CLAWSAT: Towards Both Robust and Accurate
Code Models

Jinghan Jia!*, Shashank Srikant>**, Tamara Mitrovska?, Chuang Gan®, Shiyu Chang*
Sijia Liu'}, Una-May O’Reilly**

"Michigan State University =~ 2CSAIL, MIT

3SMIT-IBM Watson AI Lab

4UC Santa Barbara

*Equal contribution

Correspondence: jiajingh@msu.edu

Abstract—We integrate contrastive learning (CL) with adver-
sarial learning to co-optimize the robustness and accuracy of
code models. Different from existing works, we show that code
obfuscation, a standard code transformation operation, provides
novel means to generate complementary ‘views’ of a code that
enable us to achieve both robust and accurate code models. To
the best of our knowledge, this is the first systematic study to
explore and exploit the robustness and accuracy benefits of (multi-
view) code obfuscations in code models. Specifically, we first adopt
adversarial codes as robustness-promoting views in CL at the self-
supervised pre-training phase. This yields improved robustness
and transferability for downstream tasks. Next, at the supervised
fine-tuning stage, we show that adversarial training with a proper
temporally-staggered schedule of adversarial code generation can
further improve robustness and accuracy of the pre-trained code
model. Built on the above two modules, we develop CLAWSAT,
a novel self-supervised learning (SSL) framework for code by
integrating CL with adversarial views (CLAW) with staggered
adversarial training (SAT). On evaluating three downstream
tasks across Python and Java, we show that CLAWSAT con-
sistently yields the best robustness and accuracy (e.g. 11% in
robustness and 6% in accuracy on the code summarization task
in Python). We additionally demonstrate the effectiveness of
adversarial learning in CLAW by analyzing the characteristics of
the loss landscape and interpretability of the pre-trained models.
Codes are available at https://github.com/OPTML-Group/CLAW-
SAT.

Index Terms—Robustness, Programming languages, Deep
Learning

I. INTRODUCTION

Recent progress in large language models for computer
programs (i.e. code) suggests a growing interest in self-
supervised learning (SSL) methods to learn code models—deep
learning models that process and reason about code [1]—[5].
In these models, a task-agnostic encoder is learned in a pre-
training step, typically on an unlabeled corpus. The encoder
is appended to another predictive model which is then fine-
tuned for a specific downstream task. In particular, contrastive
learning (CL) based self-supervision [6], [7] has shown to
improve the downstream performance of code reasoning tasks
when compared to state-of-the-art task-specific supervised
learning (SL) models [5], [8], [9].

While CL offers to be a promising SSL approach, nearly
all the existing works focus on improving the accuracy of
code models. Yet, some very recent works [10]-[12] showed

shash@mit.edu

that trained supervised code models are vulnerable to code
obfuscation transformations. These works propose adversarial
code—changing a given code via obfuscation transformations.
Such transformed programs retain the functionality of the
original program but can fool a trained model at test time.
Figure[2] shows an example of adversarial code achieved by
code obfuscation (more details in Section[[lI). In software
engineering, code obfuscation is a commonly-used method to
hide code in software projects without altering their function-
ality [13]], [14], and is consequently a popular choice among
malware composers [15]. Thus, it is important to study how
obfuscation-based adversarial code could affect code model
representations learned by SSL. As an example, Schuster et
al. [16] successfully demonstrate adversarial code attacks on a
public code completion model pre-trained on GPT-2, a large
language model of code.

Improving the robustness of ML models to adversarial code
however comes at a cost—its accuracy (model generalization).
Works in vision [[17]], [18]] and text [19] have shown how
adversarially trained models improve robustness at the cost
of model accuracy. While some works [20]], [21]] provide a
theoretical framework for how the robustness of learned models
is always at odds with its accuracy, this argument is mainly
confined to the SL paradigm and vision applications, and
thus remains uninvestigated in SSL for code. While there
exist similarities between SSL in vision and code, the discrete
and structured nature of inputs, and the additional constraints
enforced on views (obfuscated codes) introduce a new set of
challenges that have been unexplored by the vision community.

For code models, we ask: Can pre-trained models be
made robust to adversarial attacks? Is it possible to
retain this ‘pre-trained robustness’ when fine-tuning
on different tasks? And importantly, is it possible
to improve on both the retained generalization and
robustness during fine-tuning, thus challenging the
popular view of having to trade-off robustness for
accuracy gains? These questions form the focus of
our work.

Unsupervised view generator
and representation learning

Code
representation

>> Model

Task-specific
model

>y

Task-specific
target

J

—>

learned code representation

Fig. 1: Schematic overview. We present CLAW - a contrastive
learning-based unsupervised method which learns adversarial
views of the input code to in turn learn accurate and robust
representations of the code. We also present SAT, a refinement
to the adversarial training algorithm proposed by Madry et al.
[22]] which helps retain the task-independent robustness and
accuracy learned by CLAW while also learning task-specific
accuracy and robustness. We show that CLAWS AT yields better
accuracy and robustness when compared to state-of-the-art self-
supervised learning models for code.

A. Overview of proposed approach

We offer two methods that help us improve not only the
transfer of robustness from pre-trained models to downstream
tasks, but also co-improve fine-tuned accuracy and robustness.
The schematic overview of our proposal is shown in Figure
First, we propose a self-supervised pre-training method,
contrastive learning with adversarial views (CLAW), which
leverages adversarially-obfuscating codes as positive views of
CL so as to enforce the robustness of learned code represen-
tations. We formulate and achieve CLAW through a bi-level
optimization method. We show that the representations learned
from these pre-trained models yield better robustness transfer
to downstream tasks. Second, we propose staggered adversarial
training (SAT) to preserve the robustness learned during pre-
training while also learning task-specific generalization and
robustness during fine-tuning. We show for the first time that
the scheduler of adversarial code generation is adjustable and
is a key to benefit both the generalization and robustness of
code models.

B. Contributions

On one hand, we propose CLAW by extending the standard
CL framework for code. As a baseline, we compare CLAW to
the state-of-the-art standard CL framework for code models
- CONTRACODE released by [5]]. We find CLAW to ‘retain’
more robustness when compared to CONTRACODE. Further,
we provide a detailed analysis of understanding this improved
performance from the perspective of model interpretability
and characteristics of its loss landscape. On the other hand,

we integrate CLAW with SAT to achieve the eventually
fine-tuned CLAWSAT models. We evaluate three tasks—code
summarization, code completion, and code clone detection,
in two programming languages - Python and Java, and two
different decoder models—LSTMs and transformers. We show
that CLAWS AT outperforms CONTRACODE [j5]] by roughly 6%
on the summarization task, 2% on the completion task, and 1%
on the code clone task in accuracy, and by 9%, 3%, and 1% on
robustness respectively. We study the effect of different attack
strengths and attack transformations on this performance, and
find it to be largely stable across different attack parameters.

II. RELATED WORK

Due to a large body of literature on SSL and adversarial
robustness, we focus our discussion on those relevant to code
models and CL (contrastive learning).

A. SSL for code

CL-based SSL methods offer a distinct advantage by being
able to signal explicit examples where the representations
of two codes are expected to be similar. While the method
itself is agnostic to the input representation, all the works in
CL for code models work on code tokens directly. Existing
works [5]], [23]-[25]] show that CL models for code improve
the generalization accuracy of fine-tuned models for different
tasks when compared to other pre-training methods like
masked language models. Each of these works uses semantics-
preserving, random code transformations as positive views in
its CL formulation. Such transformations help the pre-trained
model learn the equivalence between representations of program
elements which do not affect the executed output, such as the
choice of variable names, the algorithmic ‘approach’ used to
solve a problem, etc.

State-of-the-art CL-based representations generally pro-
vide an improvement in the range of 1%-5% points of
F1/BLEU/accuracy scores when compared to their fully su-
pervised counterparts and other pre-training methods like
transformers, which is significant in the context of the code
tasks they evaluate, providing clear evidence for the utility of
SSL methods. While these methods improve the generalizability
of task-specific models, none of these works have studied the
robustness of these models, especially with a growing body of
works showing the susceptibility of code models to adversarial
attacks [[10]-[|12]]. By contrast, the adversarial robustness of CL
models for image classification has increasingly been studied
by the vision community [26]]-[29]]. These works have shown
that CL has the potential to offer dual advantages of robustness
and generalization. The fundamental differences in image and
code processing, including how adversarial perturbations are
defined in these two domains, motivate us to ask if and how
the advantages offered by CL can be realized for code models.

B. Adversarial robustness of code models: Attacks & defenses

[30]—[33]] showed that obfuscation transformations made
to code can serve as adversarial attacks on code models.
Following these works, recent papers [10], [11]] proposed

perturbing programs by replacing local variables and inserting
print statements with replaceable string arguments. They found
optimal replacements using a first-order optimization method,
similar to HotFlip [34]. [[12] framed the problem of attacking
code models as a problem in combinatorial optimization,
unifying the attempts made by prior works. [[10], [11]], [35]]
and [|12] also proposed strategies to train code models against
adversarial attacks. While [35] employed a novel formulation to
decide if an input is adversarial, the other works employed the
adversarial training strategy proposed by [18]. Recently, [36]
proposed a black-box attack method to generate adversarial
attacks for code, which is different from the white-box setting
used in [30]-[33]. In this paper, we only focused on the
adversarial robustness of white-box attacks.

Work most relevant to ours. Our work comes closest to CON-
TRACODE, the system proposed by [5]]. While they established
the benefit of using CL-based unsupervised representation
learning for code, the work neglects the interrelationship
between pre-training and fine-tuning in the SSL paradigm, and
the consequences of this relationship on both the robustness
and generalization of the final model.

III. PRELIMINARIES

We begin by providing a brief background on code models,
code obfuscation transformations, and SSL-aided predictive
modeling for code. We then motivate the problem of how to
advance SSL for code models. We study this through the lenses
of accuracy and robustness of the learned models.

A. Code and obfuscation transformations

Let P denote a computer program (i.e., code) which consists
of a series of n tokens {P;}!" ; in the source code domain.
For example, Figure [2| shows an example code P. Given
a vocabulary of tokens (denoted by (2), each token can be
regarded as a one-hot vector of length |Q2]. Here we ignore
white spaces and other delimiters when tokenizing.

Let t(-) denote an obfuscation transformation, and t(P) an
obfuscated version of P. ¢(P) is semantically the same as
‘P while possibly being different syntactically. Following the
notations defined by [12] and [[10]], we refer to locations or
tokens in a code which can be transformed as sites. We focus
on replace and insert transformations, where either existing
tokens in a source code are replaced by another token, or new
lines of code are inserted in the existing code. For example, in
Figure[2] the replace transformation modifies the variable sum
with test, while the insert transformation introduces a new
line of code print ("Network").

Obfuscation transformations have been shown to serve as
adversarial examples for code models (see Section [[I). During
an adversarial attack, these transformations are made with the
goal to get the resulting transformed code to successfully fool
a model’s predictions. The transformations at any given site
in a code, such as the tokens test, "Network" in Figure
[2] can be obtained in two ways—by random transformations
trana(+): they introduce a token sampled at random from 2,
or through adversarial transformations t,q(-): they solve a

def sum_till(n):

ramstorm sum = 0 transform
/ foriin range(n):
sum +=i
return sum

def sum_till(n): def sum_till(n):

itesti= 0 sum =0
for i in range(n): print("Network”);
itesti+= i for i in range(n):

sum += i
return sum

returnitesti

Fig. 2: Two types of semantics-preserving transformations
(obfuscations) can be made to a code to attack code models—
replace - where existing code is modified at a sife—location
in the code, or insert - where new lines of code are inserted
at a site. We select sites at random. The specific tokens used
in these transformations (test and "Network" in the the
example) can either be a random transformation ¢,q(-)—a
randomly selected token from a pre-defined vocabulary, or can
be an adversarial transformation ¢, (), where the token is
obtained from solving a first-order optimization designed to
fool the model [10]-[12].

first-order optimization problem such that the transformed
code maximizes the chances of the model making an incorrect
prediction.

Our goal then turns to improve not only accuracy (i.e. predic-
tion accuracy of properties of code P) but also robustness (in
terms of prediction accuracy of properties of ¢(P), obfuscated
transformations of P).

B. Problem statement

SSL typically includes two learning stages: self-supervised
pre-training and supervised fine-tuning, where the former
acquires deep representations of input data, and the latter
uses these learned features to build a supervised predictor
specific to a downstream task, e.g. code summarization [37] as
considered in our experiments. In the pre-training phase, let
0 denote a feature-acquisition model (trained over unlabeled
data), and £(0) denote a pre-training loss, e.g. the normalized
temperature-scaled cross-entropy (NT-Xent) loss used in CL
[6]1, [71, [38]. In the supervised fine-tuning phase, let 8¢ denote
the prediction head appended to the representation network 6,
and /g (05, 0 @) denote a task-specific fine-tuning loss seen as
a function of the entire model @y o 8, where o denotes model
composition. Fine-tuning is performed over labeled data. The
SSL pipeline can then be summarized as

Pre-training: 6, = arg mein £(0),

(Full) Fine-tuning: milelimize le (B 0 0),
ft
with initialization 8 = ;..

(D

We remark that if we fix @ = 0, in (I) during fine-tuning,
then the resulting scheme is called partial fine-tuning (PF),

which only learns the prediction head Og. Based on (I)) for
code, this work tackles the following research questions:

(Q1) How to design a self-supervised pre-training
scheme to acquire 0, that is robust to obfuscating
codes?

(Q2) How to design a supervised fine-tuning scheme
that can not only preserve the generalization and
robustness abilities gained from pre-training but also
achieve new improvements via task-driven supervised
learning?

IV. METHOD

In this section, we will study the above (Q1)-(Q2) in-
depth. To address (Q1), we will develop a new pre-training
method, termed CLAW, which integrates CL with adversarial
views of codes. The rationale is that promoting the invariance
of representations to possible adversarial candidates should
then likely improve the robustness of models fine-tuned on
these representations. To answer (Q2), we will a novel fine-
tuning method, termed staggered adversarial training (SAT),
which can balance the supervised fine-tuning with unsupervised
pre-training. The rationale is that the supervised fine-tuning
overrides pre-trained data representations and hardly retains
the robustness and generalization benefits achieved during pre-
training. We will show that the interplay between pre-training
and fine-tuning should be carefully studied for robustness-
generalization co-improvement in SSL for code.

A. CLAW: CL with adversarial codes

CL [6],, [[7] proposes to first construct ‘positive’ example pairs
(i.e., original data paired with its transformations or ‘views’),
and then maximize agreement between them while contrasting

def sum_till(n):

sum =0
foriin ran_g.e(n): Upper level
/ ::trzr; ;ulm optimization
|_maximi
tra,nd(P) tadv(P)
def sum_till(n): def sum_till(n):
sum =0 |:.|v= 0
for Qin range(n): foriin rangg(n);
sum += Q C1+=1
return sum U return[] Y,

Lower level optimization

Fig. 3: During pre-training, we propose CLAW containing
two optimization problems: (1) to learn invariant code rep-
resentations by minimizing the representation distances of a
code (P) from all its views (tranda(P), tagy(P)) via CL, and
(2) to generate an adversarial code t,q,(P) (‘hard’ positive
example) by maximizing its representation distance from P.
In the example, this requires solving for a replacement token
at the randomly selected site marked as E]

with the rest of the data (termed ‘negatives’). In programming
languages, code obfuscation transformations naturally serve
as view generators of an input code. While we reuse the
same set of transformations (that are applicable to Python and
Java programs) employed by the prior work [5], we generate
transformed views of the code differently. [5]] use random views
in their CL setup, which select and apply a transformation
at random from the set of permissible transformations. We
generate worst-case, optimization-based adversarial codes [[10],
[12] resulting in ‘adversarial views’.

Infusing the original code, its random view, and its adversar-
ial view into CL, we obtain a three-view positive tuple, denoted
by (P, trana(P), taav(P)). Since the generation of adversarial
code (the right tokens for a given site) is in itself an additional
optimization task, we leverage a bi-level optimization (BLO)
framework [39]], [40] and define optimization problems at two
levels: the upper-level problem aims to solve the multi-view
CL, while the lower-level problem aims to solve adversarial
code generation (see an illustration in Figure[3). This results in
the following formulation for our proposed approach CLAW:

miniGmize EP,tm,,d [gNTernt (07 P, trand (P))]+
Ep [InT—Xent (0 trand (P), taav (P))]

Upper level: Multi-view CL

2
subject to t,ay(P) = arg H%D@XENT_XQM(H;P,P'),

Lower level: Adversarial code generation

where the three-view objective function is constructed by NT-
Xent losses applied to two positive pairs (P, trana(P)) and
(trand(P), taav(P)), respectively. The first positive pair is to
gain the generalizable code representation by promoting the
representation invariance across the original view P and its
(benign) randomly-obfuscating view ¢4, as suggested in [5]].
The second positive pair is to enforce the adversary-resilient
code representation by promoting the representation invariance
across the benign code tnqg and the adversarial code tyqy (P).
Given two codes P; and Po, the specific form of /NT_xent 1S
given by as follows:

exp (sim(z1 (0),z2 (0))/t)
S ey exp (sim(zi (0).2x(6))/t)

3)

where z; denotes the feature representation of the input code
P; achieved through the representation network 6, sim(z;, z;)
denotes the cosine similarity between two feature representa-
tions z; and z;, ¢ > 0 is a temperature parameter, and N (%)
is the set of batch data except the data sample ¢ [6].

To solve the BLO problem (2, we apply an alternating
optimization method [39], [41]. Specifically, by fixing the
representation network 6, the lower-level adversarial code
generation is accomplished using first-order gradient descent
following [10], [[12]. Given the generated adversarial code
tadv(P), we then in turn solve the upper-level CL problem.
The above procedure is alternatively executed for every data
batch.

1 2
INT—Xent = —3 D51 lOg

Adpversarial view is beneficial to representation learning. To
highlight the effectiveness of incorporating adversarial codes
in CL at the pre-training phase, the rows ‘CONTRACODE-
PF’ and ‘CLAW-PF’ of Table[l] demonstrate a warm-up ex-
periment by comparing the performance of the proposed pre-
training method CLAW with that of the baseline approach
CONTRACODE [5]]. To precisely characterize the effect of
the learned representations on code model generalization and
robustness, we partially fine-tune (PF) a SEQ2SEQ model on
the downstream task of summarizing code (details in Section
in Python (SUMMARYPY) and Java (SUMMARYJAVA) by
fixing the set of weights learned during pre-training. GEN-F1
and ROB-F1 are the generalization F1-scores and the robust
F1-scores, i.e., F1 scores of the model when attacked with
adversarial codes. Partially fine-tuning these models allows us
to study the sole contribution of the pre-training method in
the learned robustness and generalization of the model. As we
can see, the partially fine-tuned CLAW model (termed CLAW-
PF) outperforms the baseline CONTRACODE-PF, evidenced
by the substantial robustness improvement (4.38% increase
in ROB-F1 in SUMMARYPY) as well as lossless or better
generalization performance (1.58% increase in GEN-F1 scores
on SUMMARYJAVA). It is worth noting that adversarial codes
serve as ‘hard’ positive examples in the representation space
(given by maximizing the representation distance between P
and its perturbed variant P’ in the lower optimization level of
CLAW, (2))). The benefit of hard positive examples in improving
generalization has also been seen in vision [42]-[44].

Partial fine-tuning
Model SUMMARYPY SUMMARY JAVA
GEN-F1 | RoB-F1 | GEN-F1 | ROB-F1
CONTRACODE-PF 25.46 15.47 20.92 16.63
CLAW-PF 25.45 19.05 22.50 17.14
Full fine-tuning
CONTRACODE-ST 36.28 28.97 41.37 33.01
CLAW-ST 36.57 29.97 41.23 32.53
CONTRACODE-AT 32.80 32.39 38.67 3591
CLAW-AT 32.97 32.65 38.86 36.10

TABLE I: Partially fine-tuned (PF) models show that CLAW
improves robustness. Standard training (ST) yields better
generalization than adversarial training (AT) while the latter
provides better robustness.

B. SAT: Staggered adversarial training for fine-tuning

As shown in the previous section, an appropriate pre-training
method can improve the quality of learned deep representations,
which help improve the robustness and accuracy of a code
model. However, the state of the model present at the end of
the pre-training phase may no longer hold after supervised fine-
tuning. That is because supervised learning (trained on labeled
data vs. unlabeled data in representation learning) may signifi-
cantly alter the characteristics of the learned representations.
Thus, a desirable fine-tuning scheme should be able to yield
accuracy and robustness improvements complementary to the

representation benefits provided by pre-training. Towards this
goal, we posit that fine-tuning should not be designed in a way
which merely optimizes a single performance metric—either
accuracy or robustness.

To justify this hypothesis, we consider two extreme cases
during fine-tuning: (i) standard training (ST)-based FF, and (ii)
adversarial training (AT)-based FF [18]]. ST is essentially the
same setup as fully supervised training with the only difference
being in the set of initial parameters of the model. This setup
optimizes improving a model’s generalization ability. On the
other hand, AT optimizes improving the model’s adversarial
robustness.

The last four rows of Table[l] present the performance of
these two extreme fine-tuning cases applied to the pre-trained
models provided by CONTRACODE [5] and CLAW, respectively.
As we can see, when either ST or AT is used, different pre-
training methods (CONTRACODE and CLAW) lead to nearly the
same generalization and robustness performance. This shows
that fine-tuning, when aggressively optimizing one particular
performance metric, could override the benefits achieved during
pre-training. To this end, we propose staggered AT (SAT), a
hybrid of ST and AT by adjusting the time instances (in terms
of epoch numbers) at which adversarial codes are generated
(see Algorithm [I). SAT involves two key steps—training

Algorithm 1: Staggered Adversarial Training (SAT)

Input:model M = {0¢, 0}, attack frequency 7
for each epoch e do
for each data batch 5; do
1. Train M by updating 6 o 6
end for
if ¢ mod 7 = 0 then
for each data batch B; do
2. Attack M by finding adversarial codes B’;
3. Retrain M on B’;
end for
end if
end for

a model M := {6,0x} on a batch B of data (step 1), and
attacking the learned model at a staggered frequency 7 (steps
2-3). Different from AT, adversarial code is not generated
in every data batch. Instead, in SAT, we propose reducing
the frequency of adversarial learning. Accordingly, adversarial
code generation occurs at the frequency of each epoch or at
every few epochs. This ensures the model parameters retain
as much of the attributes from pre-training while also learning
task-specific generalization and robustness. In SAT, the model
is finetuned using (B; + B;) where B, refers to the generated
adversarial code corresponding to B;. Eventually, by combining
the proposed pre-training scheme CLAW with the fine-tuning
scheme SAT, we term the resulting SSL framework for code
as CLAWSAT.

V. EXPERIMENT SETUP

We describe the following aspects of our experiment setup -
the task, dataset, and the details of the model.

SUMMARYPY SUMMARY JAVA COMPLETEPY CLONEJAVA
Model GEN-F1 RoOB-F1 GEN-F1 RoOB-F1 GEN-F1 RoB-F1 GEN-F1 RoOB-F1
M; Supervised learning | 33.33+0.17 26.1640.31 38.4240.25 29.8940.27 56.7240.22 53.89+0.26 67.20+0.11 64.3510.15
M, M;-AT [10] 33.03+0.21 32.20+0.26 37.8140.23 34.86+0.29 55.40+0.26 55.3410.35 66.1240.13 65.8440.17
M; CONTRACODE [5] 36.28+0.18 28.9740.27 41.374+0.14 33.0140.25 57.7040.23 54.83+0.31 69.2540.09 68.86+0.13
"M; CLawST | 36.57T4000 | 29974022 | 41.231017 | 33.534022 | 57.654025 | 54751031 | 69.6340.00 | 68954015
Ms CLAW-AT 32.97+0.15 32.65+0.17 38.86+0.23 36.10+0.31 57.4440.26 57.1240.29 69.40+0.16 69.00+0.14
Mg CLAWSAT (ours) 42.1240.19 | 40.704+0.23 | 41.77410.27 | 38.80+0.33 58.804+0.24 | 57.2140.28 | 69.734+0.10 | 69.2540.13

TABLE II: Overall performance of CLAWSAT: We evaluate our models in two settings: standard training (ST) and adversarial
training (AT) by [18]]. For each of the four tasks: code summarization: SUMMARYPY, SUMMARYJAVA, code completion:
COMPLETEPY, and code clone detection: CLONEJAVA, we report the model’s generalization Fl-score (GEN-F1) and the
robustness F1 (ROB-F1)-the generalization F1 when the model is adversarially attacked. M, corresponds to an adversarially
trained (AT) version of the supervised model My, first introduced in [[I0]. My and M5 are two variants of CLAWSAT (Mp):
one integrates CLAW with standard training (ST), and the other integrates CLAW with the adversarial training (AT) [18]]. The
result a4, represents mean a and standard deviation b, calculated over 5 random trials.

Task, dataset, error metrics. We evaluate our algorithm on
four tasks: (1) code summarization [5]], [37], [45]-[48] in
Python, (2) code summarization in Java (generates English
description for given code snippet), (3) code completion
in Python [49] (generates the next six tokens for a given
code snippet), and (4) code clone detection [50] in Java
(classifies whether a pair of code snippets are clones of
each other). For models evaluated in Python, we pre-train
on the PY-CSN dataset [51]], containing ~ 500K methods,
and fine-tune on the PY150 dataset [52], containing ~ 200K
methods. For Java, we pre-train on the JAVA-CSN dataset
[51] containing ~ 600K and fine-tune on the JAVA-C2S [37]
dataset containing ~ 500K methods. We use the Fl-score
€ [0,100] to measure the performance of all our models,
consistent with all the related works, including [5]. A higher
value indicates that the model generalizes better to the task.
While these Fl-scores are correlated to BLEU scores, they
directly account for token-wise mis-predictions. The F1 scores
are computed following [53]], [54] Specifically, for each of our
models, we reuse the two F1 scores: GEN-F1 - the model’s
generalization performance on a task, and ROB-F1 - the
model’s performance on the task when semantics-preserving,
adversarially-transformed obfuscated codes are input to it; see
details below.

Adversarial attacks, attack strength, code transformations.
When attacking code models, we use the formulation by [|12]]
to define the strength of an attack. Specifically, selecting a
larger number of sites in a code—locations or tokens in a code
which can be transformed to produce an adversarial outcome—
corresponds to a stronger adversarial attack, since this allows
multiple changes to be made to the code. Also, we follow [[10],
[12] to specify the set of code transformations: replace (renam-
ing local variables, renaming function parameters, renaming
object fields, replacing boolean literals) and insert (inserting
print statements, adding dead code).

In our setup, we can leverage the attack strength at three
stages—during pre-training (using adversarially attacked code
as views), when fine-tuning with adversarial training AT [|18]]

or SAT, and when evaluating robustness on an unseen test set.
Unless specified otherwise, we pre-train on one sife, attack
one site in each iteration of SAT, and attack one site during
evaluation. In Table [VI] ,we analyze the effect of varying the
number of sites at each of these stages. We apply the first-order
optimization method proposed in [10] to generate adversarial
codes. To adversarially train these models during fine-tuning,
we employ either AT [18] or our proposed SAT for code.

Baselines. We compare CLAWSAT to three baselines. (1)
A supervised model (model M; in Table - Pre-training
has no effect on a fully supervised model. (2) Adversarially
trained supervised model (M;) on top of M| - we use the
AT setup first proposed by [10], which in turn employs the
setup from [18]]. Due to the characteristics of AT, we expect
to see an improvement in its ROB-F1 as compared to M, but
a decrease in GEN-F1. (3) The CONTRACODE model (M3)
from [5]]. CONTRACODE reflects the state-of-the-art in pre-
training methods as it outperforms other pre-training models
like BERT-based models and GPT3-Codex. Hence, we do not
compare ourselves again to other pre-training models.

Models. For the summarization and completion tasks, we
experiment with two seq2seq architectures—LSTMs and trans-
formers. For the detection task, we use a fully connected linear
layer as a decoder. The decoders are trained to predict the
task (generating English sentence summaries, generating code
completions, flagging code clones respectively) in both the
fine-tuned and standard training settings. When fine-tuning, we
use the learned encoders from the pre-trained models. For the
summarization and completion tasks, we report all our results
on the LSTM decoder (Table [[I), and compare the performance
of transformers in our ablation study. The LSTM encoder has 2
layers across all experiments. In the code summarization tasks,
there exists another two-layer decoder added to the encoder
to generate the summary of the programming language. In
the code completion task, we also add a two-layer decoder to
generate the code snippets. In the code clone detection task, we
add one linear layer to map the data representations to the data
labels. As for the transformer architecture, The transformer

encoder has 6 layers and the transformer decoder has another
6 layers to generate the programming language summary.
Hyperparameter setup. We optimize model parameters using
Adam with linear learning rate warm-up. For the bidirectional
LSTM encoders, the maximum learning rate for CONTRACODE
and CLAW is 10~%, and then is decayed accordingly. For
the transformer-type encoder, the maximum learning rate is
10~* for CONTRACODE and 10~ for CLAW. For different
downstream tasks, we optimize the parameters using Adam
with step-wise learning rate decay. The maximum learning rates
of ST, AT, SAT are 10~3 on code summarization and code
completion tasks, and 10~ for code clone detection tasks. For
downstream tasks using transformer, the learning rates of ST,
AT, SAT are 10~%. All of the downstream tasks are finetuned
for 10 epochs with practical convergence, and we utilize a
validation dataset to pick the best-performed model. All of the
experiments are conducted on 4 Tesla V100 GPU with 16 GB
memory.

VI. EXPERIMENT RESULTS

We summarize the overall performance of CLAWSAT and
follow that up with multiple additional analyses and ablations
to better understand our model’s performance.

A. Overall performance

We evaluate the different pre-training and fine-tuning strate-
gies we consider in Section[[V] The accuracy and robustness
F1-scores of the different models are shown in Table [l Models
M;-Mj; are the baselines described in the previous section.
Model My pertains to using a CLAW encoder with standard
training (ST) for the downstream task. Model M5 pertains to
using a CLAW encoder with standard adversarial training (AT)
for the downstream task. And finally, Mg pertains to using SAT
for the downstream task with a CLAW encoder. We observe
the following:

First, from the perspective of accuracy, Table [[] shows
that our proposal CLAWSAT (model M) outperforms all
the baselines on GEN-F1. Particularly, CLAWSAT achieves
nearly 8% accuracy improvement over CONTRACODE (M3) on
SUMMARYPY. Second, we see that CLAWSAT can substan-
tially help improve the robustness (measured by ROB-F1) of a
downstream model. Compared to M3, we see an improvement
of 14.7% for SUMMARYPY, and 5.8% for SUMMARYJAVA.
Similarly, the gain in robustness is much more substantial in
COMPLETEPY than in accuracy. CLONEJAVA is the simplest
of the four tasks, and we see comparable accuracies across
all the models we evaluate. Additionally, we adversarially
train baselines as well (models M, and Mj respectively) and
compare their robustness scores to ours (Mg). We make two
observations—(a) As is expected with AT, we notice a drop in
these models’ accuracy—the GEN-F1 scores of M5 is lower than
that of its standard-training counterpart My (the same trend is
observed between M, and M, as well). (b) While AT-based
fine-tuning provides an expected improvement in robustness
over the other baselines that use ST-based fine-tuning, the
RoOB-F1 they achieve is still much lower than our model. This

is because the robustness gain at the pre-training phase was
overridden by AT at the fine-tuning phase.

In summary, Table [II] shows that the proposed
CLAWSAT allows us to learn task-specific accuracy
and robustness while preserving these attributes learned
during pre-training.

In what follows, we analyze the performance of CLAW and
SAT separately from different perspectives.

B. Why is CLAW effective? A model landscape perspective

‘ 1.00 ———
0.

00 -
-100 -0.75 -050 -025 000 025 050 075 100 -100 -0.75 -050 -025 000 025 050 075 100

Fig. 4: Loss landscapes: CLAW (L), and CONTRACODE (R),
the X and Y axes represent the directional coefficients o and

B in @).

Liu et. al. [55]] show that the generalization benefit of an
approach in the‘pre-training + fine-tuning’ paradigm can be
deduced by the flatness of the loss landscape of the pre-trained
model. This would then let fine-tuning to force the optimization
for fine-tuning to stay in a certain neighborhood of the pre-
trained model of high quality.

To plot the loss landscapes, we follow the procedure from
Li et. al. [56] by plotting

fla, B) = £(0" + ad + fn) 4)

where ¢ and 7 are two random direction vectors in the
parameters’ subspace, and 6* is the parameters of a model.
We average the supervised loss from the partially fine-tuned
models from 640 randomly selected samples in our test set
(out of 10000, 6.4%).

Results of Figure [confirm the flatness of the loss
landscape in CLAW when compared to CONTRACODE,
implying a better transfer of generalizability by CLAW.

Next, we show another way to justify the flatness merit of
CLAW’s loss landscape. The key idea is to track the deviations
of the weights of the pre-trained encoders in the fine-tuned
setting, as inspired by [S55]. Specifically, let 6. and 6,
denote the weights of the representation model 6 pre-trained
by CLAW and the fine-tuned weights obtained by using different
fine-tuning methods, respectively. It was shown in [55] that
the generalization benefit of an approach in the‘pre-training +
fine-tuning’ paradigm can be deduced by the deviation between
the fine-tuned weights 9;”9 and the pre-trained weights 6.
This would then let fine-tuning to force the optimization of

def

def

def _makeOne(self,discriminator=None

,family=None):
from ..index import AllowedIndex
index = AllowedIndex(discriminator,family=family)
return index
(a) Sample

_makeOne(self,discriminator=None

family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator,family,action_mode)
(c) EBE similar to (a) - CLAW

_makeOne(self,discriminator=None
family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator,family,action_mode)

(e) EBE similar to (b) - CLAW

def _makeOne(self,repeat=None
,family=None):
from ..index import AllowedIndex
index = AllowedIndex(repeat, family=family)
return index

(b) Adversarially perturbed version of sample (al)

def _makeOne(self,discriminator=None
family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator, family,action_mode)

(d) EBE similar to (a) - CONTRACODE

buildIndex (self,1):
index = self.mIndex()
for strat, end, value in self.l:
index.add(strat,end)
return index
(f) EBE similar to (b) - CONTRACODE

def

Fig. 5: Explanation-by-example to demonstrate the robustness benefits of CLAW. (a) Sample program from the test set (b)
Adversarially perturbed variant of the sample program. (c-d) Examples closest to the sample program (a) when using CLAW
and CONTRACODE. (e-f) Examples closest to the perturbed variant (b) when using CLAW and CONTRACODE.

O;re to stay in a certain neighborhood of 8,,.. We have already

shown that CLAW will lead to a flatter loss landscape compared
to CONTRACODEpreviously. Here we computed the Frobenius
norm [|6},,. — Oprel[F as a proxy to justify the generalization

benefit following [55].

O [|05re — Oprel|F
CLAW-ST 207.99
CLAW-AT 32341
CLAWSAT 232.56

" CONTRACODE-ST 21814
CONTRACODE-AT 345.36
CONTRACODE-SAT 242.70

TABLE III: Weight difference after finetuning based on
different pretraining methods.

Table[[T]] summarizes the aforementioned weight characteris-
tics for the code summarization task. As we can see, the weight
deviation corresponding to CLAW is less than that associated
with CONTRACODE given a finetuning method.

The results from Table[ITl] suggest that an encoder
pretrained using CLAW transfers better than that using
CONTRACODE.

C. Interpretability of learned code representations

We evaluate the robustness benefit of CLAW through the lens
of (input-level) model explanation. Following the observations
from Jeyakumar et. al. [57] on probing models locally, we in-
vestigate CLAW and CONTRACODE using a training data-based
model explanation method: explanation-by-example (EBE) [58]].
The core idea is to leverage train-time data to explain test-time
data by matching their respective representations. If the pre-
trained models are robust, adversarially perturbing the samples

should not alter their representations and thus should be mapped
to the same set of closest training examples that were found
without perturbations.

Based on EBE, we sample 100 code snippets
{Prest1190 at random from our test dataset, and find
the closest samples {P&an} and {P&ain . ..} in
the training dataset using the EBE method, based on
representations produced by Ocp,w and OcontraCopE
respectively. We find that 68% of the representations
from CLAW match their original codes in {P&an

while 57% of CONTRACODE representations match
their original codes in {P&ain . }. The above re-
sults suggest that the learned representations by CLAW

are more adversarially robust than CONTRACODE.

In what follows, we peer into the EBE method’s results with
an example below.
e A sample program from the test-set:

def __init (self,helper_name):
self.helper_name = helper_name
self.cheeks = []

e Adversarially perturbed variant of the sample program:
The adversarial attack algorithm replaces the method argument
helper with edges.

def _init__(self,edges):
self.helper_name = edges
self.cheeks = []

e EBE sample in the train-set closest to the sample
program when using CONTRACODE or CLAW: This is
the example whose CONTRACODE or CLAW representation
(encoder trained by CONTRACODE or CLAW) is closest to the

representation of the sample program. We can find that they
have the same functionality.

def init (self,name):
self.name = name

self.warning = []

e EBE sample in the train-set closest to the perturbed
variants of sample program from CONTRACODE: We can
observe that the closest program of the perturbed program
in the training dataset is different from that of the original
program. The new closest program has different functionality
from the previous test sample program.

def setUp(self):
super (ApiCallHandlerRegressionTest
— ,self).setUp()
self.checks = []

e EBE sample in the training-set closest to the perturbed
sample program from CLAW: This example pertains to the
representation that is closest to the representation of the sample
program computed by an encoder trained by CLAW. We see
that despite comparing it to a perturbed sample’s representation,
the example found by EBE corresponds to the unpertrubed
sample program, suggesting the robustness of CLAW over
CONTRACODE.

def init (self,name):
self.name = name

self.warning = []

We also provide more examples in Figure [5] Figure [5]a
shows a sample Python program and Figure [5]b shows its
respective adversarially perturbed variant. The closest training
programs in the training set mapped to the representations
before perturbations are shown in Figures [5lc and [5d; and
those mapped to the representations after perturbations are
shown in Figures [3]e and []f.

As shown in Figure [5| we find that EBE consistently
finds the same training examples for CLAW (Figure
Blc and Figure [Ble) irrespective of the adversarial
perturbations made to the sample program, confirming
its enhanced robustness.

D. SAT enables generalization-robustness sweet spot

Figure [6}(A) shows the results from our experiments on the
code summarization task where we vary 7, the frequency of
attacking the code model during SAT (see Algorithm [T)).

We generate adversarial code tokens every 7 epoch, where
we vary 7 from less than 1 (corresponds to an update occurring
at every batch within an epoch; this is the AT algorithm from
[18]) to 10. The X-axis shows this frequency. We plot both
GEN-F1 (left) and ROB-F1 (right) of the adversarially trained
model when varying n. Across the four tasks we evaluate in
this work, We find that a sweet spot exists in a less frequent

50, [SummaryPy 50
[Summaryjava

[CompletePy
[Clonejava

01 1 2 5 10

Fig. 6: Effect of different update schedules (7, see Algorithm |1)) on
GEN-F1 and ROB-FI.

epoch-wise schedule, associated with CLAWSAT (Mg, which
corresponds to 7 = 1), which improves both GEN-F1 and
ROB-F1 over M5 (which corresponds to 7 = 0.1).

Results of Figure [6] validate our hypothesis of being
able to retain the robustness learned during pre-training
while updating the model just enough during fine-
tuning to ‘learn’ new robustness while also learning
the downstream task.

E. CLAWSAT on a different architecture

SUMMARYPY
Model GEN-F1 RoOB-F1
M; Supervised learning 32.6040.14 30.0940.21
M, M;-AT [10] 31.1840.13 30.66+0.23
M; CONTRACODE [5] 34.9340.11 32.8640.18
"My CLAW-ST | 35371014 | 32311020
Ms CLAW-AT 34.2340.19 33.3440.18
Mg CLAWSAT (ours) 36.3940.12 | 35.53+0.24

TABLE IV: Overall performance of CLAWSAT on transformer

We further evaluate SAT on a different model architecture.
We consider the transformer architecture (6-layer encoder and
6-layer decoder following [5]), and observe similar results (see
Table [[V): CLAWSAT offers the best accuracy and robustness.

Table [IV] shows that CLAWSAT performs well across
multiple encoder architectures.

F. Extended study to integrate SAT with CONTRACODE

To further verify the effectiveness of SAT, we employ it in
CONTRACODE—we modify their implementation to introduce
a staggered adversarial training schedule. Table [V] tabulates its
performance. We find that SAT also benefits CONTRACODE,
but the gain is smaller than CLAWSAT (M, Table[l). This
justifies the complementary benefits of CLAW and SAT.

SUMMARYPY SUMMARY JAVA COMPLETEPY CLONEJAVA
Model GEN-F1 ROB-F1 GEN-F1 RoOB-F1 GEN-F1 RoB-F1 GEN-F1 RoOB-F1
CONTRACODE [5] 36.2840.18 | 28.974+0.27 | 41.374+0.14 | 33.01+0.25 | 57.70+0.23 | 54.8340.31 | 69.2540.09 | 68.86+0.13
© CONTRACODE-AT | 35.884020 | 31.2940.24 | 38.670027 | 35.9110.30 | 57.214010 | 56804022 | 69.2040 13 | 68.88+011
© CONTRACODE-SAT | 41.014020 | 39.8010.21 | 41.2740.16 | 38.1440.24 | 58.0440.17 | 57.0140.30 | 69.47+0.10 | 69.0820.21

TABLE V: Effectiveness of SAT on CONTRACODE

Table [V] shows the complementary benefits of CLAW
and SAT on the state-of-the-art SSL method CONTRA-
CODE as well, demonstrating the effectiveness of the
two model-independent techniques we introduce in this
work.

G. Sensitivity of SAT to code transformation and attack
strength types.

Transformations (GEN-F1, RoB-F1)
Fine-tuning

g replace insert All
:E replace 41.51, 39.84 40.49, 34.96 42.32, 40.75
f: insert 41.71, 40.38 41.34, 3524 41.71, 40.38
& Al 42.66, 40.54 41.39, 3491 42.12, 40.70
Attack strength (ROB-F1)
1 2 3 4 5

CONTRACODE 28.97 2829 2732 2624 2514

CLAWSAT 40.70 40.58 39.67 3890 38.10

TABLE VI: Performance of CLAWSAT at different attack
configurations. We evaluate the sensitivity of our best perform-
ing model on (a) different transformation types used during
pre-training and fine-tuning (SAT) (b) different attack strengths
(number of sites) during evaluation.

We evaluate the sensitivity of our best-performing model
on differing attack conditions. We consider two factors: (1)
Transformation type: we study the effect of the two transfor-
mation types—replace and insert, and their combination. (2)
Attack strength: we vary the number of sites—locations in the
codes that can be adversarially transformed.

We summarize our results in Table [VIl The values a, b in
each cell correspond to GEN-F1 and ROB-F1 of CLAWSAT
respectively.

The results from Table [VI] suggest that when using
transformations in pre-training or in fine-tuning, it is
advisable to use a combination of both replace and
insert transformations. When evaluating CLAWSAT’s
robustness against stronger adversarial attacks, we find
RoOB-F1 consistently outperforms CONTRACODE in
all the configurations we evaluate.

VII. CONCLUSION & DISCUSSION

In this work, we aim to achieve the twin goals of improved
robustness and generalization in SSL for code, specifically
in contrastive learning. We realize this by proposing two
improvements—adversarial positive views in contrastive learning,
and a staggered AT schedule during fine-tuning. We find that
each of these proposals provides substantial improvements
in both the generalization and robustness of downstream
models; their combination, CLAWSAT, provides the best
overall performance. Given the growing adoption of SSL-based
models for code-related tasks, we believe our work lays out a
framework to gain a principled understanding into the working
of these models. Future works should study this problem while
attempting to also establish a theoretically sound foundation.

When compared to SSL for vision, it seems SSL for codes
benefits from milder adversarial training during fine-tuning.
Stronger attack methods for code might be needed to explore
this phenomenon further. It will also be beneficial to understand
how code models respond to perturbations, and to contrast it to
our understanding of continuous data perturbations in vision.

ACKNOWLEDGEMENT

This work was partially funded by a grant by MIT Quest
for Intelligence, and the MIT-IBM AI lab. The work of J. Jia
and S. Liu was also supported by National Science Foundation
(NSF) Grant IIS-2207052.

REFERENCES

[1] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5110-5121.

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language
models trained on code,” 2021.

[3] Z. Chen, V. J. Hellendoorn, P. Lamblin, P. Maniatis, P.-A. Manzagol,
D. Tarlow, and S. Moitra, “PLUR: A unifying, graph-based view
of program learning, understanding, and repair,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., 2021. [Online]. Available:
https://openreview.net/forum?id=GEm409A6Jtb

[4] N. Jain, S. Vaidyanath, A. S. Iyer, N. Natarajan, S. Parthasarathy,
S. K. Rajamani, and R. Sharma, “Jigsaw: Large language models
meet program synthesis,” CoRR, vol. abs/2112.02969, 2021. [Online].
Available: https://arxiv.org/abs/2112.02969

https://openreview.net/forum?id=GEm4o9A6Jfb
https://arxiv.org/abs/2112.02969

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” in Proceedings of the
2021 Conference on Empirical Methods in Natural Language
Processing. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 5954-5971. [Online].
Auvailable: https://aclanthology.org/2021.emnlp-main.482

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597-1607.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729-9738.

N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2021, pp. 511—
521.

Y. Ding, L. Buratti, S. Pujar, A. Morari, B. Ray, and S. Chakraborty,
“Contrastive learning for source code with structural and functional
properties,” CoRR, vol. abs/2110.03868, 2021. [Online]. Available:
https://arxiv.org/abs/2110.03868

J. Henkel, G. Ramakrishnan, Z. Wang, A. Albarghouthi, S. Jha, and
T. Reps, “Semantic robustness of models of source code,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 526-537.

N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, pp. 1-30, 2020.

S. Srikant, S. Liu, T. Mitrovska, S. Chang, Q. Fan, G. Zhang, and
U. O’Reilly, “Generating adversarial computer programs using optimized
obfuscations,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=PH5PH9Z0_
4

C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,
and obfuscation-tools for software protection,” IEEE Transactions on
software engineering, vol. 28, no. 8, pp. 735-746, 2002.

C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and communications security, 2003, pp. 290—
299.

S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?”” ACM Computing Surveys (CSUR),
vol. 49, no. 1, pp. 1-37, 2016.

R. Schuster, C. Song, E. Tromer, and V. Shmatikov, “You autocomplete
me: Poisoning vulnerabilities in neural code completion,” in 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

1. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” International Conference on Learning Represen-
tations, vol. arXiv preprint arXiv:1412.6572, 2015.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJzIBfZAb

T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training methods
for semi-supervised text classification,” arXiv preprint arXiv:1605.07725,
2016.

D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is robustness
the cost of accuracy?—a comprehensive study on the robustness of 18
deep image classification models,” arXiv preprint arXiv:1808.01688,
2018.

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=SyxAb30cY7

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2018 ICLR, vol.
arXiv preprint arXiv:1706.06083, 2018.

Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and
C. L. Goues, “Varclr: Variable semantic representation pre-training via
contrastive learning,” 2021.

N. D. Q. Bui, Y. Yu, and L. Jiang, Self-Supervised Contrastive
Learning for Code Retrieval and Summarization via Semantic-

[25]

[26]

[27]
(28]

[29]

[30]

[32]

[33]

[34]

(35]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

Preserving Transformations. New York, NY, USA: Association
for Computing Machinery, 2021, p. 511-521. [Online]. Available:
https://doi.org/10.1145/3404835.3462840

X. Wang, Y. Wang, E. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation.” AAAI, 2022.

L. Fan, S. Liu, P-Y. Chen, G. Zhang, and C. Gan, “When does contrastive
learning preserve adversarial robustness from pretraining to finetuning?”
Advances in Neural Information Processing Systems, vol. 34, 2021.

Z. Jiang, T. Chen, T. Chen, and Z. Wang, “Robust pre-training by
adversarial contrastive learning,” arXiv preprint arXiv:2010.13337, 2020.
M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised contrastive
learning,” arXiv preprint arXiv:2006.07589, 2020.

S. Gowal, P-S. Huang, A. van den Oord, T. Mann, and P. Kohli,
“Self-supervised adversarial robustness for the low-label, high-data
regime,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=bgQek2063w

K. Wang and M. Christodorescu, “Coset: A benchmark for evaluating
neural program embeddings,” arXiv preprint arXiv:1905.11445, 2019.
E. Quiring, A. Maier, and K. Rieck, “Misleading authorship attribution
of source code using adversarial learning,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 479-496.

M. Rabin, R. Islam, and M. A. Alipour, “Evaluation of generalizability
of neural program analyzers under semantic-preserving transformations,”
arXiv preprint arXiv:2004.07313, 2020.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in 2020 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 1332-1349.
J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box adver-
sarial examples for text classification,” arXiv preprint arXiv:1712.06751,
2017.

P. Bielik and M. Vechev, “Adversarial robustness for code,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 896-907.
Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained models
of code,” in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 1482-1493.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” ACM SIGPLAN Notices,
vol. 53, no. 4, pp. 404-419, 2018.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 3733—
3742.

R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level
optimization for learning and vision from a unified perspective: A survey
and beyond,” arXiv preprint arXiv:2101.11517, 2021.

Y. Zhang, G. Zhang, P. Khanduri, M. Hong, S. Chang, and S. Liu,
“Revisiting and advancing fast adversarial training through the lens of
bi-level optimization,” in International Conference on Machine Learning,
2022, pp. 26 693-26712.

J. C. Bezdek and R. J. Hathaway, “Convergence of alternating optimiza-
tion,” Neural, Parallel & Scientific Computations, vol. 11, no. 4, pp.
351-368, 2003.

C.-Y. Chuang, J. Robinson, L. Yen-Chen, A. Torralba, and S. Jegelka,
“Debiased contrastive learning,” arXiv preprint arXiv:2007.00224, 2020.
F. Wang, H. Liu, D. Guo, and F. Sun, “Unsupervised representation
learning by invariancepropagation,” arXiv preprint arXiv:2010.11694,
2020.

L. Fan, S. Liu, P.-Y. Chen, G. Zhang, and C. Gan, “When does
contrastive learning preserve adversarial robustness from pretraining to
finetuning?” in Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021.
[Online]. Available: https://openreview.net/forum?id=70kOIgjKhbA

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
no. POPL, jan 2019. [Online]. Available: https://doi.org/10.1145/3290353
M. Allamanis, M. Brockschmidt, and M. Khademi, ‘“Learning
to represent programs with graphs,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
/lopenreview.net/forum?id=BJOFETxR-

Y. Wang, K. Wang, F. Gao, and L. Wang, “Learning semantic program
embeddings with graph interval neural network,” Proceedings of the
ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1-27, 2020.

https://aclanthology.org/2021.emnlp-main.482
https://arxiv.org/abs/2110.03868
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=SyxAb30cY7
https://doi.org/10.1145/3404835.3462840
https://openreview.net/forum?id=bgQek2O63w
https://openreview.net/forum?id=70kOIgjKhbA
https://doi.org/10.1145/3290353
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

Y. David, U. Alon, and E. Yahav, “Neural reverse engineering of stripped
binaries using augmented control flow graphs,” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, pp. 1-28, 2020.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine learning
benchmark dataset for code understanding and generation,” arXiv preprint
arXiv:2102.04664, 2021.

W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 1EEE, 2020, pp. 261-271.

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019. [Online]. Available:
http://arxiv.org/abs/1909.09436

V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code
with decision trees,” SIGPLAN Not., vol. 51, no. 10, p. 731-747, oct
2016. [Online]. Available: https://doi.org/10.1145/3022671.298404 1

M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention network
for extreme summarization of source code,” in International conference
on machine learning. PMLR, 2016, pp. 2091-2100.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 1-29, 2019.

H. Liu, M. Long, J. Wang, and M. 1. Jordan, “Towards understanding
the transferability of deep representations,” 2020. [Online]. Available:
https://openreview.net/forum?id=BylKL1SKvr

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” Advances in neural information processing
systems, vol. 31, 2018.

J. V. Jeyakumar, J. Noor, Y.-H. Cheng, L. Garcia, and M. Srivastava,
“How can i explain this to you? an empirical study of deep neural
network explanation methods,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
4211-4222. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/2¢29d89cc56cdb191c60db2{0bae796b- Paper.pdf

B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn
to criticize! criticism for interpretability,” Advances in neural information
processing systems, vol. 29, 2016.

http://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3022671.2984041
https://openreview.net/forum?id=BylKL1SKvr
https://proceedings.neurips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf

	I Introduction
	I-A Overview of proposed approach
	I-B Contributions

	II Related work
	II-A SSL for code
	II-B Adversarial robustness of code models: Attacks & defenses

	III Preliminaries
	III-A Code and obfuscation transformations
	III-B Problem statement

	IV Method
	IV-A Claw: CL with adversarial codes
	IV-B SAT: Staggered adversarial training for fine-tuning

	V Experiment Setup
	VI Experiment Results
	VI-A Overall performance
	VI-B Why is Claw effective? A model landscape perspective
	VI-C Interpretability of learned code representations
	VI-D SAT enables generalization-robustness sweet spot
	VI-E ClawSAT on a different architecture
	VI-F Extended study to integrate SAT with ContraCode
	VI-G Sensitivity of SAT to code transformation and attack strength types.

	VII Conclusion & Discussion
	References

