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Abstract—Existing automated techniques for software docu-
mentation typically attempt to reason between two main sources
of information: code and natural language. However, this reason-
ing process is often complicated by the lexical gap between more
abstract natural language and more structured programming
languages. One potential bridge for this gap is the Graphical User
Interface (GUI), as GUIs inherently encode salient information
about underlying program functionality into rich, pixel-based
data representations. This paper offers one of the first com-
prehensive empirical investigations into the connection between
GUIs and functional, natural language descriptions of software.
First, we collect, analyze, and open source a large dataset of
functional GUI descriptions consisting of 45,998 descriptions
for 10,204 screenshots from popular Android applications. The
descriptions were obtained from human labelers and underwent
several quality control mechanisms. To gain insight into the
representational potential of GUIs, we investigate the ability of
four Neural Image Captioning models to predict natural language
descriptions of varying granularity when provided a screenshot
as input. We evaluate these models quantitatively, using common
machine translation metrics, and qualitatively through a large-
scale user study. Finally, we offer learned lessons and a discussion
of the potential shown by multimodal models to enhance future
techniques for automated software documentation.

Index Terms—Software Documentation, Image Captioning,
Deep Learning

I. INTRODUCTION & MOTIVATION

Proper documentation is generally considered to be an inte-
gral component of building and distributing modern software
systems. In fact, past studies have illustrated the general ben-
efits of documentation during the development lifecycle [1],
[2], [3], [4] and the importance of technical documentation
to software maintenance and evolution [5]. However, despite
the value of well-documented systems, modern development
processes and constraints often lead to the disregard or aban-
donment of a range of documentation tasks [6], [5], [2], [7],
[8], [1]. These difficulties have given rise to a wealth of
research on automated techniques that aim to ease the burden
on stakeholders by generating various types of documentation
for a given task. For example, existing approaches have been
developed to automatically generate natural language sum-
maries and documentation for code [9], [10], [11], [12], [13],
[14], [15], APIs [16], [17], unit tests [18], bug reports [19],
[20], release notes [21], [22], and commit messages [23], [24],
among other artifacts [25], [26].

Generally, existing techniques for automated software doc-
umentation have been concerned with modeling relationships
that exist between two primary information modalities: code
and natural language (NL). Unfortunately, reasoning between
these two information sources is difficult due to the lexical
gap resulting from the often disparate conceptual associations
that connect source code lexicon and the more abstract words
and phrases used in NL descriptions [27], [28]. Recently,
this lexical gap was acknowledged as an information inference
problem in a report made by Robillard et al. [29], wherein
key research challenges exist in (i) inferring undocumented
program properties, and (ii) discovering latent abstractions
and rationales. These challenges suggest that overcoming the
semantic disconnect between code and NL may require new
knowledge sources that encode distinct program properties
typically absent from traditional software or NL lexicon.

One source of information which has been left largely
unexplored for the purposes of automated documentation is
visual software data encoded into Graphical User Interfaces
(GUIs). GUI-based applications predominate modern user-
facing software, as can be readily seen in the popularity of
desktop and mobile apps [30]. Furthermore, high quality ap-
plications with well-designed GUIs allow technically-inclined
users to instinctively understand underlying program features.
Thus, intuitively, certain functional properties of applications
are encoded into the visual, pixel-based representation of the
GUI such that cognitive human processes can determine the
computing tasks provided by the interface. This suggests that
there are latent patterns that exist within visual GUI data
which indicate the presence of natural use cases capturing core
functionality [31].

Given the inherent representational power of GUIs in con-
veying program related information, we set forth the following
hypothesis that serves as the basis for work in this paper:

The representational power of graphical user interfaces to
convey program-related information can be meaningfully
leveraged to support automated techniques for software doc-
umentation.

While most existing work on automated documentation con-
cerns itself with the dichotomy between code and NL, we posit
that the latent information encoded within GUIs can aid in
bridging the existing semantic documentation gap by providing
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an additional source of knowledge that inherently reflects pro-
gram functionality. In fact, GUI-based representations of soft-
ware have the potential to address the two challenges set forth
by Robillard et al. [29]. More specifically, GUIs can aid in
inferring undocumented program properties that are inherently
represented within the design of GUI controls or widgets (e.g.,
capturing a feature which is otherwise poorly represented by
low-quality code identifiers/comments). Further, GUIs could
be used as source to mine abstractions or rationales that
would otherwise remain obscure (e.g., providing a use case-
based explanation of a block of code connected to a GUI
screen). In overcoming these challenges, we see GUI-centric
documentation having an impact on the following types of
software documentation:
Technical Documentation: Developers utilize technical docu-
mentation, such as code comments or READMEs, in order
to learn about the functionality and interfaces of software
to support engineering tasks. Automatically generating such
documentation accurately is a challenging inference problem.
However, it has been shown that GUI-related code can com-
prise as much as half of the code in user facing programs [32].
This means that graphical software data is connected in some
way to large portions of GUI-based software projects i.e.,
through GUI-event handlers, or code stipulating GUI layouts
such as html. Therefore, if automated techniques are able to
effectively infer salient functionality from the GUIs, they could
be combined with existing techniques and leveraged to provide
automation to developers, such as comment generation or code
summarization with greater feature-based context awareness.
As we illustrate in this paper, GUI code/metadata appears to
encode orthogonal information compared to visual GUI data
(i.e., screenshots), which suggests that we may be able to infer
documentation information from visual GUI data that likely
can’t be inferred from GUI code alone.
User Documentation: Developers typically provide users with
documentation such as tutorials or walkthroughs to help
clearly illustrate software features. While some experienced
users can infer functionality directly from a GUI, end-users
exhibit a range of technological expertise, and many rely upon
various forms of end-user documentation [33]. Thus, building
techniques capable of automatically generating such documen-
tation would free up development effort for other critical tasks,
such as bug fixing. Beyond typical user facing software aids,
GUI-centric program documentation could also enable entirely
new classes of automated accessibility features, which are
sorely needed for mobile apps [34]. For example, rather than a
typical text-to-speech engine, one could envision a screen-to-
functionality engine that could aid a motor-impaired user with
navigating the software, without extra development effort.

To investigate the potential of automated GUI-centric soft-
ware documentation, we offer one of the first comprehensive
empirical investigations into this new research direction’s most
fundamental task: generating a natural language descrip-
tion given a screenshot (or screen-related information) of
a software GUI. Given that this task underlies the various
potential applications discussed above, we view this as a

logical first step towards investigating the feasibility of fu-
ture techniques. To accomplish this, we collect and analyze
a dataset for Comprehending visuaL semAntics to pRedict
applicatIon functionalTY (the CLARITY dataset) consisting
of 45,998 functional descriptions of 10,204 screenshots of
popular Android apps available on Google Play. We provide
a descriptive analysis of this dataset that investigates the
“naturalness” and semantic topics of the collected descriptions
by measuring cross-entropy compared to other corpora and
performing a topic modeling analysis. To learn functional
descriptions of the screens from this dataset, we customize,
train, and test four Deep Learning (DL) models for neural
image captioning—three that learn from image data and one
that learns from textual GUI metadata—to predict functional
descriptions of software at different granularities. We evaluate
the efficacy of these models both quantitatively, by measuring
the widely used BLEU metric, and qualitatively through a
large-scale user study. In summary, this paper’s contributions
are as follows:

• We collect the CLARITY dataset of GUIs annotated
with 45,998 functional, NL descriptions from 10,204
screenshots of popular Android apps. The NL captions
were obtained from human labelers, underwent several
quality control mechanisms, and contain both high- and
low-level descriptions of screen functionality. While other
GUI datasets exist [35], [36], the CLARITY dataset differs
by providing an extensively labeled set of screens, akin
to Flickr8K [37] or MSCOCO [38];

• We illustrate the underlying, natural patterns that exist in
the CLARITY dataset through topic modeling.

• We provide an extensive quantitative and qualitative eval-
uation of four tailored DL models for image captioning
using standard metrics and a large scale user study;

• We offer an online appendix with examples of model-
generated descriptions and experimental data [39]. Our
dataset, trained models, code, and evaluation scripts are
open source and accessible via the appendix.

II. BACKGROUND

A. The Connection between Images and NL

The task of image captioning is much more difficult than
that of classification or labeling, as an effective model must
be able to both learn salient features from images automati-
cally and semantically equate these features with the proper
NL words and grammar that describe them. This task of
semantically aligning two completely different modalities of
information has led to the development of multimodal DL
architectures that jointly embed NL and pixel-based infor-
mation in order to predict an appropriate description of a
given input image. These techniques are typically trained
on large-scale datasets that contain images annotated with
multiple captions, such as MSCOCO [38], and have largely
drawn inspiration from encoder-decoder neural language mod-
els traditionally applied to machine translation tasks. In this
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Fig. 1: Generalized overview of multimodal DL architectures
for image captioning (with RCNN)

paper, we adapt three recent architectures for image caption-
ing, neuraltalk2 [40], the im2txt [41], and the show,

attend and tell (SAT) [42] frameworks to predict func-
tional descriptions of software screenshots through the use of
custom pre-training and fine-tuning procedures. Additionally,
we explore the seq2seq neural language model.

DL models for image captioning build upon the success
of encoder-decoder neural language models. The im2txt

framework treats image captioning as a machine translation
problem, wherein the source “sentence” is an image, and
the target “translation” is a NL description. The generalized
architecture of such models is shown in Fig. 1. As illustrated,
these architectures replace the encoder RNN with a Convolu-
tional Neural Network (CNN), which have been shown to be
highly capable of learning rich image features [43], [44], [45].
Google’s implementation of im2txt uses a Long-Short Term
Memory (LSTM) RNN [46] for the “decoder” module, which
has also proven extremely effective when applied to machine
translation tasks. The decoder module of the neuraltalk2

architecture is composed of a Bidirectional RNN (BRNN) [47]
as opposed to an LSTM. Finally, the show, attend, &

tell (SAT) model [42] uses an LSTM decoder but with
the addition of an attention mechanism that can “attend” to
salient parts of the image representation by combining “hard”
and “soft” attention mechanisms.

III. OVERVIEW

In this section, we provide an “at-a-glance” overview of the
data-collection procedures and various analyses performed in
this paper. Figure 2 illustrates the four major components of
the paper. The first major task of our study is to derive a
suitable dataset of screenshot-caption pairs. We describe this
process in two parts: (i) the collection of screenshots (Sec.
IV-A), and (ii) the collection of captions from human workers
(Sec. IV-B). The result of this data-collection effort is the
CLARITY dataset, which contains 45,998 captions of 10,204
Android screenshots. Next, we aim to understand the lexical
properties of our captions through an empirical analysis in
order to better understand how easily they might be modeled
(Sec. V). Thus, we perform both a comparison of the the
cross-entropy of language models trained our caption corpus
to other popular SE corpora, and perform an LDA-based
topic analysis. Next, we discuss the process of configuring
and training three neural image captioning models, and one

1   Clarity Dataset Collection
(Screenshots + GUI metadata + Captions)

2  Naturalness & Topic Analysis

Cross-Entropy
Analysis

LDA-based 
Topic Analysis

… … …
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3   Train Image-Captioning and 
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Captions

+
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Large-Scale
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with BLEU

Fig. 2: Overview of Dataset Collection and Analysis

sequence-based model to predict functional descriptions of
software GUIs (Sec. VI). Finally, we conclude our analysis
by measuring the accuracy of our trained models according to
both automated reference-based metrics (i.e., BLEU@n) and
via a large-scale human evaluation. (Sec. VII)

IV. DATASET COLLECTION

A. Screen & GUI Metadata Collection

The first step in deriving the CLARITY dataset is the
collection of a sizable and diverse dataset of screenshots and
GUI-metadata. We chose to focus this dataset derivation on the
Android platform for three main reasons: (i) Android is cur-
rently the most popular OS in the world [30], (ii) Android apps
are highly GUI-and gesture driven, making them a suitable
target for our investigation, and (iii) the Android screencap

and uiautomator tools facilitate the extraction of screenshots
and GUI-metadata from running apps. Fortunately, large-scale
datasets of Android screenshots and metadata are publicly
available in related literature [48], [35]. For this work, we took
advantage of the REDRAW [48], [36] dataset which contains
nearly 17k unique screenshots from 8,655 of the top-rated
apps from the Google Play Store. It should be noted that
another large-scale Android GUI dataset that contains a larger
number of screenshots, RICO, is also available [35]. However,
we chose to utilize the REDRAW dataset as it aligned with
one of our primary study objectives. That is, we aim to learn
latent feature information from both screenshots and GUI-
metadata. However, for the GUI-metadata to properly align
with the displayed content on a screen, the app must make use
of native Android components. Therefore, apps that primarily
display their information using web technologies, so-called
hybrid apps, would obscure the GUI-metadata and impact
our study findings. The REDRAW dataset contains a set of
screenshots that underwent several stages of filtering to remove
instances of hybrid apps along with other noise. Furthermore,
the REDRAW dataset contains a set of GUI-component images
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High Level Caption

The screen allows the user to 
look at clothing categories

Low Level Captions

The top le! icon allows the user 
to access the menu

The top right icon allows the 
user to access the shopping cart

The center list of categories allows 
the user to make a selection

The heart icon to the le! of the 
shopping cart allows the user to 
view favorites

Fig. 3: Example of captions from the CLARITY dataset.

labeled with their corresponding types (e.g., Button) which
we utilize later in our study (Sec. VI). The end result of this
filtering process was a total set of 17,203 candidate screens for
labeling. We refer readers to the REDRAW paper for complete
details of the filtering process [48].

B. Collection of Functional Descriptions

Once we derived a suitable set of screens, we needed to
manually label these screens with functional captions. This
process occurred in two steps: (i) first, we conducted a pilot
labeling study in order to develop and prove out a tagging
methodology suitable for large scale caption collection; (ii)
second, we performed a full scale data collection study using
Amazon’s Mechanical Turk Crowd-worker platform to collect
over 10k screens with functional descriptions.

1) Caption Granularity: Intuitively, GUIs encode func-
tional information at multiple levels of granularity. For exam-
ple, if you were to ask a user or developer what the high-
level purpose of a given screen is, they might say “This
screen allows users to browse clothing categories”, as shown
in Fig. 3. These types of descriptions constitute the “high-
level” functionality of a given screen. However, a single screen
rarely implements only one functionality, and there may be
multiple functional properties that enable the screen’s high-
level functional purpose. User descriptions of these types
of functional properties are typically centered around the
interactive components of a screen, since these represent the
instances of actions (e.g., users “doing something”) that are
easily attributed to implemented functions. For example, in
the screen in Fig. 3, underlying functions include viewing
favorites, accessing a shopping cart, or selecting an item from
a list. These types of “low-level” screen properties centered
around GUI-components describe key constituent functional-
ity. Hence, in order to capture a holistic functional view of
each screen, we tasked participants with labeling each screen
with one “high-level” functional caption, and up to four “low-
level” functional captions. Fig. 3 shows these two categories
using actual captions collected as part of the CLARITY dataset.

2) Pilot Data Collection Study: We developed an initial
image caption collection platform using a Java-based web

application. Using this system, the authors manually labeled
743 screens with the caption granularities described earlier.
During this study, we discovered some instances of screens
with relatively little information displayed on them, making
it difficult to label them with functional attributes, even after
the filtering techniques discussed previously. Therefore, before
moving onto the large-scale caption collection with Mechani-
cal Turk (MTurk), at least one author manually inspected each
of the 17,203 candidate screens, and discarded those with a
severe lack of functionality. This resulted in a set of 16,311
candidate screens for the next phase of the study.

3) Mechanical Turk Data Collection Study: To set up our
large-scale data-collection process, we adapted our web ap-
plication caption collection mechanism to work with MTurk’s
crowd worker platform. This involved configuring a Human
Intelligence Task (HIT) that provided workers with a set of
detailed instructions, displaying a screenshot from our dataset
alongside text entry boxes for one high-level functional caption
and up to four low-level functional captions (a limit was
imposed to normalize the amount of time workers would spend
on the HIT). This study was approved by the Institutional
Review Board of the authors’ affiliated institution.

Given that we aimed to collect high-quality functional
descriptions of screens in natural English, we targeted MTurk
users from primarily English speaking countries that had
completed at least 1,000 HITs and had a HIT approval rate
of at least 90%. We provided a detailed set of instructions
for labeling images with captions that clearly explained the
concept of high-level and low-level captions with examples,
and provided users with explicit instructions as well as DOs
and DONTs for the labeling task. The full set of instructions is
available in our online appendix [39]. With regard to caption
quality, we specifically had three major requirements: (i) that
the caption describes the perceived functionality of a screen
and not simply its appearance, (ii) that spatial references are
given for low-level captions (e.g., “the button in the top-left
corner of the screen”), and (iii) that captions be written in
complete English sentences with reasonably proper grammar.

We published batches of HIT tasks by sampling unique
screens from our set of 16,311 candidate screens, ensuring
that no user was assigned the same screen twice. The quality
of work from crowd-sourced tasks is not always optimal,
so as captions were submitted, they needed to be vetted for
quality. Thus, the captions for each screen were examined by
at least one author for the three quality attributes mentioned
above. If an author was unsure about whether a screen met
these quality attributes, it was reviewed by at least one other
author to reach a consensus. In total, 2,419 screens were
rejected and republished as new HITs due to quality issues.
In summary, 2,150 MTurk workers collected 45,998 captions
(across granularities) for 10,204 screens (≈5 screens per
participant), and over $2,400 was paid out.

V. EMPIRICAL DATASET ANALYSIS

The CLARITY dataset provides a rich source of data for
exploring the relationship between GUI-based and lexical
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TABLE I: LDA topics learned over high-level captions k = 15

Assigned Label Top 7 Words

”color options” screen show app option color book differ
”login or create acccount” user screen allow account log creat app
”select image from a list” user screen allow select view list imag
”map search by location” screen locat search map user show find

TABLE II: LDA Topics learned on low-level captions k = 25

Assigned Label Top 7 Words

”page button” page button top center bottom side left
”select date” avail date select one option theme present
”camera button” video imag photo pictur bottom camera
”privacy policy banner” titl just term blue banner privaci polici

software data. However, it is important to investigate the
semantic makeup of the collected captions in order to better
understand: (i) the latent topics they capture as well as (ii)
their naturalness and, hence, predictability. In this section we
carry out an empirical analysis of this phenomena guided by
the following two Research Questions (RQs):

• RQ1: What are the latent topics captured within the high-
and low-level captions in the CLARITY dataset?

• RQ2: How natural (i.e., predictable) are the high- and
low-level captions in the CLARITY dataset?

A. Analysis Methodology

1) RQ1: Investigating Dataset Topics: To investigate the
latent topics in the CLARITY dataset, we learned topic models
over caption corpora representing different granularities of
functional descriptions. More specifically, we applied Latent
Dirichlet Allocation (LDA) [49] to both segmented high-
and low- level captions from the CLARITY dataset. In our
analysis, the set of captions for a specific screenshot in the
CLARITY dataset represents a document, and the entire set
of captions across screenshots for a given granularity (i.e.,
high or low level) constitutes a corpus. LDA has several
configurable hyper-parameters that impact the smoothing of
generated topics. These include k, the number of topics,
n which denotes the number of iterations of the sampling
algorithm (Gibbs sampling [50], in our case), as well as α
and β which impact topic distributions. We set α and β to
standard values for NL corpora, set n to 500, which proved to
be a sufficient for model convergence, and varied k between
15, 25, 50, and 75 topics.

2) RQ2: Analyzing the Naturalness of GUI Descriptions:
Past work has pioneered the notion of the naturalness of
software [51], which illustrated the fact that software, even
more so than NL, exhibits repetitive patterns that make it
predictable. This finding was recently further investigated and
the existence of certain natural patterns was confirmed [52]. To
illustrate naturalness, these past studies have learned statistical
n-gram language models over software corpora, and measured
the “perplexity” (or a log-transformed version, cross-entropy)
of these models, which represents the degree to which a model
is “surprised” by the patterns on a test corpus when trained on
a corpus from the same domain. A model with lower measured
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Fig. 4: Cross-entropy of the CLARITY dataset’s high and low-
Level captions compared to other corpora.

cross-entropy represents a higher predictive power, and thus,
a more natural underlying corpus.

We follow the methodology of these past studies to explore
the naturalness of the CLARITY dataset captions. Thus, similar
to the methodology for the previous RQ, we split the collected
captions into two corpora, one for the high-level descriptions,
and one for the low-level descriptions. We then learned inter-
polated n-gram models, using the mitlm [53] implementation
of Kneser-Ney smoothing [54], which has been shown to be
the most effective n-gram smoothing method [51], following
a ten-fold cross-validation procedure. We report the average
cross-entropy values across these experiments for both the high
and low-level corpora, compared to prior results [51], [52] for
other NL and software corpora.

B. Analysis Results

1) RQ1: Results of Dataset Topic Modeling: We present
selected results of some of the most representative topics in
Tables I & II, complete with descriptive labels that we provide
for readability, and include all the results in our appendix [39].
These topics help to provide a descriptive illustration of some
of the latent patterns that exist in both the high and low level
CLARITY captions. The high-level captions illustrate several
screen-level topics, including searching on a map and adjusting
app settings. The low-level captions conversely capture topics
that describe component-level functionality, such as date selec-
tors, camera buttons, and back buttons. These results indicate
the existence of logical topics specific to the domain of GUIs
in our collected captions.

2) RQ2: The Naturalness of Clarity Descriptions: The
results of our naturalness analysis are illustrated in Figure 4.
This figure shows the average cross entropy of the high- and
low- level captions from the CLARITY dataset compared to
several other corpora as calculated by Rahman et al. [52].
More specifically, the graph depicts the average ten-fold cross
entropy for: (i) The Gutenberg corpus containing over 3k
English books written by over a hundred different authors,
(ii) Java code from over 134 open source projects on GitHub,
(iii) Java without Syntax Tokens (i.e., separators, keywords,
and operators), and (iv) a Stack Overflow corpus consisting of
only the English descriptions from over 200k posts.

5



As described earlier, the lower the cross-entropy is for a
particular dataset, the more natural it is. That is, the corpora
that exhibit lower cross entropy tend to exhibit stronger latent
patterns that can be effectively modeled and predicted. As we
see from Fig. 4, the CLARITY high and low level captions are
more natural than every dataset excluding raw Java code. It
should be noted that, comparatively, there are several factors
that could account for the observed lower cross entropy of the
CLARITY captions. For instance, such factors could include
other corpora having a larger size or having a more diverse
set of human authors and writing styles. However, we mainly
provide entropy measures of other datasets to provide context
for the predictability of the CLARITY dataset compared to
other popular corpora. Regardless of dataset differences, the
average ≈ 5 bits of entropy measured for the two datasets of
CLARITY captions signals that our collected descriptions ex-
hibit strong semantic patterns that can be effectively modeled
for prediction. Additionally, we observe that the cross-entropy
for the high and low-level captions are surprisingly similar.
Intuitively, one might expect that the low-level CLARITY
captions would exhibit more prevalent patterns due to the
repetitive use cases of certain GUI-components such as menu
buttons. This indicates the tendency of both datasets to exhibit
patterns that can be appropriately modeled. However, as we
illustrate in Sec. VII the ability for GUI-related information
to predict captions differs according to granularity.

VI. DEEP LEARNING FUNCTIONAL DESCRIPTIONS FROM
SOFTWARE GUIS

The results of the analysis from the previous section demon-
strate the presence of the latent patterns in the CLARITY
dataset of screenshots and captions. In this section, we detail
our methodology for investigating the capability of different
customized DL models to learn these patterns to predict
functional descriptions from two GUI representations.

A. Clarity Dataset Segmentation

We collected two different granularities of captions from
users to derive the CLARITY dataset (Sec. IV-B). For the
experiments in this section, we want to explore the model’s
ability to learn both high- and low-level functional descrip-
tions. Thus, we split the CLARITY dataset into two groups,
one containing only high level captions, and one containing
only low level ones. We also created a third dataset combining
the high and low level captions, in order to explore whether the
predictive capabilities of the models improved by aggregating
multiple granularities. It should be noted that each low-level
caption was treated as a single caption (i.e. each low-level
caption was treated as a separate data point) as is convention
with datasets containing multiple captions [38]. Each screen
in the dataset has both an associated screenshot and a GUI-
metadata file. In order to make for a fair comparison of
performance across various model configurations, we created
consistent training, validation and test partitions (80%, 10%,
10% according to the number of images/GUI metadata files) to
be used across models. The NL text used as input to the models

TABLE III: Image Captioning Model Configs. used in Study
Model Identifier Caption Config. Model Config.

im2txt-h-imgnet High
im2txt-l-imgnet Low
im2txt-c-imgnet Combined

inception v3 trained on
imagenet

im2txt-h-comp High
im2txt-l-comp Low
im2txt-c-comp Combined

Inception v3 fine-tuned on
Component Dataset

im2txt-h-fs High
im2txt-l-fs Low

im2txt

im2txt-c-fs Combined

Inception v3 fine-tuned on
Full Screen Dataset

ntk2-h-imgnet High
ntk2-l-imgnet Low
ntk2-c-imgnet Combined

VGGNet pre-trained on
ImageNet

ntk2-h-ft High
ntk2-l-ft Low

NeuralTalk 2

ntk2-c-ft Combined

VGGNet pre-trained on
ImageNet with Fine
Tuning

sat-h High
sat-l LowSAT
sat-c Combined

VGGNet pre-trained on
ImageNet

TABLE IV: Subset of Model Hyper-paramters
Hyperparameter im2txt NeuralTalk2 SAT Seq2Seq
Batch Size 64 16 17 64
Embedding Size 512 512 512 128
Decoder RNN Size/Units 512 512 1024 128
Optimizer SGD SGD Adam Adam
Initial Learning Rate 2 2 0.001 0.0001
Dropout Probability 0.7 0.7 0.3 0.8

was preprocessed according to the specific requirements for
each model implementation [55], [56], [57].

B. Image Captioning Model Configurations

We customize, train, and test the three neural image
captioning models, im2txt, neuraltalk2, and show,
attend, & tell (SAT) (Sec. II-A), on the screenshots
and captions of the CLARITY dataset. We choose to explore
these three models due to their different underlying design
decisions related to the type of utilized CNNs and RNNs
(Sec. II-A), as these differences may affect their performance
in our domain. It should be noted that in the course of our
experiments, we make several customizations to these models
through adaptions to pre-training and fine-tuning procedures.
However, given the typical number of parameters that consti-
tute these models, the training time can be quite prohibitive,
even on modern hardware. Thus, to control our experimental
complexity and investigate a number of model configurations
that can be trained in a reasonable amount of time, we fix
the values of the hyper-parameters for each model in our
experiments. We derived our utilized hyper-parameter values
by conducting random searches for optimal values of certain
parameters, and chose optimal parameters reported in prior
work for others. While we fix the hyper-parameters for these
models, we instead customize the configurations of our image
captioning models at the architectural level. Specifically, we
investigate how training the “encoder” CNN using different
datasets and training procedures effects the efficacy of the
model predictions. This type of analysis allows us to more
effectively flush out broader patterns related to the benefits and
drawbacks of model design decisions. In the end, we trained
more than 15 different configurations of the models (see Table
III) over several machine months of computation.

1) im2txt Model Configurations & Training: For
im2txt, we adapted Google’s open source implementa-
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tion of the model in TensorFlow [55]. Given the incredibly
large number of parameters that need to be trained for the
im2txt model, performing even relatively simple hyper-
paramter searches proved to be computationally prohibitive
for our experiments. Therefore, for this model we utilized the
optimal set of parameters reported by Vinyals et al. [41] on
similarly sized datasets. A subset of these hyper-parameter
values are given in Table IV, whereas full configuration details
can be found in our appendix. The publicly available imple-
mentation of Google’s im2txt model utilizes the Inception
v3 [58] image captioning architecture as its encoder CNN.

In past work, the inception model weights were initialized
by training on the large-scale image classification dataset
ImageNet [59], which contains “commonplace” image cate-
goires. However, given that we are applying these models to
very particular domain (predicting descriptions of software)
it is unclear if an Inception v3 model trained on the broader
ImageNet dataset would capture subtle semantic patterns in
the CLARITY dataset. Therefore, we explored three different
model configurations to explore this phenomena: one with
Inception v3 pre-trained on ImageNet, and two with Inception
v3 fine-tuned on domain specific-datasets. The first domain
specific image dataset we utilize is the ReDraw cropped
image dataset outlined in Sec. IV-A, which contains over 190k
images of native Android GUI-components labeled with their
type (e.g., Button, TextView). The second domain specific
image dataset we use consists of the full screenshots from the
CLARITY dataset, labeled with their Google Play categories.

2) NeuralTalk2 Model Configurations & Training: For
neuraltalk2, we adapted Karpathy et al.’s implementation
written in Torch and lua [56]. We performed a brief random-
ized hyper-parameter search for this model, given its more
efficient training time, using the optimal im2txt parameters as
a starting point. The optimal values resulting from this search
are provided in Table IV. For its CNN decoder, neuraltalk2
makes use of a VGGNet [44] architecture pre-trained on
the ImageNet [59] dataset. Unlike our im2txt configurations,
we explore the effect of jointly fine-tuning neuraltalk2’s
CNN and RNN. Thus, we explore two configurations of
neuraltalk2, one that jointly fine tunes the pre-trained
VGGNet on the CLARITY dataset, and one that does not
perform fine-tuning. We followed a training procedure similar
to that of our im2txt models, in that we trained our models
on the high, low, and combined CLARITY caption training
data for 500K iterations, saving model checkpoints every 2K
iterations.

3) Show, Attend and Tell Model Configurations & Train-
ing: For the SAT model, we adapted the open-source imple-
mentation of the model in Tensorflow [60]. The hyperparam-
eters that we used to train our model are shown in Table IV.
The implementation used VGG16 [44] as its encoder CNN.
We trained the SAT model on the CLARITY dataset for the
low, high and combined captions for 500K iterations and kept
the checkpoints after every 1K iterations. Note that due to
the prohibitive training cost of this model, we did not explore
using a fine-tuned VGGNet as we did with neuraltalk2.

TABLE V: Metadata Captioning Model Congfigurations
Model Identifier Caption Config. Model Config.

seq2seq-h-type High
seq2seq-l-type Low
seq2seq-c-type Combined

Trained on GUI
Component Types

seq2seq-h-text High
seq2seq-l-text Low
seq2seq-c-text Combined

Trained on
GUI-Component Text

seq2seq-h-tt High
seq2seq-l-tt Low
seq2seq-c-tt Combined

Trained on
GUI-Component Type +
Text

seq2seq-h-ttl High
seq2seq-l-ttl Low

Seq2Seq

seq2seq-c-ttl Combined

Trained on
GUI-component Type +
Text + Location

C. Metadata Captioning Model Configurations

To explore the ability to translate between the lexical
representations of GUI-metadata and NL functional descrip-
tions, we train and test an encoder-decoder neural language
model using Google’s seq2seq [57] framework. Note that
recent work has proposed new models that take advantage of
structural text properties [61], however, implementations of
such models are generally not available, hence we leave the
study of more advanced models for future work. We chose
to utilize the default general-purpose architecture and hyper-
parameters for this model, as they have been shown to be
effective across a wide-range of machine translation tasks [62].
More specifically, our encoder network consists of a BRNN
with Gated Recurrent Units (GRUs) and our decoder network
consists of an RNN with LSTM units; hyperparameters are
listed in Table IV.

To investigate the representative power of different attributes
included in Android GUI-metadata, we create four config-
urations of GUI-metadata consisting of different attribute
combinations (Table V). We chose to utilize these attribute
combinations as they represent (i) the attributes that are most
likely to have values, and (ii) represent a wide range of
information types (e.g., displayed text, component types, and
spatial information). Note that seq2seq did not consistently
converge for the high level caption dataset, thus we do not
report these results. Consistent with the training of the other
models, our implementation of the seq2seq model was
trained to 500k iterations, with checkpoints every 2k iterations.

VII. DEEP LEARNING MODEL EVALUATION

To explore our core hypothesis set forth at the beginning
of this paper, and evaluate our DL models described in
Sec. VI, we perform a comprehensive empirical evaluation
with two main goals: (i) intrinsically evaluate the predictive
power of the models according to a well accepted machine
translation effectiveness metric, and (ii) extrinsically evaluate
the models by examining and rating the quality of the pred-
icated functional NL descriptions. The quality focus of this
evaluation is our studied models’ ability to effectively predict
accurate, concise, and complete functional descriptions. To aid
in achieving our study goals, we define the following RQs:
• RQ3: How accurate are our model’s predicted NL de-

scriptions?
• RQ4: How accurate, complete, & understandable are our

model’s predicted NL descriptions from the viewpoint of
evaluators?
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TABLE VI: BLEU Score Evaluation Results for Models
Model Capt. Model Type Bc B1 B2 B3 B4

High im2txt-h-fs 12.4 24.8 12.6 6.7 5.3
Low im2txt-l-comp 27.0 45.6 31.8 20.0 10.1im2txt
Comb. im2txt-c-comp 30.3 51.7 35.9 22.1 11.6
High ntk2-h-imgnet 13.3 27.4 13.5 7.3 5.3
Low ntk2-l-ft 27.4 47.5 32.8 19.5 9.6NeuralTalk2
Comb. ntk2-c-ft 30.1 52.1 36.0 21.8 10.8
Low seq2seq-l-type 18.1 44.6 17.0 7.9 0.24

seq2seq Comb. seq2seq-c-type 16.9 38.9 14.7 6.0 0.08
High sat-h 17.7 30.1 18.3 12.9 9.8
Low sat-l 35.0 52.5 38.7 28.1 20.7SAT
Comb. sat-c 37.7 56.8 42.0 30.5 22.0

NeuralTalk2 Trained on Flickr8K 34.0 57.9 38.3 24.5 16.0
NeuralTalk2

Trained on MSCOCO
40.7 62.5 45.0 32.1 23.0

im2txt 42.6 66.6 46.1 32.9 24.6
SAT 45.7 71.8 50.4 35.7 25.0

A. Evaluation Methodology

1) RQ3: Empirically Evaluating Model Accuracy: To
evaluate the accuracy of our trained model’s generated cap-
tions, we follow past work [40], [41] and report BLEU
scores [63] of the predicted captions on the shared CLARITY
test set of images and GUI-metadata. The BLEU score is a
standard metric used in machine translation research that mea-
sures the textual similarity between a predicted caption (the
output from a model) and a reference caption (the collected
descriptions from humans in the CLARITY test set). The BLEU
score can be measured according to the similarity of different
subsequence lengths (i.e., BLEUn), and we report BLEU1

through BLEU4, as well as a composite score calculated as the
average of these, as is convention [40], [41]. For the image
captioning models, we use the coco-caption implementation
of the BLEU score adapted for the CLARITY test set. For
each test image across all image captioning models, three
captions were generated using a beam width of 3 for the
beam search across candidate predictions. The seq2seq models
were evaluated in the same manner. We chose to utilize a
beam width of 3 as an initial qualitative examination of our
models’ predictions showed this size to achieve a reasonable
balance between prediction accuracy and model confidence.
For the high-level captions, the three candidate captions were
compared to the reference, and the overall average BLEUn

scores were calculated for each model. For the low-level and
combined captions, the predicted captions and reference cap-
tions were compared in a pairwise manner and overall average
BLEUn scores were calculated for each model configuration.

2) RQ4: Human Perceptions of Predicted Captions: To
qualitatively evaluate our studied model’s generated captions,
we performed a large-scale study involving an additional 220
participants recruited from MTurk. We randomly sampled
220 screens from the CLARITY test set, and then predicted
high, low, and combined captions for them using the opti-
mal configurations of im2txt, NeuralTalk2, and seq2seq

according to the composite BLEU score for each model
and caption level combination. The SAT captions were not
included in this study due to time constraints related to the
model’s training. We created a HIT wherein each participant
viewed 11 screenshots paired with captions. Two of the 11
captions were reference high and low to serve as a control,
while the other 9 captions came from the model predictions.

Screens and caption pairs were arranged into HITs such that
1) no single HIT had two of the same screenshot, 2) each
of the 11 types of captions (2 reference, 9 model) were
included only once per HIT. The order of these captions was
randomized per HIT to prevent bias introduced by identical
caption ordering between HITs. By this arrangement, each
screen-caption pair was evaluated by 11 participants. After
viewing these screenshot-caption pairs, participants were asked
to answer six evaluation questions. Three of these questions
(EQ1-EQ3) were adapted from prior work that assessed the
quality of automatically generated code summaries [21], and
inquired about accuracy, completeness, and understandability,
respectively. The three remaining questions (EQ4-EQ6), were
free response and asked participants to explain accuracies,
inaccuracies, and improvements. The full set of questions and
HIT are in our online appendix [39]. Similar to the CLARITY
dataset collection, each participant’s response was thoroughly
vetted by at least one author, and discarded if the answers
were incomplete. Responses were collected until 220 HITs
were completed by unique respondents.

B. Evaluation Results

1) RQ3 Results: Evaluating BLEU Scores: We illustrate
the BLEU score results for the most effective model config-
uration and checkpoint across all of our trained models in
Table VI, whereas the results for other model configurations
can be found in our online appendix [39] in addition to
caption examples. The cells highlighted in blue illustrate the
highest performing model configuration for each caption type.
In general we observe that SAT exhibits the highest overall
BLEU scores across all caption granularities. We speculate
that this is attributable to the addition of the advanced attention
mechanism in this model that is able to “focus” on varying
image regions or features to effectively handle multiple caption
granularities. In general, the seq2seq model performed quite
poorly across the varying caption types, indicating a lower
tendency for rich representation. Perhaps most interestingly,
we see that the optimal model configurations for the im2txt
framework were those where the CNN was conditioned on
domain specific datasets. More specifically, the best high-level
caption model was conditioned on full screenshots and the
best low-level caption was conditioned on the cropped GUI-
component screenshots.

Another general trend that emerges is the low-level and
combined caption models tend to exhibit higher overall BELU
scores compared to the high-level captions. This is somewhat
intuitive, as it indicates that there are more natural connections
between visual GUI and lexical patterns in the low-level
captions, compared to the high-level captions that reflect more
abstract functional descriptions. When examining the captions
generated by the optimal configurations of each model, it is
clear that im2txt and SAT produces a more diverse set of out-
put captions than neuraltalk2, which could be considered
as more useful in many software documentation tasks.

Finally, it is worth discussing how the BLEU scores of our
models compare to those of the same models trained on the

8



None Some A Lot

im2txt high

im2txt low

im2txt combined

Easy to Read Somewhat
Readable

Hard to 
Read

im2txt high

im2txt low

im2txt combined

EQ3: Understandability

EQ2:  Unnecessary Information

im2txt high

im2txt low

im2txt combined

Strongly 
Disagree

 Disagree Neutral Agree Strongly
Agree

EQ1: Accuracy

seq2seq high

seq2seq low

seq2seq combined

Fig. 5: Responses across models for EQ1-EQ3

more traditional Flickr8k [37] and MSCOCO [38] datasets
given at the bottom of Table VI. Given the data-intensive
nature of our DL models, and the much larger size of the
MSCOCO dataset (≈123k images, each with 5 captions), we
did not expect our models trained on the CLARITY dataset to
outperform those trained on MSCOCO. Thus, unsurprisingly,
we observe that on average, im2txt, neuraltalk2, and SAT

models trained on the MSCOCO dataset outperform the same
models trained on the CLARITY datasets by ≈ 10 BLEU score
points for the combined and low level captions, and ≈ 27
points on high-level captions. However, when we examine
the performance of Neuraltalk2 on the more similarly sized
Flickr8K dataset (≈ 8K images, each with 5 captions) we
observe comparable performance to the CLARITY low-level
and combined datasets, with the SAT model narrowly outper-
forming the Flickr8K neuraltalk2 model, with a slightly
bigger discrepancy for the high-level captions. Overall, these
results indicate that when compared with datasets of similar
size, DL models trained on the CLARITY dataset exhibit
similar performance.

2) RQ4 Results: Human Evaluations: The results of EQ1-
EQ3 for the model configurations with the best performance
during the human study, in addition to the seq2seq accuracy
scores, are summarized in Fig. 5. Complete results across all
model configurations can be found in our online appendix. The
responses to EQ4-EQ6 varied by the type of caption, and are
provided in our appendix in full. Generally, im2txt fared the
best in terms of accuracy, and was followed by neuraltalk2

and seq2seq respectively. For im2txt, despite mixed reac-
tions from participants, in many cases respondents verified that
the caption was accurate (e.g., ”The description accurately
describes the screen, it is in fact a terms and conditions
screen.”) and suggested minor improvements similarly to the
reference captions (e.g., ”It could add specifics about what the
settings pertain to (i.e. security)”). As illustrated in Fig. 5 the
im2txt predictions were consistently rated as being readable
and containing relevant information. It is also interesting to

note that there appears to a mismatch between the performance
as indicated by BLEU scores, and human perceptions, with the
participants consistently rating the im2txt captions better
than other models across EQ1-EQ3, despite neuraltalk2

achieving a higher BLEU score for two model configurations.

VIII. DISCUSSION & LEARNED LESSONS

Lesson 1: Functional Descriptions of GUIs exhibit a
high degree of naturalness and can be modeled using DL
techniques. We observed that DL models trained on the low-
level and combined datasets exhibit similar performance to
models trained on general image captioning datasets of similar
size (e.g., Flickr8K). This indicates that GUI screenshots could
be used to augment approaches for automated documentation.

Lesson 2: GUI-centric software documentation mod-
els benefit from being pre-trained on domain specific
GUI data, as opposed to general image datasets (e.g.,
MSCOCO) The qualitative results of our model analysis
illustrate that for im2txt, the most effective configurations
were those trained on domain specific CNN datasets. This
suggests a perceptible difference between the utility of image
features learned from general datasets, compared to those
learned on datasets more specific to software. This suggests
that future work aiming to leverage DL models for GUI-
centric program documentation should look to collecting and
extracting features from large-scale GUI-related datasets.

Lesson 3: Future automated approaches for GUI-centric
program documentation would likely benefit from com-
bining the orthogonal semantics of screenshots and GUI-
metadata. Our evaluation in this paper illustrates that the rep-
resentational power of screenshots appears to be superior when
applied to a software documentation task. However, given stark
differences between these two modalities of information, we
also observed that they encode orthogonal semantic patterns
that could be combined for more effective documentation
generation. One property we observed of certain captions
generated by the image-based models was the effect of their
limited vocabulary. For example, certain predicted captions
similar to the following: “The screen allows the user to select
a <UNK>”, wherein the UNK token represents missing token,
which should be mapped to some unobserved app property,
such as a “album cover” or “store location”. However, such
predictions could be combined with the vocabulary present in
GUI metadata to help predict more complete, and accurate
descriptions. Thus, a promising direction for future work is to
jointly encode both screenshots and lexical GUI-metadata.

Lesson 4: Training image captioning models to predict
specific or diverse pieces of functionality is difficult.
Practical models for GUI-centric documentation should able
to predict both specific pieces of information (e.g. the func-
tionality of a particular button for a given method handler),
and diverse functionality (being able to generate descriptions
of functionality anywhere on a given screen). However, one
aspect we observed across our models is that the most
common observed types of functionality (e.g., back buttons,
menu buttons) corresponded to the functionalities that our
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models predicted most often and most confidently on unseen
screenshots. This is somewhat expected, as the models saw the
most examples of such functionalities during training. Thus,
the diversity of predictions is an open problem for future
research. This problem can be partially mitigated by larger,
more diverse datasets with specifically curated descriptions
(such as extensions to the CLARITY dataset). However, it is
likely that domain-specific models, or ensembles of models,
may be required to more effectively predict diverse features.

Lesson 5: Future studies that evaluate automated GUI-
centric documentation approaches should include human
studies, as human perceptions of models may differ from
automated reference-based metrics. One of the more surpris-
ing results of our study is that there seems to be a mismatch
between humans perceptions of the captions generated by our
DL models and the BLEU score metrics typically used to asses
the accuracy of model predictions. This signifies that there are
aspects of human perception that are not effectively captured
in the BLEU metric, and possibly other translation metrics.

IX. LIMITATIONS & THREATS TO VALIDITY

Internal Validity. Threats to internal validity correspond to
unexpected factors in the experiments that may contribute to
observed results. To derive our dataset we rely on MTurk and
its workers to extract the high- and low-level descriptions per
each screenshot. It should be noted that we did not ask MTurk
workers to provide technical software documentation descrip-
tions, but rather general descriptions of screen functionality at
differing granularities. To minimize low quality captions we
published the jobs for workers with more than 1k HITS, from
English speaking countries, and HIT approval rate of more
than 90%. Also, each successfully completed HIT was vetted
by at least one of the authors to assure quality. If there was
any question related to caption quality, at least one of the other
authors stepped in to resolve the ambiguity. As a result 2,429
HITs were rejected due to low quality descriptions.

External Validity. Threats to external validity concern the
generalization of the results. As with any collected dataset,
there is a threat to external validity about the generalizability
of the CLARITY dataset. However, we used a diverse set
of popular apps from the Android domain, extracted popular
screenshots from these apps, and the apps were captioned by
a large and diverse set of MTurk workers. During our data
collection process, we only collected 4 low-level captions per
each screen in order to make the task feasible for MTurk
workers as workers tend to abandon or perform poorly on long
tasks. This means that, for certain screens with many GUI-
components, some components may lack natural language
descriptions. However, given the size of our dataset and the
diversity of our screenshots and captions, we assert that our
low-level captions are reasonably representative.

X. RELATED WORK

DL for Image Captioning and GUIs. Hossain et al. [64]
recently performed a wide-ranging study on DL models for
image captioning, surveying the many different architectures
and datasets used to evaluate them. However, this survey

did not examine the ability of any image captioning model
to predict functional descriptions of software. There have
been a limited number of papers in the SE community that
have applied DL techniques to GUI related data. Chen et
al. [65] designed an approach that uses an NMT to translate
an Android screenshot into a GUI-skeleton. However, their
technique is able to predict GUI structure given an image, not
functional natural language descriptions. Recently, Zhang et.
al. [66] created a dataset of iOS image captions to train a
model for captioning accessibility data. However, the authors
do not make their dataset publicly available and target a
different goal of accessibility data compared our goal of
generating functional captions. Chen et al. investigated the
use of DL image captioning models for applying labels to
GUI-components in mobile apps [67], however, this approach
only aims to predict short labels for a limited subset of
GUI-components, whereas our study focuses upon predicting
functional descriptions consisting of complete sentences for
both individual GUI-components and entire screenshots.
GUI-based Analysis of Mobile Apps. GVT and GCat analyze
the visual properties of GUIs to detect design violations and
evolutionary changes [68], [69]. In contrast, we focus solely on
image captioning techniques to provide functional program de-
scriptions of screenshots. Approaches such as REMAUI [70],
REDRAW [48], and pix2code [71] aim to automatically
generate mobile app code given an app screenshot. Conversely,
we leverage DL techniques to generate functional descriptions
rather than source code using a pixel-based image as input.
Chen et al. [72] introduced StoryDroid, for automatically
generating visual storyboards of Android apps to help aid
in the app design process. However, their approach is not
capable of generating a functional description of an application
from GUI data. Furthermore, Deka et al. showed how the
Rico dataset could be navigated via semantic search using
autoencoders [35]. UiRef [73] is an approach for resolving
security and privacy concerns by considering semantics of
GUI-components that request user’s inputs. Moreover, Liu et
al. [74] presented an approach for automatically classifying
mobile app icons according to semantic GUI patterns. Xiao et
al. proposed IconIntent that combines program analysis and
icon classification to detect privacy sensitive GUI-components
[75]. Different from this body of work, we aim to predict
functional descriptions of GUIs for software documentation.

XI. CONCLUSION
In this paper, we have conducted one of the first com-

prehensive empirical investigations into the connection be-
tween GUI-related information, and functional descriptions
of programs. We have derived the CLARITY dataset of GUI
screenshots/metadata and NL captions, trained DL models
on this dataset, and demonstrated their ability to bridge the
semantic gap between visual and lexical program information.
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