
SOTitle: A Transformer-based Post Title
Generation Approach for Stack Overflow

Ke Liu†, Guang Yang†, Xiang Chen†‡∗, Chi Yu†
†School of Information Science and Technology, Nantong University, China

‡State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China
Email: aurora.ke.liu@outlook.com, novelyg@outlook.com, xchencs@ntu.edu.cn, yc struggle@163.com

Abstract—On Stack Overflow, developers can not only browse
question posts to solve their programming problems but also
gain expertise from the question posts to help improve their
programming skills. Therefore, improving the quality of question
posts in Stack Overflow has attracted the wide attention of
researchers. A concise and precise title can play an important
role in helping developers understand the key information of
the question post, which can improve the post quality. How-
ever, the quality of the generated title is not high due to the
lack of professional knowledge related to their questions or
the poor presentation ability of developers. A previous study
aimed to automatically generate the title by analyzing the code
snippets in the question post. However, this study ignored the
useful information in the corresponding problem description.
Therefore, we propose an approach SOTitle for automatic
post title generation by leveraging the code snippets and the
problem description in the question post (i.e., the multi-modal
input). SOTitle follows the Transformer structure, which can
effectively capture long-term dependencies through a multi-head
attention mechanism. To verify the effectiveness of SOTitle, we
construct a large-scale high-quality corpus from Stack Overflow,
which includes 1,168,257 high-quality question posts for four
popular programming languages. Experimental results show
that SOTitle can significantly outperform six state-of-the-art
baselines in both automatic evaluation and human evaluation. To
encourage follow-up studies, we make our corpus and approach
publicly available.

Index Terms—Post title generation, Question post quality,
Stack Overflow mining, Transformer, Code snippet, Problem
description

I. INTRODUCTION

On Stack Overflow, developers can post their problems and
wait for other community members to give corresponding
answers to their problems. When developers encounter sim-
ilar problems, such problems and corresponding answers are
valuable and can be reused. Until now, millions of developers
use Stack Overflow to search for high-quality answers for their
programming problems. Moreover, Stack Overflow becomes a
knowledge base for developers to learn programming skills by
browsing high-quality posts [1] [2] [3] [4].

While the number of question posts in Stack Overflow has
been growing rapidly, there are still a large number of prob-
lems, which have not received high-quality answers. These
problems may be unclear, unspecific, difficult to understand,
or unattractive to related developers [5].

∗ Xiang Chen is the corresponding author.

These low-quality question posts not only fail to get effec-
tive help, but also hinder the process of knowledge genera-
tion [6] [7]. To solve this problem, previous studies have been
conducted on the quality prediction of the question posts [1],
[8]–[13]. For example, Correa and Sureka [10] surveyed the
closed problems in Stack Overflow and found that high-quality
problems should contain enough code for others to reproduce
the problem.

Except for the prediction of low-quality question posts and
how to improve the performance of the quality prediction
models, some studies [10], [11], [14] found that an important
reason for low-quality question posts is that developers do
not create informative post titles. Some developers may lack
knowledge related to their problems, or they may have poor
presentation ability. For these developers, writing high-quality
problem titles is a challenging task. Therefore, automatically
generating post titles for Stack Overflow is needed.

To our best knowledge, Gao et al. [1] were the first to
automatically generate a post title according to a specific code
snippet. However, they ignored the valuable information in
the corresponding problem description. As shown in Fig. 1,
there are two posts in Stack Overflow, which have the same
code snippet. However, these two posts have different problem
descriptions, which result in different post titles. According to
this example, we can find the problem description of the post
can provide valuable information, which sometimes cannot be
provided by the code snippet for title generation. Therefore,
considering both modalities (i.e., code snippet and problem
description) as the input can help generate high-quality post
titles.

The main ideas of our proposed approach SOTitle have
three aspects. (1) We model the multi-modal input by con-
catenating the code snippet and the problem description to-
gether and follows the Transformer structure. (2) We formalize
question post title generation for each programming language
as separate but related tasks. Since related tasks can improve
each other’s performance by using shared and complementary
information, we utilize multi-task learning [15], which can
guarantee the generalization of our approach by learning
multiple tasks simultaneously. (3) We use the method Sen-
tencePiece [16] to split the code snippet and the problem
description to alleviate the OOV (out-of-vocabulary) issue in
the post title generation problem. SentencePiece is designed
for neural machine translation and it is a language-independent

ar
X

iv
:2

20
2.

09
78

9v
1

 [
cs

.S
E

]
 2

0
Fe

b
20

22

Problem Description (Python) 1:
I have a Custom User model that takes
user ip address. I want to add the IP
address of the user upon completion of
the sign up form. Where do I implement
the below code? I am not sure whether
to put this into my forms.py or views.py
file.
Title 1:
Where in my django app do I implement
this get_client_ip() function?
URL 1:
https://stackoverflow.com/questions/571
07116/

Problem Description (Python) 1:
i tried to get the "real" user ip address,
it's working, but i'm not getting my
own ip (the real one), checking the ip
with google map, after convert it to
long - lat, google map is showing the
location of my ISP.

Title 2:
How get the "real" user ip address?

URL 2:
https://stackoverflow.com/questions/1
3076259/

Code Snippet(Python):
def get_client_ip(request):

x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR')
if x_forwarded_for:

ip = x_forwarded_for.split(',')[0]
else:

ip = request.META.get('REMOTE_ADDR')
return ip

Fig. 1. Two posts from Stack Overflow, which have the same code snippet
but different problem descriptions

subword tokenizer and detokenizer.
Since there is no readily available corpus, to verify the

effectiveness of our proposed approach, we gathered 1,168,257
high-quality problem posts for four different programming
languages (i.e., Java, C#, Python, and JavaScript) from Stack
Overflow. Furthermore, we compare SOTitle with six state-
of-the-art baselines via automatic evaluation (i.e., Rouge [17])
and human study. Specifically, we first select the state-of-
the-art post title generation approach Code2Que proposed
by Gao et al. [1] as the first baseline. Then we select
five approaches from source code summarization and text
summarization domains (i.e., BM25 [18], NMT [19], Hybrid-
DeepCom [20], Transformer [21], and BART [22]) as the
remaining baselines. Results of experimental study and human
study show that SOTitle can generate higher-quality titles
than these baselines.

To our best knowledge, the main contributions of our study
can be summarized as follows.

• We propose an approach SOTitle to generate the title
of the question post from Stack Overflow by considering
both code snippet and problem description. Specifically,
we combine the code snippet and problem description as
the multi-modal input of the Transformer structure. Then
we formalize post title generation for each programming
language as separate but related tasks and utilize multi-
task learning [15]. Finally, we use the SentencePiece
method [16] to split the code snippet and the problem
description to alleviate the OOV issue.

• We construct a high-quality corpus and this corpus
contains 1,168,257 high-quality problem posts for four
popular programming languages.

• We conduct empirical studies on our construct corpus

to compare SOTitle with six state-of-the-art base-
lines, including the recent post title generation approach
Code2Que [1]. Final empirical results show the com-
petitiveness of SOTitle. Moreover, we verify the effec-
tiveness of SOTitle via human study.

• We develop a browser plugin based on our proposed
approach. By using this plugin, users can generate high-
quality titles for their submitted question posts in Stack
Overflow.

• We share our scripts, trained model, browser plugin, and
corpora on our project homepage1, which can facilitate
the replication of our study and encourage more follow-
up studies on the post title generation for Stack Overflow.

The rest of this paper is organized as follows. Section II an-
alyzes related studies for post quality analysis, deep learning-
based source code summarization, and deep learning-based
text summarization. Section III introduces the framework of
SOTitle and details of each component. Section IV and
Section V show the experimental setup and results of empirical
study and human study. Section VI discusses the main threats
to the effectiveness of our empirical study. Section VII sum-
marizes our study and shows several possible future directions.

II. RELATED WORK

In this section, we first summarize the related work for post
quality analysis on Stack Overflow. Since our approach aims
to generate the post title by analyzing both the code snippet
and the problem description, we also analyze the related work
for deep learning-based source code summarization and text
summarization. Finally, we emphasize the novelty of our study.

A. Post Quality Analysis on Stack Overflow

Improving post quality is an important research topic in
Stack Overflow mining. For example, Correa and Sureka [10]
investigated the closed questions in Stack Overflow and found
that a good question should contain enough code for others to
reproduce the problem. Nasehi et al. [23] performed qualitative
assessment manually and investigated the important features
of precise code examples in 163 Stack Overflow post answers.
Yao et al. [12] found that the number of edits to a problem is
a good indicator of the problem’s quality. Arora et al. [9] pro-
posed a new approach to improve the accuracy of the question
quality prediction model by using the content extracted from
similar historical question posts. Trienes et al. [11] studied the
approach of identifying unclear problems in Stack Overflow.
Ponzanelli et al. [24] developed an approach to automatically
classify problems based on their quality. Gao et al. [1] were
the first to use the sequence-to-sequence learning approach to
automatically generate the post title based on the code snippet,
which could improve the quality of the question post.

B. Deep Learning-based Text Summarization and Source
Code Summarization

The problems close to our research problem are text
summarization and source code summarization. In particular,

1https://github.com/NTDXYG/SOTitle

https://github.com/NTDXYG/SOTitle

text summarization aims to summarize the text documents,
which can obtain a brief overview of a large text document.
While source code summarization can automatically generate
the corresponding code comments by analyzing the semantic
information of the target code, which can help developers
understand the design purpose and functionality of the code.
Recently, the deep learning-based method is the popular
research direction of these two research problems. In this
subsection, we mainly analyze the related work for these two
problems.

For deep learning-based source code summarization, Iyer et
al. [25] first studied the problem of source code summarization
problem and proposed the method CODE-NN. This method
mainly uses LSTMs in the encoder and decoder. At the same
time, it used an attention mechanism, which can assign higher
weights to related word elements in the sequence. Hu et
al. [26] proposed the method DeepCom. Then they further
extended the method DeepCom and proposed the method
Hybrid-DeepCom [20], which combines the lexical informa-
tion and grammatical information of the code, and splits the
identifiers based on the camel case naming convention to
alleviate the OOV problem. Finally, they used beam search to
improve comment quality. Yang et al. [27] proposed a novel
method ComFormer based on Transformer and fusion method-
based hybrid code presentation LeClair et al. [28] considered
the graph neural network, based on the graph2seq model [29].
Ahmad et al. [30] considered the Vanilla-Transformer ar-
chitecture, and used a relative position representation and
copy mechanism. Feng et al. [31] proposed the bi-modal
pre-training model CodeBERT based on Transformer neural
architecture for programming language and natural language.
Wang et al. [32] proposed a BERT-based functional enhanced
transformer model, they proposed a new enhancer to generate
higher-quality code summarization.

For deep learning-based text summarization, Rush et al. [33]
proposed a fully data-driven approach to abstracting sentence
summaries. This approach used a local attention-based model
to generate each word of the summary conditioned on the
input sentence. See et al. [34] introduced a pointer network
to address the problem that seq2seq models often do not
accurately reproduce factual details. The approach can both
generate words from a vocabulary through generators and
copy content from a source through pointers. Liu and Lap-
ata [35] used a pre-trained Bert [36] as a sentence encoder
and a Transformer as a document encoder. The classifier of
sentence representation is used for sentence selection. It used
the knowledge of fine-tuned BERT to generate better text
summaries. Instead of only pre-training the encoder, the Bart
model proposed by Lewis et al. [22] jointly pre-trained a
seq2seq model that combines a bidirectional encoder and an
autoregressive decoder.

C. Novelty of Our Study

Most relevant to our study is the approach Code2Que
proposed by Gao et al. [1]. Code2Que [1] is an LSTM-based
sequence-to-sequence deep learning model that helps improve

the post quality by automatically generating post titles based
on a given code snippet. However, Code2Que only considers
a single input modality and ignores the problem description of
the question post, which can provide valuable information for
title generation that code snippets sometimes cannot provide.
Therefore, our approach SOTitle extracts useful information
from both modalities (i.e., the problem description and the
code snippet) simultaneously to generate high-quality titles
for question posts. In addition, we formalize the generation of
question post titles for each programming language as separate
but related tasks, which can allow related tasks to improve
each other’s performance by using shared and complementary
information.

III. OUR PROPOSED APPROACH

The overall framework of our approach is shown in Fig. 2.
In this figure, we can find that SOTitle consists of three
phases (i.e., corpus construction, model construction, and
model application). In particular, (1) in the corpus construction
phase, we design three heuristic rules to collect high-quality
question posts from Stack Overflow. In our constructed corpus,
we mainly focus on posts related to four programming lan-
guages and extract the code snippet, the problem description,
and the title as a triplet from each post. More details of
corpus construction can be found in Section IV-A. (2) In the
model construction, we first model the multi-modal input by
concatenating the code snippet and the problem description.
Then we use the SentencePiece method [16] to split these two
modalities to alleviate the OOV problem. Later we formalize
question post title generation for each programming language
as separate but related tasks and resort to multi-task learning.
Finally, our model is fine-tuned based on a pre-trained Trans-
former model T5 [37]. (3) In the model application phase, for
a new question post, we input its code snippet and problem
description to the constructed model. Then the trained model
can automatically generate the corresponding post title through
the beam search algorithm. In the rest of this section, we show
the details of the model construction phase.

A. Multi-modal Input Modeling

Since our study needs to deal with different programming
languages simultaneously, we should alleviate the OOV prob-
lem. In this study, we adopt the SentencePiece method [16]
to handle our input X . The SentencePiece method considers
the input sequence as a Unicode encoded sequence, thus this
method does not depend on the language representation, which
helps to handle different programming languages.

Different from previous studies, we want to extract informa-
tion from both modalities (i.e., code snippet and problem de-
scriptions) simultaneously. In this study, we model the multi-
modal input by concatenating the code snippet and the problem
description together. Specifically, we concatenate the code
snippet sequence Xcode and the problem description sequence
Xdesc via a special identifier (< code >) to distinguish Xcode
and Xdesc. As shown in Fig. 2, since we considered generating
titles for different programming language problem posts as

Filter

Desc Code Title

C#: Input Text

Python: Input TextJava: Input Text

JS: Input Text

Transformer-based
Bidirectional Encoder

Transformer-based
Autoregressive Decoder

Target C# Title

Target Java Title Target Python Title

Target JS Title

Pretrained
T5 model

Input Text

DescCode

Extract

Generated Title

Phase1: Corpus Construction Phase2: Model Construction Phase3: Application

Rule 3:
Contains

snippets of code

Rule 2:
Accepted
Answer

Rule 1:
Score ≥ 5

Corpus

Fig. 2. Framework of our proposed approach SOTitle

separate but related tasks, we prefixed the input X of each
programming language with a task-specific prefix (e.g., the
prefix “JS:” denotes JavaScript) to make the model distinguish
between the different tasks. The format of the input is shown
as follows.

X = prefix ⊕Xdesc ⊕ < code > ⊕Xcode (1)

B. Transformer-based Bidirectional Encoder

The encoder of our model aims to learn the representation
of the problem posts X = (x1, x2, · · · , xm). The encoder is
composed of a stack of “blocks”, each of which consists of
two subcomponents: a self-attention layer, followed by a feed-
forward network.

Self-attention [38] is calculated based on queries (Q), keys
(K), and values (V). The dot product between the queries
and keys is first calculated, then each is divided by

√
dk

and the softmax function is applied to get the weight of the
corresponding value.

Attention (Q,K, V) = softmax

(
QKT

√
dk

)
V (2)

The feed-forward neural network (FFN) consists of two lin-
ear transformations, with a nonlinear transformation provided
through the Relu activation.

FFN(x) = max (0, xW1 + b1)W2 + b2 (3)

Layer normalization [39] is applied to the inputs of each
child component. After layer normalization, a residual skip
connection [40] adds the inputs of each child component to
its output. Dropout [41] is applied within the feed-forward

network, on the skip connection, on the attention weights, and
at the input and output of the entire stack.

Note that the encoder uses all sub-tokens in the input
sequence for learning so that the learned representation of
each sub-token contains information about the entire input se-
quence. Since we encode the information of all the modalities
in a sequence, the learned representation of each sub-token
contains information about the other modalities.

C. Transformer-based Autoregressive Decoder

The structure of the decoder is similar to the encoder. The
difference is that it uses a standard attention mechanism to
focus on the encoder output after each self-attentive layer. The
self-attention mechanism in the decoder also uses a type of
autoregressive or causal self-attention that allows the model
to only focus on the past outputs.

D. Model Fine-tuning Process

Our model is fine-tuned based on a pre-trained Transformer
language model T5 [37]. During the fine-tuning process,
we do not tune the parameters of the model’s bias and
LayerNorm.weight’s weights, and then use the Adafactor
optimizer [42] to fine-tune the other parameters.

The input text x is tokenized as
{
x1, · · · , x|x|

}
and encoded

as the learned embedding ex =
{
ex1 , · · · , ex|x|

}
. The encoder

takes ex as the input and outputs a joint representation of
their context h =

{
hx1 , . . . , h

x
|x|

}
= Enc (ex). The de-

coder then iterates on the previously generated token y<j
via self-attention, the encoder outputs h via cross-attention,
and then predicts the probability of the next text token
Pθ (yj | y<j , x) = Dec (y<j , h).

We train our model parameters θ by minimizing the negative
log-likelihood of the target text tokens y for a given input text
x. For each task, the formula can be defined as follows.

LTask
θ = −

|y|∑
j=1

logPθ (yj | y<j , x) (4)

Finally, the loss functions for these four different program-
ming languages (i.e., Java, C#, Python, and JavaScript) can be
defined as follows.

Lθ = (

4∑
i=1

LTaski

θ)/4 (5)

IV. EXPERIMENT SETUP

In our empirical study, we want to answer the following
three research problems (RQs):
RQ1: Can our proposed approach SOTitle outperform state-
of-the-art baselines via automatic evaluation?
RQ2: What are the contribution of different input modalities
for the performance of SOTitle?
RQ3: Can our proposed approach SOTitle outperform the
state-of-the-art post title generation approach Code2Que via
human study?

In RQ1 and RQ3, we aim to show the competitiveness of
SOTitle via automatic evaluation and human study. In RQ2,
we aim to analyze the effect of the multi-modal input modeling
for SOTitle.

A. Experimental Subject

We select question posts from Stack Overflow as our
experimental subject. Fig. 3 shows a question post for the Java
programming language. This post contains a short post title,
the problem description with the corresponding code snippet,
one or more relevant answers (one of which was marked as
accepted), and multiple tags.

In this study, we mainly select question posts for four
popular programming languages (i.e., Java, C#, Python, and
JavaScript). Specifically, we first use Java, C#, Python, and
JavaScript tags to collect related question posts. To improve
the quality of the gathered question posts, we propose three
heuristic rules based on our manual analysis and suggestions
from previous studies [43] [44].
• Rule 1: The score of the question posts is not smaller

than 5.
• Rule 2: The question posts should have the accepted

answers.
• Rule 3: The question posts should contain the code

snippets.
After using these three rules, we find that the percentage of

selected posts in Stack Overflow2 is only 6%, which means
we finally select 1,168,257 posts from 20,511,138 posts. Then
we extract the problem description, the code snippet, and the
post title as the triplet 〈Description, Code, Title〉 and add this

2https://archive.org/download/stackexchange, downloaded in October 2020

Fig. 3. A question post for Java programming language from Stack Overflow

triplet to our corpus. Finally, there are 68,959 posts for Java,
71,817 posts for C#, 72,742 posts for Python, and 70,780 posts
for JavaScript. Then we randomly selected 60,000 posts as the
training set, 5,000 posts as the testing set, and the remaining
posts as the validation set for each programming language.
Detailed statistical information of corpus split results can be
found in Table I. Moreover, we also show the length statistics
of code snippet, problem description, and title in Table II.

TABLE I
STATISTICAL INFORMATION OF CORPUS SPLIT RESULTS

Language Training Validation Testing

Java 60,000 3,959 5,000
C# 60,000 6,817 5,000

Python 60,000 7,742 5,000
JavaScript 60,000 5,780 5,000

B. Performance Measures

In our study, we aim to show the competitiveness of
SOTitle via both automatic evaluation and human eval-
uation. In this section, we first introduce the performance
measure used in the automatic evaluation. Then we introduce
the details of our human study methodology.

1) Automatic Evaluation: Rouge [17] is a recall-based
measure, which is used to calculate the lexical overlap between
machine-generated summaries and reference summaries. This

https://archive.org/download/stackexchange

TABLE II
LENGTH STATISTICS OF CODE SNIPPET, PROBLEM DESCRIPTION, AND TITLE

Language Code Length Description Length Title Length
Average Mode Median <256 Average Mode Median <256 Average Mode Median <16

Java 173.98 20 84 82.31% 114.09 58 89 93.45% 9.42 7 9 92.30%
C# 128.54 16 73 88.40% 120.15 62 93 92.35% 9.69 8 9 90.90%

Python 124.98 24 70 89.11% 106.55 48 85 95.03% 9.41 8 9 92.86%
JavaScript 142.83 20 82 86.68% 103.96 61 83 95.34% 9.33 8 9 93.15%

Title 1: How to detect the language and store the value in a pandas dataframe ?

Q1-1: What is the score of Title 1 ?
A. EXCELLENT. B. GOOD. C. BORDERLINE. D. BAD.

Q2-1: What is the score of Title 2 ?
A. EXCELLENT. B. GOOD. C. BORDERLINE. D. BAD.

Q2-1: What do you think of Title 1 ? (multiple choices)
A. Relevance GOOD. B. Conciseness GOOD. C. Expressiveness GOOD.

Q2-2: What do you think of Title 2 ? (multiple choices)
A. Relevance BAD. B. Conciseness BAD. C. Expressiveness BAD.

Title 2: Polyglot Detector Detector Detector Detector

Problem Description:
Assuming I have a column called df.Text which contains text (more that 1 sentence) and I want to use polyglot Detector to detect the language and store the value in
a new column df['Text-Lang'] how do I ensure I also capture the other details like code and confidence …
Code Snippet：
testEng ="This is English"
lang = Detector(testEng)
print(lang.language)
…

Fig. 4. A survey example used in our human study

performance measure has been successfully used in previ-
ous source code summarization and text summarization stud-
ies [37], [45], [46]. In particular, Rouge-1 and Rouge-2 are
based on unigram and bigram respectively. Rouge-L is based
on the LCS (Longest Common Subsequence). In our study,
we use Rouge3 to calculate the Rogue value.

2) Human Evaluation: In our human study, we mainly
follow the methodology of Chen et al. [47]. Specifically, we re-
cruited six master students with more than five years on project
development and familiar with the usage of Stack Overflow.
Before conducting the human study, we provide the guidelines
for scoring the post title quality. Since Code2Que [1] is the
state-of-the-art baseline for post title generation, we mainly
compare the quality of titles generated by SOTitle and
Code2Que.

Then we randomly select 50 question posts for each
programming language. Given a question post, we use
Code2Que and SOTitle to generate titles respectively. In
summary, we have 200 titles generated by Code2Que, which
can be represented by T i =

{
ti1, t

i
2, · · · , ti200

}
), and 200

titles generated by SOTitle, which were represented by
T j =

{
tj1, t

j
2, · · · , t

j
200

}
.

We randomly ordered the selected question posts, and the
students did not know which title was generated by our
approach. We use the body of k-th question post and the
associated tik and tjk and the two generated titles are shown
in random order. We asked students to carefully review each
question post. First, we asked them to rate each of the assigned
titles, the meaning and the corresponding score as shown as
follows:

3https://github.com/pltrdy/rouge

• Excellent (2). This title can be used as the post title
without modification.

• Good (1). This title can reflect the main idea of the ques-
tion post, but has some problems (such as incompleteness,
repetition, or grammatical problem). Therefore, this title
can be used as the post title with minor modifications.

• Borderline (0). This title can reflect the idea of the ques-
tion post, but it lacks necessary details or is confusing.
Therefore, this title can be used as the post with major
modifications.

• Bad (-1). This title cannot reflect the idea of the question
post. Therefore, this title needs to be rewritten.

By comparing the final score of T i and T j , we can verify
whether SOTitle can generate higher-quality titles than
Code2Que.

Second, we asked the hired students to give reasons to sup-
port their scores. To simplify this process, we only surveyed
the advantages of the generated titles which are scored as
“Excellent” or “Good” and the disadvantages of the generated
titles which are scored as “Borderline” or “Bad”. The reasons
are summarized from three perspectives.
• Relevance. The generated title can capture the main idea

of the question post with correct and sufficient detail.
• Conciseness. The generated title does not contain unnec-

essary information and uses a short sentence to show the
main idea of the post.

• Expressiveness. the generated title can be clearly de-
scribed.

Here we use an example post shown in Fig. 4 from Stack
Overflow4 to show the investigation process. With different

4URL: https://stackoverflow.com/questions/45958129

https://github.com/pltrdy/rouge
https://stackoverflow.com/questions/45958129

answers in Q1, the options in Q2 are slightly different: (1)
When the answer of Q1 is “Excellent” or “Good”, the options
of Q2 will ask the students why it is good, such as Q2-1. (2)
When the answer of Q1 is “Borderline” or “Bad”, the options
of Q2 will ask students why it is bad, such as Q2-2.

C. Implementation Details

In our empirical study, we use Transformers5 to implement
our proposed approach SOTitle. The word embedding di-
mensions and hidden sizes are set to 768, and the number of
attention heads and layers is set to 12. All parameters were
optimized with Adafactor [42], and the initial learning rate
is set to 0.0005. During training, the batch size is set to 30.
The maximum length of the encoder and decoder is set to 512
and 30 respectively. To alleviate the overfitting problem, we
adopted a Dropout mechanism and set the loss rate to 0.1.
Finally, we also use the early stop method [48] to further
alleviate the overfitting problem, and the weights with the
highest performance on the validation set is taken as the final
parameter value of the neural network.

We run all the experiments on a computer with an Inter(R)
Xeon(R) Silver 4210 CPU and a GeForce RTX3090 GPU with
24 GB memory. The running OS platform is Windows OS.

D. Baselines

We select six state-of-the-art baselines to show the effective-
ness of our proposed approach. We first select a recent post
title generation approach Code2Que as the first baselines.
Code2Que. Code2Que [1] is the state-of-the-art baseline
for post title generation. Code2Que automatically generates
titles for question posts through an LSTM-based deep learning
approach.

Then we select three baselines from the text summarization
domain.
BM25. BM25 [18] is a bag-of-word retrieval function, which
can be used to estimate the relevance of documents for a given
search query. This is the information retrieval-based baseline.
Transformer. Transformer [21] mode improves the se-
quence processing ability through the attention mechanism.
Recently, Transformer has been successfully used in different
NLP understanding and generation tasks.
BART. BART [22] pre-trained the Transformer model by
combining bidirectional encoder and autoregressive decoder.
The BART model performs well on text summarization tasks.
In our study, we used the BART model and then fine-tuned
this model for our task.

Finally, we select two baselines from source code summa-
rization.
NMT. Jiang et al. [19] used Neural machine translation
(NMT) technology to automatically “translate” code changes
into commit messages. We choose NMT as a baseline since
it can achieve promising performance in generating commit
messages for the code changes.
Hybrid-DeepCom. Hybrid-DeepCom [20] is a neural
model used for code comment generation, which learns

5https://github.com/huggingface/transformers

syntactic and semantic information about the code through
two different encoders, respectively. It should be noticed
that the structure of both NMT and Hybrid-DeepCom is
the same except for the encoder part. We use the model
Hybrid-DeepCom to generate post titles by learning code
snippet and problem description separately through two dif-
ferent encoders.

To make a fair comparison, we slightly adapted these
baselines to deal with two modalities. In particular, for the
baseline Hybrid-DeepCom, we feed the two modalities into
two encoders separately according to their original approach
description. For the remaining baselines, we concatenate the
code snippet and the problem description together and then
feed them into one encoder.

E. Browser Plug-in Support

To facilitate the use of our proposed approach, we developed
a browser plug-in based on our constructed model. Fig. 5
shows the screenshot of our developed browser plug-in.

V. RESULT ANALYSIS

A. Result Analysis for RQ1

RQ1: Can our proposed approach SOTitle outperform
state-of-the-art baselines via automatic evaluation?

The comparison results between our proposed approach
SOTitle and baselines can be found in Table III. For each
column, we emphasize the best value in bold. It can be
found that our proposed approach SOTitle can significantly
outperform six baselines in terms of the performance measure
Rouge for different programming languages.

In particular, for our considered baselines, we find deep
learning-based baselines (i.e., NMT, Hybrid-DeepCom,
Code2Que, Transformer, BART, SOTitle) can achieve
better performance than information retrieval-based baseline
(i.e., BM25). The information retrieval-based baseline aims
to retrieve historical similar posts based on similarity, and
the performance of this kind of baseline depends on whether
similar posts can be found. In contrast, deep learning-based
approaches can learn semantic information from two different
modalities.

In terms of Rouge performance measures, our approach
can significantly outperform the post title generation baseline
Code2Que [1]. For example, in terms of Rouge-L, compared
to Code2Que, SOTitle can improve the performance by
6.187%, 6.005%, 5.029%, and 5.955% for Java, Python,
C#, and JavaScript respectively. The potential reason is that
we consider the post title generation problem for different
programming languages as different but related tasks, which
can improve each other’s performance by sharing information
and complementing each other.

Except for the Rouge performance measures, we also com-
pare SOTitle with baselines in terms of METEOR [49] and
BLEU [50] performance measures. Final results also show
the competitive performance of SOTitle. Limited by the
length of the paper, we show the detailed results on our project
homepage.

https://github.com/huggingface/transformers

1 2

3 4

Fig. 5. Screenshot of our developed browser plug-in. When using this plug-in, the developer can first copy the code snippet in ¬ and the detailed problem
description in . Then the developer can click the generate button in ®. Finally, the generated title can be displayed in ¯.

TABLE III
COMPARISON RESULTS BETWEEN OUR PROPOSED APPROACH AND STATE-OF-THE-ART BASELINES

Approach Java C# Python JavaScript
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

BM25 10.045 1.150 9.294 10.183 1.760 9.552 11.443 1.475 10.487 9.782 1.182 9.205
NMT 18.017 3.393 17.166 18.656 4.885 17.850 19.482 4.090 18.549 17.341 3.279 16.738

Transformer 12.689 1.957 12.332 12.252 2.046 12.115 14.125 2.236 13.602 13.153 2.082 12.751
BART 24.801 8.918 23.343 23.395 9.545 22.286 27.272 10.321 25.672 25.421 9.724 24.095

Hybrid-DeepCom 10.620 1.511 10.232 12.346 2.684 11.884 11.512 1.853 11.156 14.103 2.421 13.323
Code2Que 22.021 6.787 21.075 23.476 8.605 22.584 24.635 8.301 23.282 23.958 8.164 22.942
SOTitle 29.328 10.968 27.262 29.550 11.958 27.613 31.828 11.985 29.287 31.150 11.822 28.897

Fig. 6 shows the titles generated by SOTitle and baselines
for a Java question post6. In this example, we can find that
the title generated by BM25 is not relevant to the ques-
tion post. The titles generated by NMT, Hybrid-DeepCom.
Transformer and BART cannot correctly express the core
idea of the question post. Code2Que fails to capture the
details of the problem. However, the title generated by our
approach can accurately and fluently express the key informa-
tion in this post.

Summary for RQ1: SOTitle can achieve better per-
formance than six state-of-the-art baselines for differ-
ent programming languages via automatic evaluation.

6URL: https://stackoverflow.com/questions/52852143

B. Result Analysis for RQ2

RQ2: What are the contribution of different input modal-
ities for the performance of SOTitle?

In this RQ, we aim to investigate the contribution of
different input modalities to the performance of SOTitle.
Moreover, we also investigate the contribution of different in-
put modalities to the post title generation baseline Code2Que,
since Code2Que only considers the code snippet in the
original study. Here we use different subscripts to distinguish
different control approaches and the meaning of these sub-
scripts is shown as follows.
• code. The corresponding control approach only uses the

code snippet as the input modal.
• desc. The corresponding control approach only uses the

problem description as the input modal.
Table IV shows the performance of SOTitle and

Code2Que with different combinations of input modes. Here
Code2Quecode can denote the performance of Code2Que’s

https://stackoverflow.com/questions/52852143

Ground truth: Is it correct to append to a list while iterating over

it ?

BM25: Iterating over partitions in Python

NMT: How to append to a list ?

Hybrid-DeepCom: Appending a list to a list comprehension in

python

Transformer: Python list comprehension

BART: Python list append ()

Code2Que: How to append to a list in python ?

SOTitle: Is it discouraged to append to a list while iterating over it ?

Problem body : Title :

Fig. 6. The titles generated by SOTitle and baselines for a question post related to the Java programming language

TABLE IV
THE PERFORMANCE OF SOTITLE AND CODE2QUE WITH DIFFERENT COMBINATIONS OF INPUT MODES

Approach Java C# Python JavaScript
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Code2Quecode 14.157 2.576 13.590 14.895 3.388 13.602 12.705 2.184 12.015 12.648 2.109 12.112
SOTitlecode 15.064 2.644 14.255 15.445 3.525 14.255 13.534 2.236 12.801 13.467 2.295 12.952

Code2Quedesc 21.213 6.042 20.637 22.896 8.022 21.957 24.012 8.001 22.439 23.288 7.979 22.310
SOTitledesc 24.586 9.101 23.083 24.812 10.063 23.439 26.966 10.408 25.226 26.294 10.176 24.922

Code2Que 22.021 6.787 21.075 23.476 8.605 22.584 24.635 8.301 23.282 23.958 8.164 22.942
SOTitle 29.328 10.968 27.262 29.550 11.958 27.613 31.828 11.985 29.287 31.150 11.822 28.897

original study. In terms of Rouge-L performance measure,
when we only use the code snippets as the input, the Rouge-L
scores of SOTitle are 14.255, 14.255, 12.801, and 12.952 for
the Java, C#, Python, and JavaScript respectively; the Rouge-L
scores of Code2Que are 13.590, 13.602, 12.015, and 12.112
respectively. When we only use the problem description as
the input, compared to only using the code snippets as the
input. The Rouge-L scores of SOTitle can be improved by
61.9%, 64.2%, 97.1%, and 92.4% respectively; the Rouge-
L scores of Code2Que can be improved by 51.9%, 61.2%,
86.8%, and 84.2% respectively. This shows that for the post
title generation task, more useful information can be extracted
from the problem description. When we use both the problem
description and the code snippet as the input, the Rouge-
L scores of SOTitle can be improved by 91.2%, 93.7%,
128.8%, and 123.1% respectively. The Rouge-L scores of
Code2Que can be improved by 55.1%, 66.0%, 86.8%, and
89.4%, respectively. This shows that the information from the
code snippet and the problem description is complimentary
and both two modalities should be considered for post title
generation.

Summary for RQ2: Problem description can pro-
vide more valuable information than the code snippet
for post title generation. Moreover, considering two
modalities together can improve the performance of
SOTitle and Code2Que.

C. Result Analysis for RQ3

RQ3: Can our proposed approach SOTitle outper-
form the state-of-the-art post title generation baseline
Code2Que via human study?

According to the methodology of the human study intro-
duced in Section IV, we randomly select 50 question posts
for each programming language. For each post, two titles are
generated by Code2Que and SOTitle respectively. Each
question post was evaluated separately by six master students
during the survey. Fig. 7 and Fig. 8 show the statistical results
of 200 feedback comments, each containing four perspectives:
Overall Rating, Relevance, Conciseness, and Expressiveness.

As shown in Fig. 7, the left and right subfigures show the
votes for the titles generated by Code2Que and the titles
generated by SOTitle, respectively. We notice that 81% of

the human ratings for the titles generated by SOTitle are
not less than 1, which means they are considered to have good
quality and can be used as titles without major modifications.
Then, we use Fleiss Kappa [51] to measure the agreement
among these six students. The overall Kappa value based on
the comparison results between SOTitle and Code2Que
is 0.766, which indicates substantial agreement among these
students. Moreover, the distribution of human comments (in
Fig. 8) shows that the titles generated by SOTitle received
more positive comments after compared to the titles generated
by Code2Que in terms of three perspectives (i.e., Relevance,
Conciseness, and Expressiveness). Therefore, our proposed
approach can help to improve the post title quality. In our
human study, we also find some negative votes for both
approaches. After manual analysis, we find these approaches
cannot generate useful titles when the code snippets are
too complex or the problem descriptions lack enough useful
information. We show the examples with negative votes and
their corresponding reasons in our homepage.

2

1

0

-1

Titles Generated by Code2Que Titles Generated by SOTitle

Fig. 7. Rating distribution of human votes and each sector presents the
proportion of votes with the corresponding rating score.

Fig. 8. Advantages (+) and disadvantages (-) distribution of human comments.
Each bar presents the count of corresponding perspective.

Summary for RQ3: SOTitle can generate higher-
quality titles than the baseline Code2Que via human
study.

VI. THREATS TO VALIDITY

In this section, we mainly analyze the potential threats to
the validity of our empirical study.
Internal Threats. The first threat to internal validity concerns
potential faults in the implementation of our proposed ap-
proach and baselines. To alleviate this threat, we use mature
frameworks and use software testing to guarantee the code
quality. The second threat to internal validity is the method
used to split the tokens. In our study, we consider the Sen-
tencePiece method. This method is a language-independent
subword tokenizer and detokenizer, and its effectiveness has
been verified in the neural machine translation problem [16].
External Threats. The threat to external validity concerns the
quality and generalization ability of our constructed corpus. To
alleviate this threat, we mainly consider question posts for four
popular programming languages and consider three heuristic
rules to identify and remove low-quality posts.
Construct Threats. The threat to construct validity comes
from human studies, which may introduce bias. To ensure that
all students can correctly understand our questionnaire, we
provided a tutorial before our human study.

VII. CONCLUSION

In this study, we propose the Transformer-based approach
SOTitle for automatic post title generation by leveraging
the code snippets and the problem description (i.e., the multi-
modal input) in the question post. To verify the effectiveness
of our proposed approach, we gathered 1,168,257 high-quality
problem posts for four popular programming languages from
Stack Overflow. Experimental results show the competitive-
ness of our proposed approach after comparing the six state-
of-the-art baselines in terms of Rouge performance measures.
Moreover, we also conduct a human study to verify the effec-
tiveness of SOTitle after comparing the post title generation
approach Code2Que.

In the future, we first aim to further improve the perfor-
mance of SOTitle by considering more advanced deep learn-
ing methods (such as graph neural networks for code snippets).
We second aim to combine SOTitle with other kinds of
approaches (such as information retrieval-based approaches
and template-based approaches).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions, which can
substantially improve the quality of this work. Ke Liu and
Guang Yang have contributed equally to this work and they
are co-first authors. This work is supported in part by the
National Natural Science Foundation of China (Grant no.
61872263), The Open Project of State Key Laboratory of
Information Security (Institute of Information Engineering,
Chinese Academy of Sciences) (Grant No. 2020-MS-07).

REFERENCES

[1] Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question
titles for stack overflow from mined code snippets,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp.
1–37, 2020.

[2] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from
stack overflow,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1273–1285.

[3] J. Liu, S. Baltes, C. Treude, D. Lo, Y. Zhang, and X. Xia, “Charac-
terizing search activities on stack overflow,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Association
for Computing Machinery, 2021, p. 919–931.

[4] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet
in software engineering,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1960–1979, 2021.

[5] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack overflow,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 97–100.

[6] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discov-
ering value from community activity on focused question answering
sites: a case study of stack overflow,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2012, pp. 850–858.

[7] X. Jin and F. Servant, “What edits are done on the highly answered
questions in stack overflow? an empirical study,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 225–229.

[8] M. Duijn, A. Kucera, and A. Bacchelli, “Quality questions need quality
code: Classifying code fragments on stack overflow,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE,
2015, pp. 410–413.

[9] P. Arora, D. Ganguly, and G. J. Jones, “The good, the bad and their kins:
Identifying questions with negative scores in stackoverflow,” in 2015
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). IEEE, 2015, pp. 1232–1239.

[10] D. Correa and A. Sureka, “Fit or unfit: analysis and prediction of’closed
questions’ on stack overflow,” in Proceedings of the first ACM confer-
ence on Online social networks, 2013, pp. 201–212.

[11] J. Trienes and K. Balog, “Identifying unclear questions in community
question answering websites,” in European Conference on Information
Retrieval. Springer, 2019, pp. 276–289.

[12] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Want a good
answer? ask a good question first!” arXiv preprint arXiv:1311.6876,
2013.

[13] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: a study of api misuse
on stack overflow,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). IEEE, 2018, pp. 886–896.

[14] L. Tóth, B. Nagy, D. Janthó, L. Vidács, and T. Gyimóthy, “Towards an
accurate prediction of the question quality on stack overflow using a
deep-learning-based nlp approach.” in ICSOFT, 2019, pp. 631–639.

[15] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–1, 2021.

[16] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
2018.

[17] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[18] S. Robertson and H. Zaragoza, The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc, 2009.

[19] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 135–146.

[20] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[22] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 7871–7880.

[23] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 25–34.

[24] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza, “Understanding
and classifying the quality of technical forum questions,” in 2014 14th
International Conference on Quality Software. IEEE, 2014, pp. 343–
352.

[25] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[26] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[27] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu, “Comformer:
Code comment generation via transformer and fusion method-based
hybrid code representation,” in 2021 8th International Conference on
Dependable Systems and Their Applications (DSA). IEEE, 2021, pp.
30–41.

[28] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the 28th
International Conference on Program Comprehension, 2020, pp. 184–
195.

[29] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2seq: Graph to sequence learning with attention-based neural
networks,” arXiv preprint arXiv:1804.00823, 2018.

[30] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4998–5007.

[31] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, 2020,
pp. 1536–1547.

[32] R. Wang, H. Zhang, G. Lu, L. Lyu, and C. Lyu, “Fret: Functional
reinforced transformer with bert for code summarization,” IEEE Access,
vol. 8, pp. 135 591–135 604, 2020.

[33] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 379–389.

[34] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” pp. 1073–1083, 2017.

[35] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3730–3740.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT (1), 2019.

[37] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of Machine Learning
Research, vol. 21, pp. 1–67, 2020.

[38] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks
for machine reading,” in 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics,
2016, pp. 551–561.

[39] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[42] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with sub-
linear memory cost,” in International Conference on Machine Learning.
PMLR, 2018, pp. 4596–4604.

[43] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 112–121.

[44] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[45] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2019, pp. 299–309.

[46] D. Gros, H. Sezhiyan, P. Devanbu, and Z. Yu, “Code to comment “trans-
lation”: Data, metrics, baselining & evaluation,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).

IEEE, 2020, pp. 746–757.
[47] S. Chen, X. Xie, B. Yin, Y. Ji, L. Chen, and B. Xu, “Stay professional

and efficient: automatically generate titles for your bug reports,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 385–397.

[48] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55–69.

[49] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization, 2005, pp. 65–72.

[50] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[51] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

	I Introduction
	II Related Work
	II-A Post Quality Analysis on Stack Overflow
	II-B Deep Learning-based Text Summarization and Source Code Summarization
	II-C Novelty of Our Study

	III Our Proposed Approach
	III-A Multi-modal Input Modeling
	III-B Transformer-based Bidirectional Encoder
	III-C Transformer-based Autoregressive Decoder
	III-D Model Fine-tuning Process

	IV Experiment Setup
	IV-A Experimental Subject
	IV-B Performance Measures
	IV-B1 Automatic Evaluation
	IV-B2 Human Evaluation

	IV-C Implementation Details
	IV-D Baselines
	IV-E Browser Plug-in Support

	V Result Analysis
	V-A Result Analysis for RQ1
	V-B Result Analysis for RQ2
	V-C Result Analysis for RQ3

	VI Threats to validity
	VII Conclusion
	References

