icons anyway. In many scenarios, they can simply reuse the icons in their projects’

assets folder as inputs.



To recognize specified icons in given screenshots, we used OpenCV (i.e., Open Source Com-

puter Vision Library) [15] for image recognition. OpenCV can flexibly match similar but

different images. Such flexibility is important for LIT to locate game icons in screenshots

because the specified icons are sometimes rotated, shadowed, or darkened in game scenarios.

For each recognized image, OpenCV outputs coordinates of the matched area.

A user action consists of one or multiple touch gestures made for a valid move in games

(e.g., shooting an arrow towards the board in Archery). These gestures may be taps (e.g.,

clicks) or swipes. To recognize user actions in trace files, we built an intuitive method.

Namely, we observed that the recorded event sequence for each gesture always (1) starts with

ABS_MT_TRACKING_ID 0000xxxx, (2) ends with ABS_MT_TRACKING_ID 0000, and (3) has multiple

ABS_MT_POSTION_X and ABS_MT_POSITION_Y events in between to show xy-coordinates of contact

points. Based on this observation, LIT processes any given trace file to identify all segments.

Inside each segment, suppose that the first xy-coordinate is (xf , yf ), the last xy-coordinate

is (xl, yl), and their related timestamps are separately tsf and tsl. LIT then calculates two

properties: distance dist =
√

(xl − xf )2 + (yl − yf )2 and duration dur = tsl− tsf ’; it derives

a gesture using the following heuristics:

H1: If dist > 20&&dur > 0.2 second, then a swipe gesture was made.

H2: If dist < 20∥dur < 0.2 second, a tap gesture was made.

We defined the above-mentioned heuristics by exploring different gestures, observing the

recorded traces, and summarizing gesture-trace mappings. At the end of this step, LIT

derives a sequence of ⟨context, action⟩ pairs, with each pair related to one timestamp t.



5.1.4 Tactic Inference

Given ⟨context, action⟩ pairs, LIT infers tactics by (1) identifying abstract contexts AC =

{ac1, ac2, ...} and action types AT = {at1, at2, ...} and (2) calculating alternative parameters

and/or functions to map each context to the related action. Namely, each tactic consists of

one abstract context, one action type, and a set of parameters and/or functions.

To identify abstract contexts, LIT clusters collected contexts based on the number of icon

types each context contains. For the Angry Birds game shown in Fig. 2.1, some contexts

include two icon types: actionable (i.e., birds) and target (i.e., pigs), and some contexts

include only one icon type: function (i.e., “Next”). LIT considers each cluster to correspond

to one abstract context aci, and represents aci with the related icon types, as shown in

Table 4.1.

To identify major action types, LIT compares the actions related to each context cluster.

If all or most of the actions are composed of the same gesture sequence s (e.g., swipe), the

inferred action type is also represented with s. Furthermore, in each of these ⟨context, action⟩

pairs, LIT tentatively maps the starting coordinate of action to game icons in the context;

if the actions are always mapped to the same icon type i, the inferred action type is refined

to s(i), as shown in Table 4.1.

The major challenge for this step is: How do we calculate concrete parameters and/or func-

tions to map each abstract context to an action type? To overcome this challenge, given

observed user actions and related contexts for each cluster, LIT follows the rules in our pre-

defined library (see Fig. 5.5) to infer parameters and/or functions from each ⟨context, action⟩

pair. The inferred data describes given certain contexts, what concrete actions were taken

by users. In later steps (Sections 5.1.6 and 5.1.7), LIT reuses such data to generate actions

given a new context. Namely, the inferred data establishes concrete mappings from each
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Figure 5.5: Rules defined to infer parameters/functions for context-action mappings

abstract context to the related action type.

As shown in Fig. 5.5, the library currently has five rules. Given ⟨context, action⟩, R1

means that if an action was not applied to any specified icon (i.e., i == none), LIT extracts

properties of individual gestures contained by the action. Particularly, for any tap, LIT

extracts two properties: the starting coordinate (xf , yf ) and duration dur. For any swipe, LIT

extracts three properties: distance dist, duration dur, and angle ϕ = arcsin((yl−yf )/dist)).

Similarly, R2 describes that if an action was applied to a function icon (i.e., i == function),

LIT extracts gesture properties with respect to that icon. Namely, for any tap, LIT extracts

one property—dur; for any swipe, LIT extracts three properties: dist, dur, and ϕ.

R3 describes the scenarios where an action was applied to an actionable icon (i.e., i ==

actionable) and the context has one or more target icons (see Fig. 4.1). Many shooting

games correspond to such scenarios [37], where users make swipe gestures. Thus, LIT extracts
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three swipe-related properties for each gesture (dist, dur, and ϕ), and synthesizes linear and

quadratic functions to fit any potential curves between the manipulated icon and a target.

In the scenarios where multiple target icons coexist (see Fig. 2.1), it is hard to guess at

which target a user aims when manipulating an icon; thus, LIT randomly picks a target to

synthesize functions. In our implementation, LIT adopts SciPy [55] to fit both linear and

quadratic functions to given coordinates. Although SciPy can synthesize arbitrarily complex

functions, based on our experience, the generated linear and quadratic functions are very

effective for LIT to test games. Finally, one coefficient of each synthesized function is saved

for later use.

R4 describes the scenarios where an action was applied to an actionable icon, and the context

has no target icon but organizes all actionable icons in a matrix. Match3 games [35] adopt

such matrix layouts to place actionable icons. As shown in Fig. 5.4, the AndroidLinkup

game lists different types of fruits in a matrix, and a user needs to tap two fruits of the

same type to eliminate them both and earn points. If we use different numbers to refer to

different fruit icons, a ⟨context, action⟩ pair can be visualized as Fig. 5.6. We decided not

to use such context as is in the inferred tactic for two reasons. First, randomly generated

scenes can place fruits in arbitrary ways and the reusability of such context is quite limited



in later steps. Second, not all elements in the matrix help explain the user action. Thus,

we developed an action-oriented submatrix extraction algorithm to facilitate tactic inference

and application.

Based on our experience, icons in matrices are manipulated usually because they are identical

to some surrounding icons. Thus, we designed an algorithm to extract an action-relevant

submatrix (i.e., pattern) that reflects the commonality. In this algorithm, LIT first initializes

a rectangle sc based on the layout of c to cover all elements in E. Secondly, LIT normalizes c

to another matrix c1 as follows: if an element is identical to any member e ∈ E, the element

is converted to “1”; if the element is different from all members in E, it is converted to “0”;

otherwise, if a grid in c has no element, “-1” is used. For instance, Fig. 5.7 (a) shows the

normalized representation for the matrix in Fig. 5.6. Thirdly, LIT enqueues all elements in E.

For each dequeued element e, LIT examines the neighbors (see Fig. 5.8). If an unprocessed

neighbor n corresponds to “1” in c1, LIT enqueues n. LIT also checks whether sc is large

enough to cover n; if not, sc is enlarged. This process continues until the queue is empty

and sc becomes stabilized.

Our algorithm returns m—the submatrix in c1 covered by sc. Fig. 5.7 (b) shows the

submatrix derived from Fig. 5.7 (a). LIT then infers a function map(m) = E from each

⟨context, action⟩ pair. As what LIT does for R2, LIT also conducts icon-oriented property

extraction for gestures. Therefore, the derived tactic includes map functions and icon-related

gesture properties.

R5 describes the scenarios when an action was applied to an actionable icon, and the context

has no target icon or matrix-like layout. Similar to what it does for R2, LIT simply extracts

gesture properties with respect to the manipulated icons.



5.1.5 Screenshot Taking & Context Recognition

These two steps reuse part of the implementation of Steps 1–2. Specifically, given game G,

LIT periodically takes snapshots via adb, and relies on OpenCV and user-specified game

icons to identify contexts. Because context is represented by the game icons extracted from

a screenshot, when developers specify no game icon, LIT recognizes no context.

5.1.6 Context Matching

Given an identified context c′, LIT tries to match c′ with the abstract context ac of any derived

tactic based on (1) icon types and/or (2) matrix layouts. According to our experience, such

tentative matching often succeeds. This is because LIT extracted at most dozens of abstract

contexts from each demo. Those contexts could be efficiently enumerated for matching

trials; they were also representative enough to illustrate game rules. In the worst case where

context matching fails, LIT randomly generates an action to proceed ignoring the context.

5.1.7 Tactic Application

Intuitively, this step is the reverse process of tactic inference. Given a demo, tactic inference

characterizes game contexts and derives a set of features to describe user actions. Corre-

spondingly, this step leverages context characterization and derived features to randomly

generate actions, and uses adb to issue those actions for playtest. Therefore, depending on

the rule adopted for tactic inference, LIT applies tactics differently.

With more details, if R1 is used for inference, LIT applies tactics by generating actions

based on arbitrary property combinations between observed gestures. For instance, if a tap

action is needed, LIT randomly picks a recorded coordinate (xf , yf ) and a duration dur to

create a tap. Similarly, if a swipe is needed, LIT creates the gesture by randomly picking

dist, dur, and ϕ from its property sets. LIT similarly applies tactics if R2 or R5 is in use.



Table 5.1: The nine Android games used in our evaluation

Game
Type
(Open
or Closed
source)

Category LOC Player’s Actions Context Characteristics

Angry Birds [18] C Shooting -

Fling (or swipe) multiple col-
ored birds to defeat green-
colored pigs in a structure or
tower.

With actionable icons (i.e.,
birds) and target icons (i.e.,
pigs)

Ketchapp Basketball [6] C Shooting - Swipe the ball towards the bas-
ketball hoop.

With actionable icons (i.e.,
balls) and a target icon (i.e.,
hoop)

Star Pop Magic [20] C Match3 - Tap two or more adjacent iden-
tical stars to crush them.

With actionable icons (i.e.,
stars) organized in a matrix

2048 [19] O Board 1,692

Swipe any point up/down/left-
/right to move the tiles. When
two tiles with the same number
touch, they merge into one.

Without actionable or target
icon

Apple Flinger [8] O Shooting 14,085 Shoot (to swipe) apples towards
the enemy’s base

With actionable icons (i.e., ap-
ples), but not organized in a ma-
trix

AndroidLinkup [16] O Match3 2,102

Tap two identical items to con-
nect them with three or fewer
line fragments and to crush
them.

With actionable icons (i.e.,
fruits) organized in a matrix.

Archery [51] O Shooting 2,833 Shoot (or swipe) arrows towards
a board.

With actionable icons (i.e., ar-
rows) and a target icon (i.e.,
board)

CasseBonbons [52] O Match3 2,549

Swipe colored pieces of candy on
a game board to make a match
of three or more of the same
color.

With actionable icons (i.e., can-
dies) organized in a matrix

Open Flood [43] O Board 1,659

Start in the upper left corner
of the board. Tap the colored
buttons along the bottom of the
board to flood all adjacent filled
cells with that color.

With actionable icons (i.e., but-
tons), but not organized in a
matrix

“-” means the data is unavailable.

When R3 is used for tactic inference, as illustrated by Section 4.1, LIT randomly picks dist,

direction parameter p, and dur to decide how to swipe an actionable icon with respect to a

target icon.

When R4 is used for inference, to apply tactics to the given context c′, LIT tentatively

matches c′ with any extracted submatrix m. If there is a submatrix m′ in c′ such that

(1) the elements matching 1’s have the same icon index i and (2) the elements matching 0’s

have indexes other than i, then LIT identifies elements for operation and creates an action by

randomly mixing collected gesture properties. For instance, Fig. 5.9 presents a new context

of AndroidLinkup that is totally different from the original context in Fig. 5.6 (a). When



matching this context with the s in Fig. 5.6 (b), LIT can locate two icons and generate two

taps accordingly.



Chapter 6

Evaluation

6.1 Evaluation

This section first presents our dataset and evaluation metrics. It then explains the evaluation

results for LIT and other tools.

6.1.1 Dataset

We included nine Android games into our evaluation set (see Table 5.1); three of the games

are closed-source and six games are open-source. We chose these games because they are

representative, present diverse context characteristics, and require users to take various ac-

tions. With more details, users need to specify at least one function icon in each game so

that LIT infers how to enter those games. Additionally, users need to specify actionable

icons for some games (e.g., CasseBonbons), and specify both actionable and target icons for

some other games (e.g., Archery). Each game requires for user actions like taps or swipes.

In Table 5.1, column LOC shows the number of lines of code for each open-source game.

6.1.2 Metrics

Similar to prior work [14, 58], we measured code coverage of execution by different testing

tools to assess their effectiveness. Theoretically, the more code is executed by a testing tool,
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the better. We defined four coverage metrics:

Line_Coverage =
# of lines of code covered

Total # of lines × 100%

Branch_Coverage =
# of code branches covered

Total # of branches × 100%

Method_Coverage =
# of methods covered

Total # of Java methods × 100%

Class_Coverage =
# of classes covered

Total # of Java classes × 100%

In our implementation, we adopted JaCoCo [39] to collect coverage information. Because

Jacoco uses the ASM library [10] to modify and generate Java byte code for instrumentation

purpose, the above-mentioned metrics are only computable for open-source games; they are

not computable for closed-source software because we have no access to the codebases. To

also evaluate tools when they test closed-source software, we defined two additional metrics:

Game_Score and Game_Level. Game_Score reflects the points earned by a testing tool

after it plays a game for a period of time. We believe that the higher score a tool earns, the

more likely that the tool covers more code. Similarly, Game_Level shows at which difficulty

level a testing tool is when the allocated testing time expires; the higher level, the better.

6.1.3 The Effectiveness of LIT

Given a game G, the first author manually played G for eight minutes in LIT ’s demo mode,

and then switched to LIT ’s test mode to automatically play G for one hour. Because there

is randomness in the test inputs generated by LIT , we ran LIT to play each game five times

such that each test run lasted for one hour. In Table 6.1, the LIT columns present average

results of our tool across five runs, while the Demo columns shows the results achieved



Table 6.1: The comparison of Game_Score and Game_Level among user demos, LIT ,
Monkey, Sapienz, and RLT

Game_Score Game_Level

Game Demo LIT Monkey Sapienz RLT Demo LIT Monkey Sapienz RLT
Angry Birds 179,394 1,147,827 35,546 - - 2 7 0 - -

Ketchapp Basketball 2 37 0 - - 1 3 0 - -
Star Pop Magic 695 2,805 225 - - 1 2 1 - -

2048 332 2,212 586 600 2,142 - - - - -
Apple Flinger 38,290 83,718 0 0 81,718 4 6 0 0 6
AndroidLinkup - - - - - 2 5 0 1 2

Archery 180 493 0 0 140 - - - - -
CasseBonbons 4,050 21,270 0 15 4,290 2 7 0 1 3

Open Flood - - - - - 1 6 0 1 6
“-” means the data is unavailable

Table 6.2: Code coverage comparison based on open-source games among LIT , Monkey,
Sapienz, and RLT

Line_Coverage (%) Branch_Coverage (%) Method_Coverage (%) Class_Coverage (%)Game LIT Monkey Sapienz RLT LIT Monkey Sapienz RLT LIT Monkey Sapienz RLT LIT Monkey Sapienz RLT

2048 81 80 77 81 68 65 62 68 84 86 84 84 78 78 78 78
Apple Flinger 53 19 9 53 52 17 7 51 60 27 16 60 59 32 24 59
AndroidLinkup 77 63 58 71 72 41 32 63 73 73 68 69 82 79 75 77

Archery 72 66 20 71 49 39 6 47 66 63 20 66 73 66 39 73
CasseBonbons 77 4 50 71 79 1 33 64 76 6 55 71 70 12 49 70

Open Flood 50 32 42 50 37 20 28 37 53 33 51 53 48 35 59 48
Average 68 44 43 65 60 30 28 54 69 48 49 65 68 50 54 66

by manual testing. In this table, “-” means that the data is not available. Three reasons

explain such data vacancy. First, some games do not show game scores (i.e., AndroidLinkup

and Open Flood). Second, some games have a single difficulty level instead of multiple levels

(e.g., Apple Flinger and Archery). Third, some tools do not test the three closed-source

games.

By comparing the Demo and LIT columns in Table 6.1, we observed LIT to consistently

outperform user demos by acquiring higher scores and passing more levels. For instance,

in Angry Birds, Demo acquired 179,394 points and stopped at the 2nd level; LIT obtained

1,147,827 points and stopped at the 7th level. This means that LIT did not simply record or

repeat what users did. Instead, it effectively inferred tactics from demos, and applied those

tactics in reaction to randomly generated scenes. Our observation also indicates that with

LIT , users do not need to manually test all games comprehensively. Instead, they can test



the games for only a short period of time, and rely on LIT to spend more time similarly

testing those games. The LIT columns in Table 6.2 present code coverage measurements for

our tool. Among the six open-source games, LIT achieved 50–81% Line_Coverage, 37–79%

Branch_Coverage, 53–84% Method_Coverage, and 48–82% Class_Coverage.

Finding 1: Based on eight-minute user demos, LIT effectively earned game scores,

passed difficulty levels, and executed lots of code within one-hour playtest.

6.1.4 Effectiveness Comparison Among Tools

To assess how well LIT compares with prior work, we also applied two state-of-the-art tools

to our dataset: Monkey [24] and Sapienz [34]. Monkey implements the most basic random

strategy; it treats the app-under-test as a blackbox and randomly generates UI events (e.g.,

tap a random point in a game display). Sapienz uses multi-objective search-based testing

to automatically explore and minimize test sequences, while maximizing coverage and fault

revelation. Three reasons explain why we chose these two tools for experiments. First,

Choudhary et al. [14] conducted an empirical study by running multiple automatic testing

tools on the same Android apps, and revealed that Monkey outperformed the other tools

in terms of code coverage and runtime overhead. Second, Mao et al. [34] conducted a more

recent study and showed that Sapienz worked even better than Monkey. Third, similar to

LIT , neither tool uses any machine learning technique.

Reinforcement learning (RL)-based tools were proposed to test games [9, 27, 59], but none

of the tools is publicly available or executable1. To ensure the comprehensiveness and rep-

resentativeness of our empirical comparison, we built a vanilla RL-based tool and refer to

it as RLT (see Section 6.1.4). Among the three baseline tools, Monkey can test all games.

1Several open-sourced RL-based testing tools need specialized hardware and are inapplicable to mobile
apps.
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Figure 6.1: Overview of RLT—a testing tool based on RL

Sapienz only tests apps installed on the Android Emulator [26]. As the three closed-source

games are not installable on the emulator, Sapienz could not test them. RLT was built to

use line coverage values as rewards (see Section 6.1.4), so it is inapplicable to close-source

games. Finally, we conducted two experiments with all four tools. In the first experiment,

we applied each tool to every game five times, with each test run lasting for one hour; we

then compared the average coverage measurements across tools. Second, we used each tool

to run every game for five hours, and compared the number of runtime errors triggered.

RLT

We implemented RLT on top of Gym [40]—a toolkit for developing RL algorithms. Since

different games have distinct rules, we programmed an RL agent for each game. As shown

in Fig. 6.1, a typical RL agent (e.g., intelligent gameplayer) interacts with the environment

(e.g., game) in discrete time steps. At each time t, the agent A receives the current state st

and reward rt; it then chooses an action at from the set of available actions either randomly or

based on its deep neural network, and sends at to the environment E. In our implementation,

a state is a game screenshot automatically captured by A, a reward is the line coverage output



by JaCoCo at runtime, and an action includes one or more touch gestures conducted to make

a valid move in games. The goal of A is to learn a policy from < state, action > pairs that

produces actions to maximize the line coverage of app execution.

To achieve the goal, we encoded all valid actions (i.e., the action set) into A for individual

games. For instance, for CasseBonbons, we encoded the swipe operations applicable to a 9×9

matrix as numbers within [1, 9×9×4], as a swipe has four possible directions (i.e., up, down,

left, and right) and is applicable to all elements. Whenever A generates a number, RLT is

programmed to invoke adb and manipulate the corresponding matrix element accordingly.

Additionally, we also programmed A to iteratively learn a deep neural network (DNN) that

outputs actions given game scenes. Intuitively, in the first iteration, A randomly picks

actions among the encoded valid ones, and sends actions in sequence to E to observe the

corresponding states and rewards.

In the second iteration, A trains a policy based on observed data. It then uses the trained

policy together with a random-based strategy to generate actions and interact with E. Such

iterative learning continues until timeout (e.g., after eight minutes). We implemented our

DNN by following the architecture design mentioned in prior work [13, 41]. The architecture

has (1) a stack of three convolution layers with a ReLU activation and followed by max-

pooling layers, and (2) three fully connected layers followed by a softmax layer. The first

two convolution layers separately use 32 3×3 filters; the third convolution layer uses 64 3×3

filters. The pool size in max pooling is 2× 2. The first two fully connected layers separately

have 24 and 48 neurons; the number of neurons in the third fully connected layer is equal to

the number of valid actions in a game. The batch size in each iteration is 16.



Comparison Based on Game_Score and Game_Level

As shown in Table 6.1, LIT outperformed Monkey and Sapienz by always acquiring higher

scores and passing more levels; it worked at least equally well with RLT. For instance, when

testing Apple Flinger, LIT obtained 83,718 points and arrived at Level 6 with one-hour

playtest. Meanwhile, neither Monkey nor Sapienz earned any point or passed any level; RLT

got 81,718 points and arrived at Level 6. Two reasons can explain why Monkey and Sapienz

worked much worse than LIT . First, both tools do not know how to enter the game, and

spent lots of time clicking random pixels on the display before accidentally hitting the “Play”

button. Second, Apple Flinger requires players to swipe certain icons to hit targets. Because

neither tool has such domain knowledge, they cannot properly generate swipe actions for

scoring.

RLT worked better than both Monkey and Sapienz because in any agent, we hardcoded the

valid action set and programmed the logic to locate actionable icons (i.e., apples) via image

recognition. Such coded domain knowledge enables RLT to iteratively try different actions,

observe the reward outcomes, and refine its policy. Nevertheless, RLT did not outperform LIT

probably due to two reasons. First, RLT generates training data based on random actions,

while LIT infers tactics from user demos that indicate not only contexts and actions, but

also winning strategies of developers. Namely, there is more domain knowledge manifested

by user demos than that coded into agents. Second, the DNN architecture in RLT is very

complex; it repetitively processes large images of screenshots and optimizes hundreds of

parameters before being stablized; while LIT only has a small library of inference rules to

enumerate and explore. Therefore, LIT inferred tactics more efficiently than RLT and tested

games more effectively.



Comparison Based on Coverage Metrics

According to Table 6.2, among the four metrics, LIT achieved 60–69% average coverage,

Monkey obtained 30–50% average coverage, Sapienz acquired 28–54%, and RLT got 54–66%.

LIT and RLT always achieved higher coverage measurements than Monkey and Sapienz in

three games: Apple Flinger, Archery, and CasseBonbons; all tools got similar coverage in

the other games: 2048, AndroidLinkup, and Open Flood.

Three reasons can explain the observation. First, 2048, AndroidLinkup, and Open Flood

are relatively simple and require for simple tap gestures; even Monkey and Sapienz could

smoothly test those games by randomly clicking pixels on screens. Second, the other three

games have more complex contexts (e.g., by including target icons or organizing actionable

icons in a matrix), and/or require for carefully planned gestures. LIT and RLT have the

domain knowledge to recognize icons and produce valid actions, while the other tools do

not. Third, for 2048 and Open Flood, Monkey and Sapienz not only tested the game-playing

logic, but also tested other UIs (i.e., class SettingsActivity). As LIT and RLT focused on

game playing, they earned higher scores and passed more levels but did not necessarily cover

more code.

Comparison Based on Triggered Errors

In our experiments, LIT revealed one runtime failure in Archery and one program crash in

CasseBonbons. However, none of the other tools triggered any runtime error. We reported

the revealed two issues to developers by filing pull requests, but have not received any

response yet.



Table 6.3: Line Coverage% of Lit with different demo time

Game 2 min (%) 4 min(%) 6 min(%) 8 min(%) 10 min(%)
CasseBonbons 64 70 72 77 76

Open Flood 50 50 50 50 50
Apple Flinger 50 50 52 53 54

2048 80 80 83 81 80
Archery 70 71 72 72 72

Finding 2: LIT outperformed Monkey and Sapienz by playing games more smartly;

it worked slightly better than RLT even though RLT has a complex DNN design and

built-in domain knowledge.

6.1.5 Manual Cost and Time sensitivity

When testing games via automatic tools, we expect the manual cost of automatic tools is

acceptable. The purpose of Lit is to built a light-weight approach for playtesting mobile

games. So in this section, we conducted a few experiments with different demo time length

from 2 min to 10 min to evaluate the manual cost.

Table 6.3 presents the line coverage that LIT achieves with different demo time. The length

of demo time can affect both manual workload and automated testing effectiveness. Based

on our experience, the impact of time length on testing effectiveness varies from game to

game. For games with simpler contexts (e.g., Open Flood ), 1-minute user demo can lead

to comparable testing coverage with a 10-minute demo. For games with complex contexts

(e.g., Apple Flinger), a longer user demo (i.e., 10-minute long) is usually better.

Finding 3: All the applications in our evaluation can achieve good coverage in about

10-minute demo time. Hence, the manual cost for LIT is acceptable.

Summary. Two reasons explain why LIT worked better than Monkey and Sapienz. First, LIT

generated test inputs by inferring and applying game rules based on user demos, while such



domain-specific rules are not observed or exploited by either tool. Second, LIT recognized

game icons and extracted contexts, to dynamically decide how to react to random scenes.

However, neither Monkey nor Sapienz recognizes manipulable icons, let alone to intelligently

control those icons. Additionally, although RL-based techniques were built to test games,

in our experiments, we did not see RLT to outperform LIT . Instead, RLT worked slightly

worse, even though it is much harder to use. With RLT, developers need to know DNN and

RL, program game-specific agents, hardcode actions, and tune various hyperparameters. In

comparison, with LIT , developers only need to provide short demos and specify game icons.

LIT complements existing tools by providing a different trade-off between manual effort and

testing effectiveness.



Chapter 7

Discussion

7.1 Discussion

7.1.1 Generalization

In 2021, the casual game genre is by far the most popular genre downloaded with 78% of

the games downloaded falling into this category. Casual games include simple games like

match-3 games, target shooters, hidden object games, word games, and puzzle games[21].

Our rule library for tactic inference currently focuses on three major types of games: (1)

board games that require no specialized consideration for context (e.g., 2048), (2) shooting

games (e.g., Archery), and (3) match3 games (e.g., CasseBonbons). we choose the game

categories with the most downloads. And we noticed that prior work on automatic game

testing evaluates each tool with only 1–3 games [9, 27, 59], so our data set is much larger

than the state-of-the-art research.

Beside that, to better understand LIT ’s potential application scope in the real world, we

examined the most popular 20 games listed on Google Play [25]. 11 games fall into the

categories LIT focuses on; the remaining 9 games belong to 4 categories: adventure (e.g.,

Roblox [12]), race (e.g., Subway Surfers [29]), casual (e.g., Pou [46]), and educational (AB-

Cya! [49]).
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The four extra categories mentioned above cannot be tested by LIT for various reasons. First,

adventure games have various maps/tracks for players to explore. The scenery and paths

along different tracks can be very different from each other, so it is difficult for LIT to infer

tactics from the user demo with part of a track and to apply those tactics for playtest on other

tracks. Second, race games usually switch scenes so fast that LIT cannot capture screenshots

in a timely manner. Third, some casual games (e.g., Pou) provide natural-language hints

to players so that they know what to do next. Currently, LIT does not have any natural-

language processing capability, so it cannot play such games. Fourth, educational games

(e.g., ABCya!) require players to answer questions based on their knowledge background

(e.g., to solve word puzzles). LIT needs to be integrated with some databases of knowledge

(e.g., dictionary) to test such games.

7.1.2 Widget recognition

Users need to specify game icons when testing games with LIT . Then LIT uses OpenCv to

locate widgets in the screenshot and manipulates them. For open source games, game icons

are available from project source code. For other games, game icons can be captured from

game screenshots. The game icons for each game is a quite small set and can be accessed

easily. We did not use deep neural network or other automatic object recognition because

our solution is already achieve high accuracy and low cost.



Chapter 8

Future Work

8.1 Future Work

8.1.1 Compatibility with Other Mobile Phone Systems

It should be quite easy to add iOS support to LIT as well. The main problem is to find

a way to control emulator instances or real device from command line like Android Debug

Bridge (ADB) for Android OS.

8.1.2 Efficiency

LIT cannot work with fast-paced mobile games, because it is not fast enough. It takes 1 or

2 seconds to transfer the screenshot from mobile device to host with ADB. It is impossible

to play fast-paced games with LIT , because the game can end in couple seconds without

correct inputs. To overcome the slowness, one solution could be to compress the image in

mobile device and then send it to host machine. The Other solution could be to tap into the

Android operating system and remove ADB solution completely.

8.1.3 Generalization

Games are very diverse and innovative games are put on the market every day. Although we

choose the game categories with most download to evaluate LIT , there are still many games
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LIT hasn’t covered yet. I will add 2 more types and 6 games to our evaluation set in our

next experiment.



Chapter 9

Conclusions

9.1 Conclusion

The thesis focused on mobile game testing. It reviewed the motivation, key milestones and

challenges. First, it highlighted why mobile game testing and test automation is harder than

testing of traditional mobile applications.One reason is that covering sufficiently exercising

a game often requires heavy user interactions and complicated input behaviors. Some games

even contain execution paths that can be exercised only after the user has passed certain

difficult intermediate tasks. Moreover, typical non-deterministic game environments and

rigid time-constraints make it particularly hard to replay tests and achieve high coverage,

and various customized game widgets in these apps are very difficult to recognize with most

existing test frameworks. Recent research based on deep reinforcement learning techniques

yields promising results in game testing. However, these techniques need a lot of computing

resources and weeks of running time to train the deep learning models with millions of

parameters. As mobile games usually require frequent updates especially in their early

development stages, an automated, agile approach to testing these apps is important.

Thus, in this paper, we introduced a novel approach LIT to achieve a better trade-off between

the two factors of game testing: the testing effectiveness and the technical complexity. To

test a game app, LIT takes in user-specified game icons and a demo; it then infers tactics
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from the demo and applies those tactics to automatically test the same game. With a pixel

based widget detection and matching algorithm, our framework does not rely on native GUI

component recognition, and support various real-world mobile games.

Our work achieves exciting results on famous commercial and popular open source mobile

games. As an example for Angry Birds, with a 8-minute user-playing demo at difficulty level

2 of the game, the framework automatically infers the reacting tactics that covers various

game states, and achieves level 7 with 1184084 game scores, whereas the state-of-the-art

testing tool cannot even go through level 0. For popular open-source games, we get the

observation that our reacting based framework significantly improves the testing coverage

and robustifies game testing with stable testing results. In average, our framework improved

line coverage by 58.14% and branch coverage by 100% over Monkey.

There is still significant space for future improvements in game testing, as we discussed in

Chapter 7 and Chapter 8. As the future work, we will explore more rules in LIT and apply

it to more diverse mobile games. Meanwhile, it is important to improve the efficiency of LIT

as well.
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