
ar
X

iv
:2

20
4.

11
08

3v
1 

 [
cs

.S
E

] 
 2

3 
A

pr
 2

02
2

Blockchain-Oriented Software Variant Forks:

A Preliminary Study

Henrique Rocha

Department of Computer Science

Loyola University Maryland

Baltimore, USA

henrique.rocha@gmail.com

John Businge

Department of Computer Science / ANSYMO

University of Antwerp

Antwerp, Belgium

john.businge@uantwerpen.be

Abstract—In collaborative social development platforms such
as GitHub, forking a repository is a common activity. A variant
fork wants to split the development from the original repository
and grow towards a different direction. In this preliminary
exploratory research, we analyze the possible reasons for creating
a variant fork in blockchain-oriented software. By collecting
repositories in GitHub, we created a dataset with repositories
and their variants, from which we manually analyzed 86 variants.
Based on the variants we studied, the main reason to create a
variant in blockchain-oriented software is to support a different
blockchain platform (65%).

Index Terms—Blockchain-oriented software, BOS, variant
forks, hard forks, software family.

I. INTRODUCTION

Due to the popularity of cryptocurrencies [1], such as Bit-

Coin [2] and Ether [3], blockchain platforms have also become

more popular [4, 5]. Initially designed as a distributed ledger,

nowadays blockchain has grown to address many different

scenarios. For example, blockchain can be used in supply-

chain [6, 7], voting [8, 9], vehicular ad-hoc networks [10],

and others [11, 12].

Since there are many applications for blockchain [6, 7, 8,

9, 10, 11, 12, 13], with the rising popularity of blockchain

platforms there is also an increase in the development of

blockchain-oriented software (BOS) [4, 14].

Many of these BOS are developed using coding platforms

such as GitHub. The advent of social coding platforms like

GitHub, BitBucket, and GitLab have substantially improved

software reuse through forking. Developers may fork a main-

line repository into a new forked repository and take gov-

ernance over the latter while preserving the full revision

history of the former. The social coding platforms comprise

a number of software ecosystems i.e., large collections of

interdependent software components that are maintained by

large and geographically distributed communities of collab-

orating contributors [15]. A software family is subset of the

a software ecosystem. A software family comprises two or

more software projects sharing a common code base as well

as variable code. An example of a family is a variant fork and

the original project (e.g., MariaDB is a variant fork of the

upstream project MySQL). As opposed to the very common

bug-fixing/feature social forks that are usually integrated back

in the upstream, variant forks are very rare and usually created

to diverge away from the upstream with no intention to

contribute back [16, 17].

Many cryptocurrency applications inherit code from the

mainline project. For example, the variant fork repository

PIVX-Project/PIVX is a cryptocurrency project hosted

on Github that was forked from dashpay/dash. More-

over, dashpay/dash was also forked from the mainline

bitcoin/bitcoin. The downstream applications contin-

uously monitor their immediate upstream and others in the

hierarchy for important updates like bug and security fixes as

well as other specific updates [18]. These three cryptocurrency

BOS can be considered as a software family comprising three

variants (a mainline and two variant forks) and all other related

cryptocurrency applications form software ecosystem [16, 19].

In this short paper, we conduct a preliminary study on BOS

repositories with variant forks. We analyze the characteristics

of the repositories and find the reason why the variant fork was

created. For example, someone may fork a Wallet application

to support a different blockchain platform than the original.

For this study, we collected 124 mainline BOS repositories in

GitHub, and 237 variant forks, for a total of 361 repositories.

From those, we manually analyzed 86 variant forks which led

to discovering the most common reason for creating a variant

in BOS is to support another blockchain platform (65% of the

investigated cases).

The remainder of this paper is organized as follows. Sec-

tion II describes our collection process for the GitHub repos-

itories which we use in this study. Section III presents our

preliminary results. Section IV discuss some related work

research. Finally, in Section V, we present our final remarks

and outline future research goals and challenges.

II. DATA COLLECTION

To collect the repositories, we employed a similar method

adopted by another research that studied variants and software

families [16, 18]. We started by looking for mainline projects

(i.e., original repositories) using the Github’s Rest API v3

search endpoint 1. We identify the repository as being a

BOS if in their GitHub name / description / readme contains the

following keywords: blockchain, ethereum, bitcoin,

1https://docs.github.com/en/rest/reference/search

http://arxiv.org/abs/2204.11083v1
https://github.com/PIVX-Project/PIVX
https://github.com/dashpay/dash
https://github.com/dashpay/dash
https://github.com/bitcoin/bitcoin


Blockchain-Oriented Software Variant Forks: A Preliminary Study

or cryptocurrency. We then filtered out popular (> 5

stars and forks), long-lived (created before 2018) and active

(still updated in 2020) repositories. Then, for all the mainline

projects we found, we tried to identify and collect variant

forks. This process is subject to a known threat to validity since

previous studies revealed that the majority of forks on GitHub

are inactive [20, 21] or are social forks [22]. To reduce this

threat, we filtered forks based on the following heuristics: ≥ 3

stars, ≥ 3 commits ahead of the mainline. A fork with stars

implies that it is liked by other persons other than developers.

Commits ahead of the mainline implies that the fork has added

extra functionality that is not in the original project. The is no

criteria for the thresholds of the stars and commits, however,

the lower numbers results in a lot of noise and higher numbers

results missing possibly interesting cases. To reduce on the

noise, we further filtered the mainline–variant fork pairs by

ensuring they had diverging README files presenting BOS

applications (manually verified). Based on the criteria detailed

above, we gathered 124 mainline repositories, and 237 variant

forks. A spreadsheet with the dataset is publicly available.2

III. PRELIMINARY RESULTS

We start our analysis by looking at the number of variant

forks that each mainline repository has. From the 124 mainline

repositories, in 91 of them (72%) we only identified one

variant. Therefore, the median value for number of variants

is one, in our collected data. The average number of variants

is 1.91. Table I shows the top-ten mainline BOS repositories

with the most number of variants as identified by us.

TABLE I
TOP-10 BOS MAINLINES ACCORDING TO THE NUMBER OF VARIANTS.

Repository Domain # of Variants

ethereum/go-ethereum Protocol / Node 19
Uniswap/uniswap-interface Protocol / Token

Exchange
15

bitcoin/bitcoin Protocol / Node /
Crytpcurrency

12

monero-project/monero Cryptocurrency 9
ethereum/solidity Compiler 6
MetaMask/metamask-extension Browser Add-on 6
EOSIO/eosio.contracts Smart Contracts 5
tendermint/tendermint BFT Consensus 5
turtlecoin/turtlecoin Cryptocurrency 5
bitcoinj/bitcoinj Library/Protocol 4

We like to note that the mainline repositories we gathered

(exemplified in Table I) have more forks than the ones used in

this study. For instance, ethereum/go-ethereum reposi-

tory, has more than 12 thousand forks. The 19 forks we showed

for this repository are the ones we were able to identify as

variants.

We manually analyze the mainline–variant fork pairs, by

comparing the repository descriptions and README files, to

find the possible reason for variant creation. We discarded

pairs where the reason variant creation is not clear. We will

2https://bit.ly/3GV2PeO

analyze the forks for the top-ten mainline repositories we

presented in Table I.

Table II shows the variant forks we identified for the

ethereum/go-ethereum repository. The ahead by col-

umn shows how many commits the variant is ahead of the

original repository. This table also shows the possible reason

for the variant creation, based on our manual analysis.

TABLE II
VARIANTS FOR ETHEREUM/GO-ETHEREUM.

Variant Ahead by Reason

tomochain/tomochain-v1 1595 Support a different
blockchain.

ShyftNetwork/go-empyrean 748 Support a different
blockchain.

expanse-org/go-expanse 532 Support a different
blockchain.

XinFinOrg/XDPoSChain 508 Support a different
blockchain.

ubiq/go-ubiq 320 Support a different
blockchain.

NoteGio/go-ethereum 268 Unspecified.
EthereumCommonwealth/go-callisto150 Support a different

blockchain.
second-state/lityvm 122 Extending the pro-

tocol.
Ethersocial/go-ethersocial 103 Support a different

blockchain.
BrightID/IDChain 47 Support a different

blockchain.
blocknative/go-ethereum 36 Unspecified.
nebulaai/nbai-node 28 Support a different

blockchain.
AlexeyAkhunov/turbo-geth-archive26 Efficiency

improvement.
Onther-Tech/go-ethereum 22 Unspecified.
ewasm/go-ethereum 19 Support another

technology.
flashbots/mev-geth 11 Support another

technology.
Giulio2002/go-ethereum 11 Unspecified.
loomnetwork/go-ethereum 9 Unspecified.
eth4nos/go-ethereum 4 Efficiency

improvement.

The ethereum/go-ethereum is the official Go imple-

mentation of the Ethereum [3] protocol and its client node.

The most popular reason for the variant forks is to support a

different blockchain platform (eight out of 19 forks). Since

the original repository contains the core of the Ethereum

implementation, it is possible that some of those variants to

be sidechains3 as well. We also found two forks that specified

some sort of efficiency or performance improvement (e.g.,

one is a lightweight client node for Ethereum). Moreover, we

found two forks to support another technology but unrelated

to the blockchain. For instance, ewasm/go-ethereum adds

support to Ewasm, which is the primary candidate to replace

EVM (Ethereum Virtual Machine) as part of the Ethereum

2.0 ”Serenity” roadmap. Just one variant we found was to

extend the Ethereum protocol. From the 19 forks, three did not

3A sidechain is a separate blockchain that runs in parallel to another
blockchain platform (referred as mainnet). The sidechain is connected to the
mainnet and provides a bridge for transactions between both blockchains.
<https://ethereum.org/en/developers/docs/scaling/sidechains/>

2

https://github.com/ethereum/go-ethereum
https://github.com/Uniswap/uniswap-interface
https://github.com/bitcoin/bitcoin
https://github.com/monero-project/monero
https://github.com/ethereum/solidity
https://github.com/MetaMask/metamask-extension
https://github.com/EOSIO/eosio.contracts
https://github.com/tendermint/tendermint
https://github.com/turtlecoin/turtlecoin
https://github.com/bitcoinj/bitcoinj
https://github.com/ethereum/go-ethereum
https://bit.ly/3GV2PeO
https://github.com/ethereum/go-ethereum
https://github.com/tomochain/tomochain-v1
https://github.com/ShyftNetwork/go-empyrean
https://github.com/expanse-org/go-expanse
https://github.com/XinFinOrg/XDPoSChain
https://github.com/ubiq/go-ubiq
https://github.com/NoteGio/go-ethereum
https://github.com/EthereumCommonwealth/go-callisto
https://github.com/second-state/lityvm
https://github.com/Ethersocial/go-ethersocial
https://github.com/BrightID/IDChain
https://github.com/blocknative/go-ethereum
https://github.com/nebulaai/nbai-node
https://github.com/AlexeyAkhunov/turbo-geth-archive
https://github.com/Onther-Tech/go-ethereum
https://github.com/ewasm/go-ethereum
https://github.com/flashbots/mev-geth
https://github.com/Giulio2002/go-ethereum
https://github.com/loomnetwork/go-ethereum
https://github.com/eth4nos/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ewasm/go-ethereum
https://ethereum.org/en/developers/docs/scaling/sidechains/


Blockchain-Oriented Software Variant Forks: A Preliminary Study

specify in their description or readme file any difference from

the original repository. Based on their commits, we flagged

them as variants, but we are unable to find the reason for their

creation.

The repository Uniswap/uniswap-interface is an

open-source interface for Uniswap which is a protocol for

decentralized exchange of Ethereum tokens. It shares a similar

domain of ethereum/go-ethereum, but it serves a differ-

ent purpose. Tokens (or Non-fungible Tokens) are very popular

in Ethereum and, by consequence, so are token exchange

contracts and websites. From the 15 variants, 13 are just to

support a different exchange protocol or contract. The fork

NavidGoalpure/persian-uniswap-interface had

the same basic functionality as the original but it was inter-

nationalized and and support for another language was added.

The other remaining fork was not accessible anymore.

The third repository, in Table I, is bitcoin/bitcoin

which is an open source BitCoin [2] implementation of its

protocol, client node, and cryptocurrency. Therefore it is very

similar to ethereum/go-ethereum. Ten out of the 12

forks are to support a different blockchain platform and create

a new cryptocurrency. This is a much higher amount of forks to

support another platform than the Ethereum variants. Probably,

because the Ethereum repository has other functionalities,

while the BitCoin one is more limited and tied to its cryp-

tocurrency. The remaining two forks are extensions to the

regular BitCoin. For instance, OmniLayer/omnicore adds

a communication layer to enable more sophisticated smart

contracts in Bitcoin; and jlopp/statoshi claims to bring

more transparency to the nodes.

In Table III, we show the variant forks for Monero

(monero-project/monero), which is a cryptocurrency.

We were expecting similar results from bitcoin/bitcoin,

as most variant forks for a cryptocurrency are probably to

create another type of cryptocurrency, which is similar in

principle to support a new blockchain platform.

TABLE III
VARIANTS FOR MONERO-PROJECT/MONERO.

Variant Ahead By Reason

oxen-io/oxen-core 3894 Support a different
Cryptocurrency

Beldex-Coin/beldex 1034 Support a different
Cryptocurrency

aeonix/aeon 980 Support a different
Cryptocurrency

electroneum/electroneum 808 Support a different
Cryptocurrency

EquilibriaCC/Equilibria 558 Support a different
Cryptocurrency

X-CASH-official/xcash-core 420 Support a different
Cryptocurrency

swap-dev/swap 129 Support a different
Cryptocurrency

dweab/haven-do-not-use 103 Support a different
Cryptocurrency

toints/moneroclassic 45 Maintain the clas-
sic version of the
original cryptocur-
rency.

As we expected, the majority of the variant forks for

monero-project/monero are to support or create another

type of cryptocurrency (eight out of nine forks). There is one

fork that is used to maintain and support the classic version

of Monero.

The fifth repository (according to Table I) is

ethereum/solidity which contains the language

definition, documentation, and compiler for Solidity [23].

Solidity is one of the major languages for coding smart

contracts in Ethereum. From its variants (Table IV), two forks

are extensions for the compiler (model checking, and static

verifier). One variant is to support a different platform, by

compiling Solidity into Tron Virtual Machine. Another fork

is a translation for the documentation of Solidity. Finally,

there were two forks we could not identify the reason for

their creation.

TABLE IV
VARIANTS FOR ETHEREUM/SOLIDITY.

Variant Ahead By Reason

SRI-CSL/solidity 1348 Compiler
Extension

ScottWe/solidity-to-cmodel 364 Compiler
extension

tronprotocol/solidity 174 Support a different
platform

akira-19/solidity 68 Unspecified
Karocyt/solidity-fr 62 Translation
PlatONnetwork/solidity 4 Unspecified

In Table I, the sixth repository with most variants is

MetaMask/metamask-extension where we identified

six forks (Table V). MetaMask is a browser extension (Chrome

and Firefox) that facilitates browsing Ethereum blockchain on

certain websites. This repository is from a different domain

than the previous ones, by being a browser add-on.

TABLE V
VARIANTS FOR METAMASK/METAMASK-EXTENSION.

Variant Ahead By Reason

poanetwork/nifty-wallet 1480 Enhancement
Conflux-Chain/conflux-portal 869 Support a different

blockchain
smilofoundation/SmiloWallet-extension 142 Support a different

blockchain
ubiq/sparrow-extension-OLD 90 Support a different

blockchain
CoboVault/metamask-extension 64 Unspecified
dsrvlabs/celo-extension-wallet 29 Support a different

blockchain

Four out of six MetaMask variants were to support a differ-

ent blockchain platform. One fork was a usability enhancement

for the add-on. And one fork, we could not discover the reason

for its creation.

The seventh repository (Table I) we looked was

EOSIO/eosio.contracts with five variants. This repos-

itory contains smart contracts to provide basic functions of

the EOSIO blockchain. Four out of five variants were created

to support another blockchain platform that uses EOSIO as a

3

https://github.com/Uniswap/uniswap-interface
https://github.com/ethereum/go-ethereum
https://github.com/NavidGoalpure/persian-uniswap-interface
https://github.com/bitcoin/bitcoin
https://github.com/ethereum/go-ethereum
https://github.com/OmniLayer/omnicore
https://github.com/jlopp/statoshi
https://github.com/monero-project/monero
https://github.com/bitcoin/bitcoin
https://github.com/oxen-io/oxen-core
https://github.com/Beldex-Coin/beldex
https://github.com/aeonix/aeon
https://github.com/electroneum/electroneum
https://github.com/EquilibriaCC/Equilibria
https://github.com/X-CASH-official/xcash-core
https://github.com/swap-dev/swap
https://github.com/dweab/haven-do-not-use
https://github.com/toints/moneroclassic
https://github.com/monero-project/monero
https://github.com/ethereum/solidity
https://github.com/SRI-CSL/solidity
https://github.com/ScottWe/solidity-to-cmodel
https://github.com/tronprotocol/solidity
https://github.com/akira-19/solidity
https://github.com/Karocyt/solidity-fr
https://github.com/PlatONnetwork/solidity
https://github.com/MetaMask/metamask-extension
https://github.com/poanetwork/nifty-wallet
https://github.com/Conflux-Chain/conflux-portal
https://github.com/smilofoundation/SmiloWallet-extension
https://github.com/ubiq/sparrow-extension-OLD
https://github.com/CoboVault/metamask-extension
https://github.com/dsrvlabs/celo-extension-wallet
https://github.com/EOSIO/eosio.contracts


Blockchain-Oriented Software Variant Forks: A Preliminary Study

basis. One fork did not specify its purpose on the description

or readme file.

The eighth repository (Table I) is a middleware for the

application-based blockchain platform that uses a Byzan-

tine Fault Tolerant (BFT) consensus algorithm, Tender-

mint [24] (tendermint/tendermint). Since application-

based blockchains (such as Tendermint, and Hyperledger

Fabric) have major differences from public blockchain plat-

forms (such as Ethereum, and BitCoin), we were expecting

to observe different reasons for the creation of variants.

However, four of the five variants did not specify anything

to justify their creation, and the description and readme

files were identical to the original repository. One fork,

QuarkChain/tendermintx, was created as an extension

to provide greater flexibility for Tendermint.

The crytocurrency Turtlecoin is the ninth repository

(turtlecoin/turtlecoin) in number of variant forks.

All five variants we found for this repository are to support or

create a new cryptocurrency based on the Turtlecoin original

code.

Finally, the final repository on our top-ten list with most

variants (Table I) is the bitcoinj/bitcoinj. BitCoinJ

is a Java library that implements the BitCoin protocol, has

a built-in wallet, and can communicate with the BitCoin

blockchain without the need for any other external code.

Three out of the four forks were created to support a different

blockchain platform and cryptocurrency than BitCoin. One

fork does not specify the reason for its creation.

Summarizing. We aimed to identify the possible reason for

the creation of BOS variants by analyzing the top-ten mainline

repositories with most variant forks. In total, we manually

investigated 86 variant forks from those top-ten repositories.

We can see the most popular reason for creating a variant in

BOS is to support a different blockchain platform (65% of the

variants or 56 out of 86). The second most popular reason is

the extend the original with additional features or technologies

(10% or nine out of 86). Approximately 14% of the variants

(12 out of 86) did not specify any difference with the main

repository in their description or readme file.

IV. RELATED WORK

Most studies analysed forking on Sourceforge, pre-dating

the advent of social coding platforms like GitHub [25, 26].

Several of those early studies report perceived controversy

around variant forks [27]. Jiang et al. [28] state that, although

forking may have been controversial in the open source

software (OSS) community, it is now encouraged and a built-in

feature on GitHub.

We have encountered few studies analysing variant forks in

the social coding era [16, 17, 22, 29]. Businge et al. [22] study

focused on the Android ecosystem and found that re-branding,

simple customizations, feature extension, and implementation

of different but related features are the main motivations to

create a fork for Android apps. Zhou et al. [17] interviewed 18

developers of hard forks on GitHub to understand reasons for

forking in modern social coding environments that explicitly

support forking. Businge et al. [16] investigated the interaction

between mainline and variants. The authors quantitatively in-

vestigated code propagation among variants and their mainline

in three software ecosystems. They found that only about

11% of the 10,979 mainline–variant pairs had integrated code

among themselves.

To the best of our knowledge, there are no studies investi-

gating variant forks for blockchain-oriented software.

V. FINAL REMARKS

In this short paper, we presented a preliminary exploratory

research on the possible reasons for creating a variant fork in

blockchain-oriented software. We collected repositories from

GitHub and manually analyzed 86 variant forks from the top-

ten mainlines in our dataset.

We discovered in our dataset that for BOS variants, 65%

were created to support a different blockchain platform. This

seems like a reasonable and fast way to develop software for

a specific blockchain platform. Instead of coding everything

from scratch, a developer finds a similar BOS repository that

accomplishes its main goal, forks it, and then just changes

the protocol to interact with a different blockchain. However,

before our study, we did not know how common this practice

is.

The second most common reason for the creation of a

variant is to extend the mainline with additional features

or technologies, occurring in 10% of the analyzed forks.

Why these extensions were not integrated into the original

repository remains an open question.

For future research, we plan to investigate all the variants in

our current dataset. Additionally, we will analyze other aspects

of the variants compared to the mainline such as number

of commits, commit size, community size, number of stars,

technical debt, etc. We also plan to contrast our findings in

BOS repositories with non-blockchain software to properly

compare the differences between them. Moreover, we would

like to contact the main developers or owners from the variants

to know the reasons why the variant was created. However,

since GitHub policy rules prohibit sending unsolicited emails,

we are not sure how to contact those developers.

ACKNOWLEDGMENT

John Businge’s work is supported by the FWO-Vlaanderen

and F.R.S.-FNRS via the EOS project 30446992 SECO-

ASSIST.

REFERENCES

[1] S. Dziembowski, “Introduction to cryptocurrencies,” in

Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS

’15. New York, NY, USA: Association for Computing

Machinery, 2015, p. 1700–1701. [Online]. Available:

https://doi.org/10.1145/2810103.2812704

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system.” 2009. [Online]. Available: bitcoin.org

4

https://github.com/tendermint/tendermint
https://github.com/QuarkChain/tendermintx
https://github.com/turtlecoin/turtlecoin
https://github.com/bitcoinj/bitcoinj
https://doi.org/10.1145/2810103.2812704
bitcoin.org


Blockchain-Oriented Software Variant Forks: A Preliminary Study

[3] Ethereum Foundation, “Ethereum’s white

paper.” 2014. [Online]. Available:

en.wikibooks.org/wiki/LaTeX/Bibliography Management

[4] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli,

“Blockchain-oriented software engineering: Challenges

and new directions,” in 2017 IEEE/ACM 39th Interna-

tional Conference on Software Engineering Companion

(ICSE-C), 2017, pp. 169–171.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and

A. Hobor, “Making smart contracts smarter,” in

Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS

’16. New York, NY, USA: Association for Computing

Machinery, 2016, p. 254–269. [Online]. Available:

https://doi.org/10.1145/2976749.2978309

[6] R. Zhao, J. Bal, and X. Ma, “Creating lean and

agile supply chains with blockchain,” in 2021 The

3rd International Conference on Blockchain Technology,

ser. ICBCT ’21. New York, NY, USA: Association

for Computing Machinery, 2021, p. 135–146. [Online].

Available: https://doi.org/10.1145/3460537.3460558

[7] S. Mann, V. Potdar, R. S. Gajavilli, and A. Chandan,

“Blockchain technology for supply chain traceability,

transparency and data provenance,” in Proceedings of

the 2018 International Conference on Blockchain

Technology and Application, ser. ICBTA 2018.

New York, NY, USA: Association for Computing

Machinery, 2018, p. 22–26. [Online]. Available:

https://doi.org/10.1145/3301403.3301408

[8] P. Mccorry, M. Mehrnezhad, E. Toreini, S. F.

Shahandashti, and F. Hao, “On secure e-voting

over blockchain,” Digital Threats: Research and

Practice, vol. 2, no. 4, oct 2021. [Online]. Available:

https://doi.org/10.1145/3461461

[9] C. Killer, B. Rodrigues, R. Matile, E. Scheid, and

B. Stiller, “Design and implementation of cast-as-

intended verifiability for a blockchain-based voting

system,” in Proceedings of the 35th Annual ACM

Symposium on Applied Computing, ser. SAC ’20.

New York, NY, USA: Association for Computing

Machinery, 2020, p. 286–293. [Online]. Available:

https://doi.org/10.1145/3341105.3373884

[10] B. Leiding, P. Memarmoshrefi, and D. Hogrefe,

“Self-managed and blockchain-based vehicular ad-

hoc networks,” in Proceedings of the 2016 ACM

International Joint Conference on Pervasive and

Ubiquitous Computing: Adjunct, ser. UbiComp ’16.

New York, NY, USA: Association for Computing

Machinery, 2016, p. 137–140. [Online]. Available:

doi.org/10.1145/2968219.2971409

[11] J. Zeng, Y. Yuan, J. Zhang, and Y. Liu, “Blockchain in

smart park: Application scheme design,” in Proceedings

of the 2019 International Electronics Communication

Conference, ser. IECC ’19. New York, NY, USA:

Association for Computing Machinery, 2019, p. 76–83.

[12] B. Bornelus, H. Chi, and G. A. Francia, “Integrating

blockchain technology in healthcare via active learning,”

in Proceedings of the 2020 ACM Southeast Conference,

ser. ACM SE ’20. New York, NY, USA: Association

for Computing Machinery, 2020, p. 122–126. [Online].

Available: https://doi.org/10.1145/3374135.3385275

[13] Y. Liu and J. Zeng, “Blockchain based big data plat-

form of city brain,” in 3rd International Conference on

Blockchain Technology, ser. ICBCT ’21. New York,

NY, USA: Association for Computing Machinery, 2021,

p. 82–89.

[14] A. Pinna, G. Baralla, M. Marchesi, and R. Tonelli,

“Raising sustainability awareness in agile blockchain-

oriented software engineering,” in 2021 IEEE Interna-

tional Conference on Software Analysis, Evolution and

Reengineering (SANER), 2021, pp. 696–700.

[15] A. Decan, T. Mens, and M. Claes, “An empirical compar-

ison of dependency issues in oss packaging ecosystems,”

in 2017 IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2017,

pp. 2–12.

[16] J. Businge, M. Openja, S. Nadi, and T. Berger, “Reuse

and maintenance practices among divergent forks in three

software ecosystems,” Journal of Empirical Software

Engineering, 2021.

[17] S. Zhou, B. Vasilescu, and C. Kästner, “How has forking

changed in the last 20 years? a study of hard forks on

github,” in 2020 IEEE/ACM 42nd International Confer-

ence on Software Engineering (ICSE), 2020, pp. 445–

456.

[18] J. Businge, A. Decan, A. Zerouali, T. Mens, and C. D. R.

Serge Demeyer, “Variant forks – motivations and im-

pediments,” in Proceedings of the 29th edition of the

IEEE International Conference on Software Analysis,

Evolution and Reengineering, 2022.

[19] A. Decan, T. Mens, and P. Grosjean, “An Empirical Com-

parison of Dependency Network Evolution in Seven Soft-

ware Packaging Ecosystems,” Empirical Softw. Engg.,

vol. 24, no. 1, pp. 381–416, Feb. 2019.

[20] J. Businge, M. Openja, D. Kavaler, E. Bainomugisha,

F. Khomh, and V. Filkov, “Studying Android app pop-

ularity by cross-linking GitHub and Google Play store,”

in International Conference on Software Analysis, Evo-

lution and Reengineering, 2019, pp. 287–297.

[21] J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh,

and E. Nabaasa, “Code authorship and fault-proneness of

open-source Android applications: An empirical study,”

in PROMISE, 2017.

[22] J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and

T. Berger, “Clone-based variability management in the

Android ecosystem,” in International Conference on Soft-

ware Maintenance and Evolution. IEEE, 2018, pp. 625–

634.

[23] Ethereum Foundation, “Solidity documentation

release 0.8.10,” 2021. [Online]. Available:

https://docs.soliditylang.org/ /downloads/en/v0.8.10/pdf/

[24] A. Amoordon and H. Rocha, “Presenting tendermint:

5

en.wikibooks.org/wiki/LaTeX/Bibliography_Management
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/3460537.3460558
https://doi.org/10.1145/3301403.3301408
https://doi.org/10.1145/3461461
https://doi.org/10.1145/3341105.3373884
doi.org/10.1145/2968219.2971409
https://doi.org/10.1145/3374135.3385275
https://docs.soliditylang.org/_/downloads/en/v0.8.10/pdf/


Blockchain-Oriented Software Variant Forks: A Preliminary Study

Idiosyncrasies, weaknesses, and good practices,” in 2019

IEEE International Workshop on Blockchain Oriented

Software Engineering (IWBOSE), 2019, pp. 44–49.

[25] L. Nyman, T. Mikkonen, J. Lindman, and M. Fougère,

“Perspectives on code Forking and Sustainability in open

source software,” in Open Source Systems: Long-Term

Sustainability, 2012, pp. 274–279.

[26] G. Robles and J. M. González-Barahona, “A compre-

hensive study of software forks: Dates, reasons and

outcomes,” in Open Source Systems: Long-Term Sustain-

ability, 2012, pp. 1–14.

[27] B. B. Chua, “A survey paper on open source forking

motivation reasons and challenges,” in Pacific Asia Con-

ference on Information Systems, 2017.

[28] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and

L. Zhang, “Why and how developers fork what from

whom in GitHub,” Empirical Softw. Engg., vol. 22, no. 1,

pp. 547–578, Feb. 2017.

[29] J. Businge, A. Decan, A. Zerouali, T. Mens, and S. De-

meyer, “An empirical investigation of forks as variants

in the npm package distribution,” in Proceedings of the

19th Belgium-Netherlands Software Evolution Workshop,

BENEVOL. CEUR-WS.org, 2020.

6


	I Introduction
	II Data Collection
	III Preliminary Results
	IV Related Work
	V Final Remarks

