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Abstract—Metamorphic testing (TM) examines the relations
between inputs and outputs of test runs. These relations are
known as metamorphic relations (MR). Currently, MRs are
handpicked and require in-depth knowledge of the System Under
Test (SUT), as well as its problem domain. As a result, the
identification and selection of high-quality MRs is a challenge.
Kanewala et al. suggested the Predicting Metamorphic Relations
(PMR) approach for automatic prediction of applicable MRs
picked from a predefined list. PMR is based on a Support Vector
Machine (SVM) model using features derived from the Control
Flow Graphs (CFGs) of 100 Java methods. The original study
of Kanewala et al. showed encouraging results, but developing
classification models from CFG-related features is costly. In this
paper, we aim at developing a PMR approach that is less costly
without losing performance. We complement the original PMR
approach by considering other than CFG-related features. We
define 21 features that can be directly extracted from source
code and build several classifiers, including SVM models. Our
results indicate that using the original CFG-based method-level
features, in particular for a SVM with random walk kernel
(RWK), achieve better predictions in terms of AUC-ROC for
most of the candidate MRs than our models. However, for one
of the candidate MRs, using source code features achieved the
best AUC-ROC result (greater than 0.8).

Index Terms—Software testing, metamorphic testing, meta-
morphic relations, prediction modelling

I. INTRODUCTION

Metamorphic Testing (MT) is a software testing technique
that attempts to alleviate the test oracle problem [2]. A test
oracle is a mechanism for determining whether or not the
outcomes of a program are correct [3], [4]. The oracle problem
arises when the system under test (SUT) lacks an oracle or
when developing one to verify the computed results is practi-
cally impossible [4]. Instead of verifying the individual outputs
of the SUT, as traditional software testing techniques do, MT
examines the relations between the inputs and outputs of test
runs. These relations are known as Metamorphic Relations
(MRs). MRs define how outputs should vary in response to a
defined change of inputs when executing the SUT [5], [6]. If
a particular MR is violated for at least one test input (and its
change), there is a high probability that the SUT has a fault.
On the other hand, if a particular MR is not violated it does not
guarantee that the SUT is free of flaws. Thus, the effectiveness
of MT is greatly dependent on the appropriateness of the MRs
used [5].

Identifying and selecting appropriate MRs is not a triv-
ial task. It requires a deep understanding of the SUT and
its domain. Identifying and selecting high-quality MRs has
been noted as a significant challenge. Several approaches to
determine how to choose “good” MRs have been proposed.
For instance, Liu et al. [7] introduced the Composition of
MRs (CMRs) technique for constructing new MRs by mixing
multiple existing ones. Zhang et al. [8] proposed a method
in which an algorithm searches for MRs expressed as linear
or quadratic equations. Chen et al. [9] developed METRIC,
a specification-based technique and related tool for identi-
fying MRs based on the category-choice framework. They
also expanded METRIC into METRIC+ by integrating the
information acquired from the output domain [10]. Among
those approaches, Predicting Metamorphic Relations (PMR),
introduced by Kanewala et al. [1], [11], uses machine learning
(ML) techniques to automatically detect likely MR of program
methods using features extracted from a method’s control-flow
graph (CFG).

The idea behind the PMR approach is to build a model
that predicts whether a method in a newly developed SUT
can be tested using a specific MR. The key part of PMR
is feature design. In the original PMR work [1], Kanewala
et al. used the CFG’s path- and node-based features of 48
Java methods and three predefined MRs to train support vector
machines (SVM) and decision trees models. The authors show
encouraging results when using node- and path-based features
and SVM. Then, Kanewala et al. [11] extends their initial work
by examining 100 Java methods and a set of six predefined
MRs. As in the initial study, Kanewala et al. use SVMs,
and features extracted from the methods’ CFGs. However,
instead of the node- and path-based features, the authors used
measures of similarity between graphs. In particular, random
walk kernel (RWK) and graphlet kernel (GK). Kanewala et al.
concluded that SVM models trained with RWK-based features
performed better than those trained with GK and with node-
and path-based features (using a default linear kernel).

While the original study by Kanewala et al. [1], [11] showed
encouraging results, the design of PMR features was limited
to features extracted from the methods’ CFGs only. First
generating CFGs from the source code and then extracting
features is relatively costly as compared to extracting features
directly from the source code. To see whether and how the
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PMR approach could be improved by using features extracted
directly from source code, as well as using those features
with other classification approaches than SVM, we decided to
conduct a study using the same set of methods and the same set
of MRs as in Kanewala et al. [11]. We complement the original
PMR approach by looking at 21 features directly extracted
from the source code. In addition, we experiment with five
different binary classification models (including SVM).

In the context of our study, we answer the following
research questions:

• RQ1: What set of source code based features provides
the best PMR performance?

• RQ2: Does PMR performance improve when using
source code based features instead of CFG-based fea-
tures?

In our study, we focus on PMR feature engineering. In
particular, we are interested in understanding whether and how
it is possible to achieve a similar or better performance than
that obtained by Kanewala et al. [1], [11], but using features
extracted from source code rather than features extracted from
the CFG.

The rest of the paper is structured as follows. Section II
presents the related work. In Section III, we describe the
methodology. In Section IV, we present results and answers
to our research questions. We discuss some threats to validity
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Since MT was introduced in 1998 by Chen et al. [2], it has
been widely studied with increasing interest in recent years
[12]. Several studies have shown MT as a strong technique
for testing the “non-testable programs” where an oracle is
unavailable or too difficult to implement [12]–[15]. Also,
MT has been demonstrated to be an effective technique for
testing in a variety of application domains, e.g., autonomous
driving [16], [17], cloud and networking systems [18], [19],
bioinformatic software [20], [21], scientific software [22], [23].
However, the efficacy of MT heavily relies on the specific MRs
employed.

Kanewala et al. [1], were the first to show that, for previ-
ously unseen methods, applicable MRs can be predicted using
ML techniques. Their work showed that classification models
created using a set of features extracted from CFGs and a set of
predefined MRs are effective in predicting whether a method
in a newly developed SUT can be tested using a specific MR
taken from the pre-defined set. Then, they extend their first
work [1] by conducting a feature analysis to identify the most
effective CFG’s related features for predicting MRs [11]. Their
results showed that SVM models built with features based
on CFG similarity measurements, in particular using RWK,
perform better than SVM models using nodes- and paths-based
features with linear kernel.

Hardin et al. [24] extended the initial PMR study [1] using
semi-supervised learning techniques on a set of node-based
features and the CFG path tagged with six predefined MRs.
Rahman et al. [25] applied PMR approach for predicting three
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Fig. 1: PMR procedure

high-level categories of MRs (i.e., Permutative, Additive, and
Multiplicative) for matrix-based programs. Their results show
that the RWK can effectively predict these MRs. Nair et
al. [26] explored and compared equivalent and non-equivalent
mutants as data augmentation technique to broaden the training
set using PMR. Their augmentation approach was tested on the
PMR original study dataset [1]. The study demonstrated that
equivalent mutants are a valid data augmentation technique to
improve the PMR detection rate. Zhang et al. [27] presented
RBF-MLMR, a multi-label technique that predicts MRs using
radial basis function neural networks. Instead of using several
binary classifiers like in PMR, RBF-MLMR use a neural
network to predict all potential MRs for a given method.
The major difference between this technique and PMR is the
usage of multi-label and neural networks, but it follows the
same pipeline as PMR original study. Also, the RBF-MLMR’s
feature design is CFG’s node- and path-based.

III. METHODOLOGY

In this paper, we focus on automated MR identification
following the PMR approach but using the method’s source
code metrics instead of its CFG information. Answers to the
research questions are obtained from the analysis of the results
of several implementations of the PMR procedure. Therefore,
in this section, we first present the PMR procedure, which is
slightly different from the one proposed by Kanewala et al.
[1], [11] (Section III-A). Then, we present the labelled dataset
used in our study (Section III-B). Finally, we present the
performance measures used in this paper study (Section III-C)

A. PMR Procedure

Figure 1 shows the PMR procedure. The PMR procedure
consists of three phases. Phase I is responsible for extracting
metrics of the method source code. The output of this phase
is a csv file with 21 source code metrics related features per
method. Phase II is in charge of preparing the data according



to the requirements of the ML algorithms. For example,
encoding categorical features. Also, each method is labelled
with elements from the set of pre-defined MRs. Phase III is
in charge of training and evaluating the binary classification
models that predict whether a specific MR is applicable to
the unit testing of a specific method. Below we describe each
phase in detail.

1) Phase I - Feature extraction: in this phase, a list of
features from various source code metrics is retrieved for each
method. A source code metric is a quantitative measure of
a software system’s attribute. Measuring software complex-
ity [28], assessing software maintainability [29], measuring
software quality [30], and other applications rely on source
code metrics. Recent studies have demonstrated the usefulness
of employing source code metrics in a variety of research
areas, including defect prediction [31], and time cost reduction
in mutation testing [32]–[34]. In our implementation, a total
of 21 source code metrics are used, as shown in Table I.
We use SCminer1, which is an open-source tool for mining
source code metrics at method level that support three different
programming languages (Java, C++, and Python).

TABLE I: Software metrics

Metric Description

tloc Total number of lines of code
sloc whbl Total number of code lines without blank lines

nloc Total number of code lines without comments or
libraries statements

nloc whbl Total number of code lines without blank lines,
comments or libraries statements

sloc statements Total number of lines with code statements
token count Token is the word and operators, etc.
start line First code line
end line Last code line

full parameters It provides the full input parameters
including the variable name

numArg Number of inputs arguments
dataArg Inputs data type, e.g., int array, int, float, etc.
numOper Number of arithmetical operators

numOperands Number of operands, e.g., variables,
numeric and string constants

total Var Total number of variables declared
numLoops Number of loops

CCN Cyclomatic Complexity Number, which is the number
of possible alternative paths through a piece of code

numMethCall Number of external methods called
has return Tells if the method has a return value
totalReturn Tells how many return statements the method has
returnDataType Return data type, e.g., int array, int, float, etc.
ext extention file (Java, C++, or Python)

2) Phase II – Data preparation: This phase is made up of
two steps:

Step 2.1 – Encoding: This step is in charge of preparing the
data according to the requirements of the ML algorithms. For
instance, encoding categorical features. Also, a further feature
selection analysis can be done. Feature selection is an extra
activity that allows exploring the different performances of
ML models when different features are used.

1https://github.com/aduquet/SCminer

Step 2.2 – Labelling MRs: Since PMR employs supervised
learning classification techniques, which need the usage of a
labelled dataset to give instances for learning. After the feature
extraction phase and encoding step, the training dataset is
constructed by manually labelling each method with suitable
MRs. Depending on whether a certain MR does or does not
satisfy the method, the method is labelled with a 1 or a 0 for
such MR.

3) Phase III – Training and testing: This step entails
extracting information from data using one or more supervised
ML algorithms, or a combination of them. There are three
steps that must be taken.

Step 3.1 – Data split: This step is responsible for splitting
the dataset into two subsets: a training set and a test set. The
training set is used to create the prediction model, while the
test set is used to evaluate the performance of the created
prediction model.

Step 3.2 – Model creation refers to the process of building
prediction models. Choosing a good modelling technique is vi-
tal for the training and prediction stage in any ML application,
including the PMR approach. In this paper, a total of 5 popular
classification algorithms are investigated when applying them
to PMR, including:

• Random Forest (RF)
• Support Vector Machine (SVM) with linear kernel
• Decision Trees (DT)
• Gaussian Naıve Bayes (GNB)
• Logistic Regression (LR)
Step 3.3 – Performance evaluation: This step measures

the performance of the created prediction models. To assess
classification performance, we utilised stratified k–fold cross-
validation. The k–fold crossvalidation approach assesses how
well a prediction model performs on previously unknown data.
The data set is randomly partitioned into k subgroups in k–
fold cross-validation. Then, k–1 subsets are utilised to develop
the predictive model (training), and the remaining subset is
used to assess the predictive model’s performance (testing).
This procedure is performed k times, with each of the k
subsets being used to assess performance. In stratified k–fold
cross-validation, k–folds are partitioned so that they include
roughly the same percentage of positive (functions that display
a specific MR) and negative (functions that do not exhibit a
specific metamorphic relation) samples as the original data set.

B. Dataset and pre-defined set of MRs

Kanewala et al. [11] provide a dataset with 100 Java
methods in their CFG representation2. Instead of using the
CFGs, we built a code corpus containing the source code
of the same 100 Java methods. The methods are from the
open-source libraries Colt Project [35], an open-source library
written for high-performance scientific and technical comput-
ing, Apache Mahou [36], a machine learning library, Apache
Commons Mathematics [37], a library of mathematics and
statistics components, and Java Collections [38], a framework

2http://www.cs.colostate.edu/saxs/MRpred/functions



that provides an architecture to store and manipulate the group
of objects. All of these libraries are written in Java. To obtain
the source code of the methods presented in the form of CFGs
by Kanewala et al., we search in the different libraries for the
name of the method.

To be able to make a fair comparison, we use the same set
of six pre-defined MRs as in the original study [11]. Table II
lists the MRs used, the changes in the inputs and the expected
outputs, and the total number of methods to which a specific
MR applies. Details of the set of methods, i.e., method name,
library to which it belongs, and the MRs that apply, have been
made available in github3.

TABLE II: MRs used and total number of methods that match
(X) a specific MR

MR Change in the input Output expected X

ADD Add a positive constant Increase or remain constant 56
EXC Remove an element Decrease or remain constant 32
INC Add a new element Increase or remain constant 34
MUL Multiply by a positive constant Increase or remain constant 66
PER Permute the components Remain constant 33
INV Take the inverse of each element Decrease or remain constant 63

ADD: Additive, MUL: Multiplicative, PER: Permutative
INC: Inclusive, EXC: Exclusive, INV: Invertive

C. Performance Measures

We evaluate the performance of our PMR implementation
using prediction recall, accuracy, precision, F1-score, and
AUC-ROC for each subject using 10-fold cross validation and
then summarise (using the mean) those statistics to compare
the performance of different classification algorithms.

In this paper, we denote a classification output in which a
specific MRn satisfies the method m as the positive class and
a classification output in which specific MRn does not satisfy
the method m as the negative class. Using this notation, each
standard performance measure is expressed as a function of
the counts of elements in the Confusion Matrix defined as
follows (denote TP as true positive, TN as true negative, FP
as false positive, FN as false negative):

• recall = TP / (TP + FN)
• accuracy = (TP + TN) / (TP + FP + TN + FN)
• precision = TP / (TP + FP)
• F1-score is the harmonic mean of precision and recall
• AUC-ROC, area under the receiver operating character-

istic (ROC) curve

IV. RESULTS

The full set of data generated during our experiments as
well as all scripts can be found in our GitHub repo4.

A. RQ1: What set of source code based features provides the
best PMR performance?

As a first step to answering RQ1, we explore whether using
a subset of the maximum set of 21 features helps improve the
performance of each MR classifier. To do this, an RF classifier

3Link to methods description
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Fig. 2: Feature importance score per MR

is used to calculate the importance score of each feature. Note
that, taking randomness into account, we built RF classifiers
ten times and then averaged the importance score for each
feature. Figure 2 shows the feature importance score per MR
and Table III lists the absolute importance values per MR.
In both, Figure 2 and Table III, the features are ranked from
highest to lowest score.

From Figure 2 and Table III one can see that regardless of
the MR, the importance ranking of features follows a fairly
uniform pattern. It seems that from the third-ranked feature,
i.e., “C: tloc”, regardless of the MR, features are ranked in
the same order. Moreover, for the last three features, i.e., “S:
returnData Type”, “T: ext”, and “U: full-Parameters”, the score
is zero for all MRs. Also, it is important to highlight that from
the fourth feature for the MRs: MUL, PER, and INV, their
scores are quite close to each other for the same features. This
happens also for the MRs: ADD, EXC, and INC, but from the
eleventh feature, i.e., “L: numLoop”, onward. Regarding the
top-3 features with the best scores, the MRs: EXC, INC, MUL
and INV follow the same pattern concerning the order of the
feature importance score, this is “A: dataArg”, “B: CCN” and
“C: tloc”. In MRs: ADD and PER, the order of importance
differ because “B: CCN” is the highest score instead of “A:
dataArg”. It could be said that this is the only exception to
the general ranking pattern we found.

After ranking the features from highest to lowest according
to their importance score, we explored the gradual selection of
best-ranked features. Also, we attempted to discover the best
subset in the reduced subject set using 10-fold cross-validation
and RF classifier. We started with a subset with the three best-
ranked features; then we augment the subset with the following
three features, and so on. In total, we evaluated seven subsets
for each MR. Each time, the next three highest-ranked features
were added until reaching the total set of 21 features.

Table IV shows the performance values obtained using
the RF classifier in terms of AUC-ROC and Precision when
the classifier is trained with a different feature subsets. In
this analysis, we want to know which subset of features is

https://anonymous.4open.science/r/RENE-PredictingMetamorphicRelations-81C3/Methods/Methods.PNG
https://anonymous.4open.science/r/VST22_PMR-SourceCodeMetrics-E536/


TABLE III: Feature importance score absolute values

MR A B C D E F G H I J k L M N O P Q R S T U

ADD 0.92 1.00 0.71 0.40 0.38 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.27 0.26 0.24 0.23 0.22 0.21 0.00 0.00 0.00
EXC 1.00 0.86 0.62 0.54 0.48 0.48 0.46 0.45 0.45 0.43 0.42 0.30 0.28 0.26 0.24 0.24 0.22 0.21 0.00 0.00 0.00
INC 1.00 0.81 0.53 0.48 0.46 0.45 0.44 0.43 0.43 0.42 0.41 0.33 0.28 0.25 0.22 0.21 0.20 0.16 0.00 0.00 0.00
MUL 1.00 0.72 0.67 0.41 0.33 0.32 0.30 0.28 0.27 0.26 0.26 0.25 0.25 0.24 0.23 0.23 0.21 0.15 0.00 0.00 0.00
PER 0.57 1.00 0.54 0.41 0.38 0.36 0.24 0.23 0.23 0.22 0.22 0.21 0.20 0.19 0.18 0.15 0.14 0.09 0.00 0.00 0.00
INV 1.00 0.68 0.56 0.41 0.35 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.22 0.21 0.20 0.19 0.18 0.00 0.00 0.00

AVG 0.91 0.85 0.60 0.44 0.40 0.37 0.34 0.33 0.33 0.32 0.31 0.27 0.25 0.24 0.22 0.21 0.20 0.17 0.00 0.00 0.00
AVG: Average, A: dataArg, B: CCN, C: tloc, D: sloc-whbl, E: sloc-statements, F: nloc-whbl, G: nloc, H: token-count, I: start-line, J: end-line, K: numArg
L: numLoops, M: totalVar, N: numOper, O: numMethCall, P: hasReturn, Q: totalReturn, R: numOperands, S: returnDataType, T: ext, U: full-Parameters

TABLE IV: AUC-ROC and precision absolute values per MR
using the top-ranked n features in a RF classifier

Metric MR Top-ranked n features
Feat3 Feat6 Feat9 Feat12 Feat15 Feat18 Feat21

AUC?

ADD 0.620 0.590 0.620 0.886 0.620 0.590 0.590
EXC 0.629 0.593 0.583 0.833 0.589 0.623 0.666
INC 0.720 0.675 0.720 0.717 0.675 0.675 0.694
MUL 0.649 0.518 0.518 0.762 0.518 0.491 0.578
PER 0.763 0.725 0.725 0.747 0.725 0.641 0.747
INV 0.595 0.611 0.588 0.625 0.636 0.545 0.640

Prec±

ADD 0.627 0.613 0.640 0.767 0.740 0.729 0.769
EXC 0.667 0.651 0.693 0.866 0.667 0.688 0.614
INC 0.767 0.733 0.733 0.888 0.727 0.761 0.652
MUL 0.875 0.833 0.854 0.853 0.675 0.630 0.657
PER 0.625 0.761 0.805 0.814 0.625 0.625 0.625
INV 0.675 0.625 0.714 0.833 0.75 0.600 0.675

Feat: Feature, ?AUC: AUC-ROC, ±Prec: Precision

the best based on the AUC-ROC and Precision performance
measures. AUC-ROC indicates the extent to which the model
can distinguish between classes. The higher the AUC-ROC,
the better the model will predict the positive class as positive
and the negative class as negative. In our context, the positive
case is the one when an MR applies to a method. Since we
plan to use the PMR approach for generating initial test cases
for methods that are yet lacking tests, it is more important that
we avoid the occurrence false positives. A false positive would
result in generating tests based on a MR that actually is not
applicable. The performance measure Precision is commonly
used to assess the capability of a binary classifier to predict
the positive case correctly. Therefore, we are particularly
interested in this measure when comparing the performance
of the various classifiers we build.

With regards to AUC-ROC, Table IV shows that three out
of six MRs, i.e., ADD, EXC, and MUL, have the best results
with the top-ranked 12 features, with a difference greater
than 0.2 to all other feature sets. For MRs INC and PER,
the highest values for AUC-ROC are achieved when the 3
top-ranked features are used. However, the difference to the
performance using 12 top-ranked features is less than about
0.01. For MR INV, the best AUC-ROC score is when the
complete set of features is used. However, as for INC and
PER, the difference with the 12 top-ranked features is rather
small (0.015). Therefore, based on the AUC-ROC measure,
it seems to be reasonable to simply use the 12 top-ranked
features across the board for all MRs.

With regards to Precision, Table IV shows that for four out
of six MRs, i.e., EXC, INC, PER and INV, the best perfor-

mance is achieved with the 12 top-ranked features. The highest
precision value for the MR ADD is obtained when all 21
features are used. However, the difference between 21 features
and 12 top-ranked features is only 0.002, approximately. This
indicates that performance-based on precision does not vary
significantly if the top 12 features are used.

In the next step, we explore the PMR approach using four
different classification models in addition to RF, i.e., DT,
GNB, SVM and LG. Each classifier is trained with the top-
ranked 3 and 12 features, and the full set of 21 features. We
include the sets of 3 and 21 features in the analysis to double-
check whether the choice of 12-features is also the best for
other classifiers than RF. We evaluate the performance of each
classifier using 10-fold cross-validation. Specifically, 70% of
the instances’ datasets are used for training in each fold,
and the remaining 30% are used for testing. The prediction
statistics (accuracy, precision, recall, F1 score, and AUC-
ROC) are recorded for each fold. The average values of these
statistics for each classifier and each MR are listed in Table V.

As expected, Table V confirms that using the 12 top-ranked
features is almost always the best choice across the board
(best performance is printed in bold). In those cases where
12 features don’t yield the best performance, the difference to
the best performing feature set is alway less than 0.02.

To decide which classifier is the best for each MR, we
relied on the values of AUC-ROC and Precision when using
classifiers based on 12 features.

For MR ADD, the highest average of AUC-ROC and
Precision is achieved when using GNB (average of 0.875 and
0.914).

For MR EXC, the highest average of AUC-ROC and Preci-
sion is achieved when using RF (average of 0.833 and 0.866).

For MR INC, the highest average of AUC-ROC and Preci-
sion is achieved when using RF (average of 0.717 and 0.888).

For MR MUL, the highest average of AUC-ROC and
Precision is achieved when using LG (average of 0.833 and
0.875).

For MR PER, the highest average of AUC-ROC and Preci-
sion is achieved when using DT (average of 0.857 and 0.914).

For MR INV, the highest average of AUC-ROC and Preci-
sion is achieved when using SVM with linear kernel (average
of 0.857 and 0.844).

In summary, the results show that there is not one best
classifier. RF is best for two MRs and each of the other
classifiers is best for exactly one MR.



TABLE V: PMR performance metrics when using 3, 12, and 21 top-ranked features on RF, DT, GNB, SVM, and LG classifiers

MR Clas? Accuracy Precision Recall F1 score AUC-ROC
Feat3 Feat12 Feat21 Feat3 Feat12 Feat21 Feat3 Feat12 Feat21 Feat3 Feat12 Feat21 Feat3 Feat12 Feat21

ADD

RF 0.764 0.886 0.884 0.627 0.767 0.769 0.972 0.971 0.973 0.827 0.830 0.824 0.620 0.886 0.590
DT 0.787 0.800 0.680 0.769 0.812 0.725 0.750 0.833 0.666 0.692 0.727 0.656 0.757 0.816 0.698
GNB 0.809 0.833 0.726 0.805 0.914 0.695 0.780 0.833 0.726 0.796 0.823 0.769 0.771 0.875 0.667
SVM 0.740 0.803 0.620 0.754 0.833 0.675 0.729 0.838 0.620 0.747 0.835 0.659 0.753 0.833 0.673
LG 0.680 0.800 0.680 0.750 0.807 0.693 0.762 0.833 0.690 0.762 0.833 0.690 0.738 0.800 0.675

EXC

RF 0.725 0.800 0.650 0.667 0.866 0.614 0.833 1.000 0.666 0.733 0.800 0.666 0.629 0.833 0.666
DT 0.660 0.750 0.570 0.770 0.844 0.695 0.600 0.667 0.532 0.551 0.602 0.500 0.602 0.667 0.536
GNB 0.690 0.712 0.667 0.733 0.800 0.666 0.600 0.667 0.534 0.564 0.667 0.461 0.595 0.619 0.571
SVM 0.672 0.704 0.640 0.700 0.733 0.667 0.599 0.667 0.530 0.710 0.857 0.562 0.634 0.694 0.573
LG 0.662 0.657 0.667 0.735 0.844 0.625 0.628 0.665 0.590 0.621 0.671 0.571 0.610 0.696 0.523

INC

RF 0.765 0.900 0.630 0.767 0.888 0.652 0.778 0.890 0.666 0.808 0.888 0.727 0.720 0.717 0.694
DT 0.681 0.750 0.612 0.566 0.616 0.516 0.465 0.596 0.333 0.513 0.589 0.438 0.564 0.605 0.523
GNB 0.687 0.705 0.668 0.733 0.862 0.604 0.627 0.667 0.587 0.604 0.667 0.542 0.596 0.681 0.510
SVM 0.706 0.802 0.610 0.737 0.806 0.667 0.590 0.645 0.534 0.558 0.667 0.448 0.655 0.761 0.548
LG 0.657 0.701 0.613 0.648 0.695 0.601 0.633 0.668 0.597 0.452 0.571 0.333 0.560 0.690 0.429

MUL

RF 0.725 0.800 0.650 0.875 0.853 0.657 0.912 1.000 0.823 0.812 0.875 0.748 0.649 0.762 0.578
DT 0.662 0.703 0.620 0.749 0.802 0.695 0.828 0.833 0.822 0.776 0.833 0.719 0.721 0.791 0.651
GNB 0.680 0.700 0.660 0.755 0.834 0.675 0.899 0.940 0.857 0.803 0.823 0.782 0.575 0.625 0.524
SVM 0.707 0.804 0.610 0.792 0.850 0.733 0.845 0.857 0.833 0.742 0.857 0.626 0.726 0.761 0.690
LG 0.741 0.801 0.680 0.772 0.875 0.669 0.840 0.857 0.823 0.817 0.875 0.759 0.792 0.833 0.750

PER

RF 0.715 0.810 0.620 0.625 0.814 0.675 0.639 0.712 0.566 0.726 0.789 0.662 0.763 0.725 0.747
DT 0.708 0.750 0.666 0.846 0.914 0.777 0.721 0.775 0.666 0.717 0.857 0.576 0.809 0.857 0.761
GNB 0.623 0.700 0.545 0.725 0.828 0.622 0.500 0.666 0.333 0.589 0.727 0.450 0.604 0.642 0.566
SVM 0.875 0.910 0.840 0.837 0.875 0.799 0.709 0.750 0.667 0.698 0.729 0.667 0.793 0.825 0.761
LG 0.765 0.830 0.700 0.803 0.822 0.783 0.688 0.709 0.667 0.720 0.750 0.690 0.745 0.795 0.694

INV

RF 0.655 0.702 0.608 0.675 0.833 0.675 0.788 0.857 0.719 0.776 0.800 0.751 0.595 0.625 0.640
DT 0.762 0.800 0.600 0.703 0.844 0.563 0.762 0.857 0.667 0.691 0.714 0.667 0.604 0.667 0.541
GNB 0.661 0.701 0.620 0.659 0.833 0.484 0.759 0.857 0.660 0.787 0.823 0.750 0.568 0.625 0.511
SVM 0.776 0.802 0.750 0.768 0.844 0.692 0.799 0.833 0.764 0.813 0.857 0.769 0.762 0.857 0.667
LG 0.768 0.860 0.676 0.728 0.761 0.695 0.794 0.857 0.731 0.767 0.857 0.676 0.714 0.762 0.667

?Classifier

With regards to RQ1, our results indicate that we
achieve almost always a performance greater than 0.8
in terms of AUC-ROC and Precision when predicting
MRs using source code based features (the one excep-
tion is the case of AUC-ROC for MR INC). The best
results are obtained with only 12 features out of 21.
However, there is not one single best classifier for all
MRs. With regards to Precision, each classifier is best
for one MR at least once. With regards to AUC-ROC,
with the exception of DT, each classifier is best for
one MR at least once.

B. RQ2: Does PMR performance improve when using source
code based features instead of CFG-based features?

The left-hand side of Table VI shows the AUC-ROC values
obtained when SVM models are trained with three feature
extraction approaches, i.e., node and path features (NF-PF),
graphlet kernel (GK), and random walk kernel (RWK), as
reported by Kanewala et al. [11]. The features used in these
classifiers are CFG-related. Since precision has not been
reported by Kanewala et al., we must base our comparison
exclusively on the AUC-ROC measure. Also, Kanewala et al.
do not report results from other models but SVM. The right-
hand side of Table VI shows the AUC-ROC values for the five

classifiers using 12 top-ranked source code based features. The
highest AUC-ROC values for each MR are printed in bold font.

TABLE VI: Comparison between AUC-ROC values per MR
obtained by Kanewala et al. [11] using SVM with CFG-
related features (NF-PF, GK and RWK), and AUC-ROC values
obtained when using RF, DT, GNB and LG, with the 12 top-
ranked source code based features.

MR
Kanewala et al. [11] 12 top-ranked source code based feat.NF-PF GK RWK

SVM SVM SVM SVM RF DT GNB LG

ADD 0.81 0.83 0.92 0.83 0.89 0.82 0.88 0.80
EXC 0.78 0.78 0.90 0.69 0.83 0.67 0.62 0.70
INC 0.84 0.88 0.89 0.76 0.72 0.61 0.68 0.69
MUL 0.73 0.78 0.83 0.76 0.76 0.79 0.63 0.83
PER 0.93 0.91 0.95 0.83 0.76 0.86 0.64 0.80
INV 0.84 0.68 0.76 0.86 0.64 0.67 0.63 0.76
Feat: Feature, ?AUC: AUC-ROC, ±Prec: Precision

The comparison between Kanewala et al. and our models
shows that in five out of six cases Kanewala et al.’s RWK-
SVM model is performing best. Only for MR INV our SVM
model using 12 top-ranked source code based features and
linear kernel is performing best. For MR MUL, our LG clas-
sifier achieves a tie. However, considering that the extraction of
features from CFGs is more expensive than building classifiers
directly from the source code (i.e., without first having to
construct CFGs from the source code and then analyse them),
our classifiers might still be acceptable if their performance is



not much lower than that of Kanewala et al.’s best classifier.
From Figure 3 (which plots the values presented in Table VI),
one can see that not only for MR INV one of our classifiers
performs best but also for all other MRs one of our classifiers
has a performance close to that of Kanewala et al.’s best
classifier.

ADD EXC INC MUL PER INV
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Fig. 3: Comparison of the AUC-ROC results obtained by
Kanewala et al. [11] using node- path-based features (NF-
PF), Graphlet Kernel (GK) and Random Walk Kernel (RWK)
in SVMs, and the AUC-ROC results obtained in this work
using the source code Metrics (SM) in SVM, RF, DT, GNB,
and LG

Regarding RQ2, our results indicate that classifiers us-
ing source code based features most of the time cannot
achieve better performance in terms of AUC-ROC.
SVM classifiers using CFG-based features and the
RWK are best for five out of six MRs. Only for INV,
the SVM classifier using twelve source code based
features (and the default linear kernel) is better than
the SVM classifier with RWK proposed by Kanewala
et al. [11]. However, the performance of classifiers
using source code based features is not dramatically
worse than that of the best classifier using CFG-based
features. Since source code based features are much
cheaper to extract, this might outweigh the small loss
of performance.

V. DISCUSSION

We now discuss the four most relevant threats to validity of
our study.

A. Internal validity

Since Kanewala et al.’s original study only reported the
performance of their classifiers only in terms of AUC-ROC, we
had to base our comparison on that measure although, for our
intended application of the PMR approach, precision would be
the more appropriate measure. In addition, more studies are

needed to investigate how it affects the overall performance
of PMR when the same method is implemented differently, as
this would directly affect feature extraction in both the original
study and our modelling approach.

B. External validity

For the sake of fair comparison, our study uses the same set
of methods as the original study but uses the source code of the
method instead of its CFG representation. However, it would
have been preferable to use a corpus of source code consisting
of a greater number of methods. Consequently, both our study
and the original one cannot determine the true extent of the
efficacy of the PMR approach.

C. Construct validity

In this paper, we used the SCmine framework to extract the
source code metrics (features) at method level. SCminer is an
open-source tool that uses third-party libraries. Usage of these
third-party libraries represents potential threats to construct
validity. To avoid this, we verified that the results produced by
SCminer are correct by manually inspecting randomly selected
outputs produced by the tool.

D. Conclusion validity

We used AUC-ROC and presicion value for evaluating the
performance of the classifiers. We considered AUC-ROC and
Presicion > 0.80 as a good classifier. This is consistent with
most of the ML literature.

VI. CONCLUSION

In this paper, we evaluate the performance of PMR using
features related to the source code. We start by extracting
21 metrics related to the source code as features. Next, we
perform features importance analysis using RF classifiers.
After selecting the best set of features, we evaluate them in
five different classifiers to find out which is the best in terms
of AUC-ROC and Precision. Finally, to see if source code-
related features improve PMR performance when using CFG-
related features; we compared the AUC-ROC results obtained
by Kanewala et al. [11] with our own results. In summary, a
total of 21 characteristics and 5 classification algorithms are
evaluated in this study. All classifiers are carefully evaluated
using 10-time cross-validation; To evaluate the performance of
our PMT implementation, 5 performance metrics are recorded
(per fold) and then averaged. Our results show that PMR
can achieve results greater than 0.8 in terms of precision
when predicting MRs using features based on the source
code. The best results are obtained with only 12 features
out of 21. However, there is no single best classifier for all
MRs. Also, classifiers that use source-based features most of
the time cannot perform better in terms of AUC-ROC. For
this particular performance metric, the use of CFG-related
functions in particular RWK is better than ours four out of
six times and ties once.
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