
ar
X

iv
:2

30
1.

04
86

2v
1

 [
cs

.P
L

]
 1

2
Ja

n
20

23

Naturalistic Static Program Analysis

Mohammad Mehdi Pourhashem Kallehbasti

Department of Electrical and Computer Engineering

University of Science and Technology of Mazandaran

P.O. Box 48518-78195, Behshahr, Iran

pourhashem@mazust.ac.ir

Mohammad Ghafari

TU Clausthal, Germany

mohammad.ghafari@tu-clausthal.de

Abstract—Static program analysis development is a non-trivial
and time-consuming task. We present a framework through
which developers can define static program analyses in natural

language. We show the application of this framework to identify
cryptography misuses in Java programs, and we discuss how it
facilitates static program analysis development for developers.

Index Terms—Static program analysis, cryptography, natural
language programming

I. INTRODUCTION

Static program analysis is the art of examining programs

without requiring to execute the code. However, static analysis

tools generate false positives and tuning them requires exper-

tise. Likewise, program analysis development requires a deep

knowledge of compiler or mastering an analysis framework.

End-user programming is a set of techniques that enable

end users to write programs at a level of complexity that is

adequate to their practices, background, and skills. For in-

stance, it includes visual languages to program robots through

visual blocks [1], and simplified programming languages to

translate English sentences to Bash commands [2]. We believe

that end-user programming techniques can also help to hide the

complexity of writing a static program analysis task for non-

professional programmers and empower them in this domain.

We introduce NASRA (NAturalistic Static pRogram Analy-

sis), a framework that enables developers to define a program

analysis task in natural language (NL), and it generates the

corresponding Query Language (QL) query that underlies

CodeQL program analysis engine.1 We illustrate the appli-

cation of this framework to find cryptography misuses in Java

programs. NASRA is open source and publicly available.2

The ultimate goal of NASRA is to enable “naturalistic”

static program analysis development in a way that developers

can specify what they need without deep knowledge of static

program analysis and how a specific framework works. Its

higher level of abstraction than existing static analysis frame-

works may facilitate a more intuitive formulation of program

analysis tasks. Similarly, its agnostic nature to programming

languages can provide a cross-language interface for program

analysis, which obviates the need to learn the specifics of a

program analysis framework. This paper presents a prelimi-

nary step to realize the above goal.

1https://codeql.github.com
2https://doi.org/10.5281/zenodo.7495044

II. THE NASRA FRAMEWORK

Cryptography is an essential component to security, but it is

one of the notorious topics where developers struggle a lot [3],

[4]. Locating the init method invoked on a Cipher object

is often deemed to be the first step to analyze cryptography

code in Java programs. For instance, in CodeQL, one should

write the following query to implement this task.

from MethodAccess init

where init.getMethod().getName() = "init" and

init.getReceiverType().getName() = "Cipher"

select init

We have developed a framework, called NASRA, that

enables a more intuitive formulation of the above task in the

form below:

An object of Cipher invokes init.

NASRA is a rule-driven synthesizer. We rely on predefined

rules due to a lack of trustworthy labeled examples required

for a data-driven approach in this domain. NASRA receives a

program analysis inquiry in natural language, applies semantic

parsing, and generates CodeQL commands. The input inquiry

should comply with a subset of the syntax of Attempto

Controlled English (ACE) controlled natural language. We

use Attempto Parsing Engine (APE), a tool that receives a

series of ACE statements and produces the corresponding

Discourse Representation Structures (DRS) that is a semantic

representation of the input text. NASRA applies the translation

rules, explained later in this section, on the given DRS and

produces the corresponding CodeQL statements. Thanks to

APE, the way one can formulate NASRA statements is very

flexible and there is no need for absolute correspondence with

the NASRA syntax. We chose CodeQL as our code analysis

engine because it is an industry-leading and community-

powered tool, and its publicly available to all GitHub users

without any installation hassle. To employ NASRA for a new

static analysis framework, only the transformation rules have

to be adapted. To support a new application domain, we should

identify the types of queries that the current syntax does not

support, add the corresponding production rules to the syntax,

and develop translations for them. NASRA is open source,

and currently, supports program analysis tasks that concern

cryptography misuses in Java programs.

http://arxiv.org/abs/2301.04862v1

A. Syntax and Semantics

Each NASRA query comprises one or more Statement. The

syntax is shown below (terminals have different color).

Query ::= Statement Query | Statement
Statement ::= BasicStatement | LogicalStatement
| Extension
BasicStatement ::= Exp is (Exp | in List)
Exp ::= Prefix Exp | type | ID | Literal
Prefix ::= ((adjective|ε) attribute of)
LogicalStatement ::= Statement and Statement |
Statement or Statement | It is false that Statement
| If Statement then Statement

a) Expression: The smallest building block is Exp. It

includes a Literal (String or int) or an ID (user defined

identifier) that are directly mapped to CodeQL expressions.

An Exp can also be a CodeQL type such as class, variable,

and method access that are mapped to Class, Variable,

and MethodAccess, respectively.

b) Prefix: Each Exp can have an optional Prefix in

the form of “attribute of” that indicates an attribute of

the expression. For instance, name, type, argument, and

method are attributes of an entity (i.e., Exp), and they cor-

respond to getName(), getType(), getArgument(),

and getMethod() methods in CodeQL, respectively.

For example, “name of method1” is an Exp, where “name”

is an attribute and method1 is an ID, and the whole expres-

sion is translated to method1.getName() in CodeQL.

Additionally, the attribute itself can have an optional

ordinal number as an adjective, like second in the

Exp “second argument of init” that is translated to

“init.getArgument(1)”, where second is translated to

1 as an argument according to zero-based numbering.

Note that “attribute of” can be repeated several times, where

each attribute may have an adjective. For example, the Exp

“The type of the second argument of init” has one ID

(i.e.,init) and two attributes (i.e., type and argument).

c) Basic Statement: Each BasicStatement is a statement

that can serve as a Boolean condition as well as an assumption.

As a Boolean condition, BasicStatement produces equiva-

lence of two Exps, as well as membership of an Exp in a list.

In “Exp is Exp” structure, both sides of equivalence are Exps

and they need to be equal, while in “Exp is in List” structure,

the Exp needs to be equal to an item in a list. Accordingly, a

statement like “arg1 is in ["RSA", "AES"].” is a disjunctive

expression and can be rephrased to “arg1 is "RSA" or arg1

is "AES".”, that is ultimately translated to “arg1 = "RSA"

or arg1 = "AES"”.

The syntax structure Exp is Exp can also produce as-

sumptions when the second Exp is a CodeQL type. The

assumptions are mapped to the from part of a CodeQL query.

For instance, the statement “var1 is a variable.” translates to

“Variable var1” and belongs to the from part.

d) Logical Statement: A LogicalStatement can be a

negation, conjunction, disjunction, or implication. For exam-

ple, “If arg1 is "RSA" then arg2 is "AES".” is translated to

“not (arg1 = "RSA") or arg2 = "AES"” in Cod-

eQL, since p ⇒ q is equivalent to ¬p ∨ q.

B. Extensibility

One can extend NASRA to cover auxiliary statements and

statement patterns. Their corresponding production rules are

as follows.

Extension ::= Pattern | AuxiliaryStatement

We introduce these features through three statement pat-

terns and one auxiliary statement that are helpful to cover

constraints on using Java cryptography objects.

1) Patterns: We present three patterns that extend Pattern

nonterminal in the syntax. We discuss each in the following.

a) Invocation: We use this pattern to state that a method

is invoked by an instance of a specific class. It can also be

used to make sure that there is no invocation of a method by

any instance of a specific class.

Pattern1 ::= An object of ID (invokes|does not invoke) ID.

The NASRA query shown in Section II is an example of this

pattern. The transformation follows a number of steps. First, a

MethodAccess is declared with the same name used in the

NASRA statement (i.e.,init). Then the conditions need to be

added to the where part. Specifically, the name of the method

of the MethodAccess init should be "init" that is

stated in the second line. Finally, a MethodAccess has a

receiver, that is the object invoking its method. In this case,

the name of the type of the receiver should be "Cipher",

that is expressed in CodeQL in the third line.

If one needs to make sure that no invocation occurs, an

existential quantifier must be used, as shown in the following.

from

where not (exists (MethodAccess init |
init.getMethod().getName() = "init" and

init.getReceiverType().getName() = "Cipher"))

It means that there is no such MethodAccess init that

has these conditions. We can state this in NASRA in the form

below.

An object of Cipher doesn’t invoke init.

b) Partial order constraints: This pattern enables one to

put partial order constraints on method invocations. In other

words, one can enforce a method invocation to be preceded

(or followed) by another method invocation.

Pattern2::=MethodName (precedes|follows) MethodName.

For example, there are two steps in CodeQL for stating that

“invocation of getInstance is earlier than invocation of

init”. First, one should specify that both methods are in the

same scope. Next, the line number of the preceding method

invocation has to be smaller than the line number of the other

method invocation. This is shown below.

getInstance.getEnclosingCallable() =
init.getEnclosingCallable() and

getInstance.getLocation().getEndLine() <

init.getLocation().getEndLine()

We can express this query in NASRA as follows.

getInstance precedes init.

c) Method signature constraint: It is possible to express

signature of a method using Pattern3.

Pattern3 ::= MethodName’s signature is List.

A method signature can be seen as an ordered list of data

types. This list contains names of data types as strings, such

that the first string is the name of the first argument’s data

type and so on. For example, the following NASRA query

states that getInstance method has two arguments and

the names of their types are "int" and "Certificate",

respectively.

getInstance’s signature is ["int", "Certificate"].

This query is translated to the following CodeQL query.

(count (getInstance.getAnArgument()) = 2) and

getInstance.getArgument(0).getType().

toString()="int" and getInstance.

getArgument(1).getType().toString()=
"Certificate"

First, the number of arguments is set to the size of the user

defined list, then the type of arguments are constrained one

by one. count (method.getAnArgument()) returns

the number of arguments of the method. getArgument(i)

returns the argument number i in the given method,

getType() returns the type of the given argument, and

finally toString() converts the given data type to a String.
2) AuxiliaryStatement: We aim to find misuses in code

that violate one or more mandatory constraints. For instance,

suppose that if the second argument of init method is

"private key" then it is mandatory that the encryption al-

gorithm, i.e., the second argument of getInstance method

is "RSA", and also if the encryption algorithm is "AES"

then it is mandatory that the mode of encryption, i.e., the

first argument of the getInstance method, is "CBC". The

following NASRA query will find such violations.

It is false that if the type of the second argument of init

is "PrivateKey", then the algorithm of getInstance’s
first argument is "RSA" or it is false that if the algorithm of
getInstance’s first argument is "AES" then the mode of
getInstance’s first argument is "CBC".

In order to find any violation of these constraints, dis-

junction of their negation has to be stated in the query.3

3For example, in “X is driving in an urban area(Cond1). It is necessary that
X is driving slower than 60 km/h (Cons1). It is necessary that X fastens the
seat belt (Cons2).”, the query needs to find an X that is driving in an urban
area and is driving faster than 60 km/h or is not using the seat belt. If we
assign a Boolean variable to each statement as mentioned in the statements, it
should aim Cond1∧(¬Cons1∨¬Cons2) whose necessity part is translated
to the disjunction of negation of two constraints.

Nevertheless, the above statement becomes much longer and

harder to comprehend as the number of constraints increases.

We define auxiliary statements to ease the formulation as

well as the comprehension of complex queries for developers.

Particularly, NecessityStatements are auxiliary statements that

enable developers to enforce mandatory constraints in short

and independent statements. It starts with “It is necessary that”

and follows the syntax below.

NecessityStatement ::=
It is necessary that Statement.

Therefore, instead of writing disjunction of negation of all

constraints in one single statement, developers can benefit

this construct (i.e., NecessiyStatement) to define all such

constraints in several statements within a query. Accordingly,

the single but long previous statement can be stated as two

separate statements shown below.

It is necessary that if the type of the second argument of init is
"PrivateKey", then the algorithm of getInstance’s first
argument is "RSA".
It is necessary that if the algorithm of getInstance’s first
argument is "AES" then the mode of getInstance’s first
argument is "CBC".

Necessity statements are treated differently from other state-

ments. If there is only one NecessityStatement, its enclosing

statement is negated and added to the where part of the

CodeQL query. If there are more than one, e.g., n constraints

Cons1, Cons2, ..., Consn, then the “(not TCons1 or

not TCons2 or ... or not TConsn)” will be added

to the where part, where TConsi is the translation of Consi.

III. WORKING EXAMPLES

Cipher is one of the most misused APIs in Java cryp-

tography [4]. Listing 1 shows how to create a Cipher

object in Java. We should call the Cipher’s getInstance

method. This method receives a number of arguments. The

first one is transformation that is a string containing

three parts separated by “/”. These parts are algorithm,

mode, and padding, respectively. Next, we should call the

init method on the cipher object with two arguments to

indicate the operation mode of the cipher, and to initialize

this object with a Key or Certificate.

Cipher cipher = Cipher.getInstance("AES/ECB/

PKCS5Padding");

cipher.init(Cipher.ENCRYPT_MODE,new SecretKeySpec(

keyBytes, "AES"));

Listing 1. Setting up the Cipher object in Java

In the rest of this section, we present three different program

analysis tasks to ensure secure use of Java Cipher.

A. Key vs. Algorithm

Task 1: If the key has a type of PublicKey, PrivateKey,

or Certificate, or encryption mode is WRAP MODE or UN-

WRAP MODE, then algorithm of transformation must be

“RSA”.

Listing 2 shows how to check this constraint in CodeQL.

from MethodAccess getInstance, MethodAccess init

where init.getMethod().getName() = "init" and init.

getReceiverType().getName() = "Cipher" and

getInstance.getMethod().getName() = "getInstance

" and getInstance.getReceiverType().getName() =

"Cipher" and (((init.getArgument(0).toString() =

"Cipher.WRAP MODE" or init.getArgument(0).

toString() = "Cipher.UNWRAP MODE") or (init.

getArgument(1).getType().toString() = "java.

security.PublicKey" or init.getArgument(1).

getType().toString() = "java.security.PrivateKey

" or init.getArgument(1).toString() = "java.

security.cert.Certificate")) and not(getInstance

.getArgument(0).toString().replaceAll("\","").

splitAt("/",0) = "RSA"))

select getInstance, init

Listing 2. Key vs. Algorithm constraint in CodeQL

This constraint can be expressed in NASRA as follows.

An object of Cipher invokes init. An object of
Cipher invokes getInstance. It is necessary that if
init’s first argument is in ["Cipher.WRAP_MODE",
"Cipher.UNWRAP_MODE"] or the type of the second
argument of init is in ["PublicKey", "PrivateKey",
"Certificate"] then the algorithm of getInstance’s
first argument is "RSA".

B. Algorithm vs. Transformation Mode

Task 2: If the algorithm of transformation is “RSA” then

the mode of transformation must be either “” or “ECB”.

Listing 3 shows the corresponding query to check this

constraint in CodeQL. We should look for code in which the

algorithm is “RSA”, but neither “ECB” nor “” is set for the

mode.

from MethodAccess getInstance

where getInstance.getMethod().getName() = "

getInstance" and getInstance.getReceiverType().

getName() = "Cipher" and (getInstance.

getArgument(0).toString().replaceAll("\"","").

splitAt("/", 0) = "RSA") and not (getInstance.

getArgument(0).toString().replaceAll("\"","").

splitAt("/", 1) = "" or getInstance.getArgument

(0).toString().replaceAll("\"","").splitAt("/",

1) = "ECB")

select getInstance

Listing 3. Algorithm vs. Transformation Mode constraint in CodeQL

This constraint can be expressed in NASRA as follows.

An object of Cipher invokes getInstance. It is necessary
that if the algorithm of getInstance’s first argument is
"RSA" then the mode of getInstance’s first argument is in
["", "ECB"].

Thanks to Attempto Parsing Engine (APE), NASRA state-

ments do not need to exactly follow the syntax rules meaning

that a degree of freedom in paraphrasing is possible. For

instance, the part “the algorithm of getInstance’s first

argument is "RSA"” can also be written in two other forms:

(i) the algorithm of the first argument of getInstance is
"RSA".
(ii) "RSA" is the algorithm of getInstance’s first argument.

C. Transformation and Encryption Mode vs. Signature

Task 3: If the transformation mode is either of “CBC”,

“PCBC”, “CTR”, “CTS”, “CFB”, or “OFB”, and the en-

cryption mode is not “Cipher.ENCRYPT MODE”, then the

invoked init method should not have any of the following

signature: init(encmode, cert), init(encmode, cert, ranGen),

init(encmode, key), init(encmode, key, ranGen).

Listing 4 presents how to enforce this constraint in CodeQL.

from MethodAccess getInstance, MethodAccess init

where init.getMethod().getName() = "init" and init.

getReceiverType().getName() = "Cipher" and

getInstance.getMethod().getName() = "getInstance

" and getInstance.getReceiverType().getName() =

"Cipher" and ((getInstance.getArgument(0).

toString().replaceAll("\"","").splitAt("/", 1) =

"CBC" or getInstance.getArgument(0).toString().

replaceAll("\"","").splitAt("/", 1) = "PCBC" or

getInstance.getArgument(0).toString().replaceAll

("\"","").splitAt("/", 1) = "CTR" and

getInstance.getArgument(0).toString().replaceAll

("\"","").splitAt("/", 1) = "CTS" or getInstance

.getArgument(0).toString().replaceAll("\"","").

splitAt("/", 1) = "CFB" or getInstance.

getArgument(0).toString().replaceAll("\"","").

splitAt("/", 1) = "OFB") and not (init.

getArgument(0).toString() = "Cipher.ENCRYPT_MODE

")) and ((count (getInstance.getAnArgument()) =

2 and getInstance.getArgument(0).getType().

toString() = "int" and getInstance.getArgument

(1).getType().toString() = "Certificate") or (

count (getInstance.getAnArgument()) = 3 and

getInstance.getArgument(0).getType().toString()

= "int" and getInstance.getArgument(1).getType()

.toString() = "Certificate" and getInstance.

getArgument(2).getType().toString() = "

SecureRandom") or (count (getInstance.

getAnArgument()) = 2 and getInstance.getArgument

(0).getType().toString() = "int" and getInstance

.getArgument(1).getType().toString() = "Key") or

(count (getInstance.getAnArgument()) = 3 and

getInstance.getArgument(0).getType().toString()

= "int" and getInstance.getArgument(1).getType()

.toString() = "Key" and getInstance.getArgument

(2).getType().toString() = "SecureRandom"))

select init, getInstance

Listing 4. Transformation and Encryption mode vs. Signature constraint in
CodeQL

The implementation of this task in NASRA is shown below.

An object of Cipher invokes getInstance. An
object of Cipher invokes init. It is necessary that
if the mode of getInstance’s first argument is in
["CBC","PCBC","CTR","CTS","CFB","OFB"] and
init’s first argument is not "Cipher.ENCRYPT_MODE"

then getInstance’s signature is not
["int","Certificate"] and is not
["int","Certificate","SecureRandom"]

and is not ["int","Key"] and is not
["int","Key","SecureRandom"].

D. Discussion

Table I presents the number of distinct operators and

operands (i.e., vocabulary), and the total number of operators

and operands (i.e., length) needed for each analysis task.4

4In NASRA, we consider user defined terminals such as init, “RSA”, and
getInstance as operands and count the rest of language constructs as operators.

TABLE I
CODEQL VS. NASRA

Analysis Task
Vocabulary Length

CodeQL NASRA CodeQL NASRA

Key vs. Algorithm (III-A) 32 19 179 39

Algorithm vs. Mode (III-B) 27 18 107 24

Mode vs. Signature (III-C) 42 26 434 56

Evidently, queries in NASRA are significantly shorter than

queries in CodeQL (i.e., up to 87% reduction in length), and

they consume a lot fewer programming constructs (i.e., up to

38% fewer vocabularies). We computed Halstead complexity

measures to estimate the coding time and the difficulty to

write or understand these queries [5]. The results showed that

developers require a lot less effort and time to develop these

tasks in NASRA than in CodeQL.

We also asked ten developers to share their opinion about

queries in NASRA. They unanimously stated that they are

succinct and easy to understand, and one commented that

“these queries read like API documentation”.

It is noteworthy that NASRA’s performance, i.e., how well

it can detect API misuses, depends on its underlying analy-

sis framework which is currently CodeQL. In other words,

NASRA obviates the low-level details needed to define static

program analyses, but the issues with false positives remain

to be relevant. Moreover, despite being natural, the use of

NASRA still requires knowledge of its syntax.

IV. RELATED WORK

Mapping a natural language statement into a formal repre-

sentation has received great attention in the community but

not much in the program analysis development domain.

Schlegel et al. developed an end-user programming

paradigm for Python, that maps natural language commands

into Python code [6]. Landhauber et al. proposed a domain

agnostic command interpreter that receives natural language

commands in English and uses ontology to produce relevant

API calls [7]. Yaghmazadeh et al. developed SQLIZER, a

system to automatically synthesize SQL queries from a natural

language [8]. Luo et al. investigated the translation from

a natural language query to visualization with the goal of

simplifying the creation of data visualizations [9].

Heyman et al. developed a Python code completion tool

that enriches developers’ code with the natural language de-

scription of the intended data science task [10]. Nguyen et al.

presented an approach that takes as input an English descrip-

tion of a programming task and synthesizes the corresponding

API code template for the task [11]. Desai et al. built a general

framework for constructing program synthesizers that take

natural language inputs and produce expressions in a target

Domain Specific Language [12]. Zhai et al. proposed a search-

based technique to automatically translate NL comments to

formal program specifications that specify the expected pre

and post conditions [13].

The work presented in this paper is also related to cryp-

tography domain. There exist tools that find cryptography

misuses [14] and libraries that facilitate the adoption of

cryptography for developers [15]. Nevertheless, none of them

employed a natural language approach.

V. CONCLUSION

We introduced NASRA, an open-source framework to de-

fine static program analyses in natural language. We demon-

strated the application of this framework to find misuses in

Java cryptography. The ultimate goal of NASRA is to enable

a naturalistic way to develop static program analyses, which is

usable for mainstream developers. To realize this goal, further

studies are needed to determine NASRA’s effectiveness in

real-world settings. The expressiveness of its queries and the

effort required to extend it to other problem domains have to

be investigated as well. Finally, automatic translation without

pre-defined rules is also an exciting future research direction.

REFERENCES

[1] E. Barakova, J. Gillesen, B. Huskens, and T. Lourens, “End-user
programming architecture facilitates the uptake of robots in social
therapies,” Robotics and Autonomous Systems, vol. 61, no. 7, 2013.

[2] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “NL2Bash:
A corpus and semantic parser for natural language interface to the
linux operating system,” in Proceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018), 2018.
[3] M. Hazhirpasand, O. Nierstrasz, M. Shabani, and M. Ghafari, “Hurdles

for developers in cryptography,” in 2021 IEEE International Conference

on Software Maintenance and Evolution (ICSME), 2021, pp. 659–663.
[4] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Java cryptography

uses in the wild,” in Proceedings of the 14th ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement, 2020.
[5] M. H. Halstead, Elements of Software Science (Operating and program-

ming systems series). Elsevier Science Inc., 1977.
[6] V. Schlegel, B. Lang, S. Handschuh, and A. Freitas, “Vajra: Step-by-

step programming with natural language,” in Proceedings of the 24th

International Conference on Intelligent User Interfaces, 2019.
[7] M. Landhäuber, S. Weigelt, and W. F. Tichy, “Nlci: A natural language

command interpreter,” Automated Software Engg., vol. 24, no. 4, p.
839–861, dec 2017.

[8] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: Query
synthesis from natural language,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, oct 2017.

[9] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin, “Natural language
to visualization by neural machine translation,” IEEE Transactions on

Visualization and Computer Graphics, vol. 28, no. 1, pp. 217–226, 2022.
[10] G. Heyman, R. Huysegems, P. Justen, and T. Van Cutsem, “Natural

language-guided programming,” ser. Onward!, 2021, p. 39–55.
[11] A. T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and T. N.

Nguyen, “Statistical translation of english texts to api code templates,”
in 2018 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 2018, pp. 194–205.
[12] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,

S. R, and S. Roy, “Program synthesis using natural language,” in Pro-

ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16, 2016.

[13] J. Zhai, Y. Shi, M. Pan, G. Zhou, Y. Liu, C. Fang, S. Ma, L. Tan,
and X. Zhang, “C2s: Translating natural language comments to formal
program specifications,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ser. ESEC/FSE 2020, 2020.
[14] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng, “Automatic

detection of java cryptographic api misuses: Are we there yet,” IEEE

Transactions on Software Engineering, 2022.
[15] S. Kafader and M. Ghafari, “Fluentcrypto: Cryptography in easy mode,”

in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2021, pp. 402–412.

	I Introduction
	II The NASRA Framework
	II-A Syntax and Semantics
	II-B Extensibility
	II-B1 Patterns
	II-B2 AuxiliaryStatement

	III Working Examples
	III-A Key vs. Algorithm
	III-B Algorithm vs. Transformation Mode
	III-C Transformation and Encryption Mode vs. Signature
	III-D Discussion

	IV Related work
	V Conclusion
	References

