
Technical Debt Diffuseness in the Apache
Ecosystem: A Differentiated Replication

Dario Amoroso d’Aragona,1 Fabiano Pecorelli,1 2 Maria Teresa Baldassarre,3 Davide Taibi,1 4 Valentina Lenarduzzi4
1Tampere University — 2JADS, Eindhoven University of Technology — 3University of Bari — 4University of Oulu

dario.amorosodaragona@tuni.fi; f.pecorelli@tue.nl; mariateresa.baldassarre@uniba.it;
davide.taibi@oulu.fi; valentina.lenarduzzi@oulu.fi;

Abstract—Technical debt management is a critical activity that
is gaining the attention of both practitioners and researchers.
Several tools providing automatic support for technical debt man-
agement have been introduced over the last years. SonarQube is
one of the most widely applied tools to automatically measure
technical debt in software systems. SonarQube has been adopted
to quantify the diffuseness of technical debt in projects of the
Apache Software Foundation ecosystem. Lenarduzzi et al. [1]
found that the vast majority of technical debt issues in the code
are code smells and that, surprisingly, developers tend to take
more time to remove severe issues than the less-severe ones. While
this study provides very interesting insights both for researchers
and practitioners interested in technical debt management, we
identified some major limitations that could have led to results
that do not perfectly reflect reality. This study aims to address
such limitations by presenting a differentiated replication study.
Our findings have pointed out significant differences with the
reference work. The results show that technical debt issues
appear much more rarely than what the reference work reported.

In this study, we implemented a new methodology to calculate
the diffuseness of SonarQube issues at project and commit level,
based on the reconstruction of the SonarQube quality profile in
order to understand how the quality profile has evolved and to
compare the number of active rules per category and severity
level with the respective number of issues found. The results
show that over 50% of rules active in the quality profile, are
Code Smell rules and that over 90% of the issues belong to
Code Smell category. Furthermore, analyzing the life span of the
issues, we found that developers take into account the level of
severity of the issues only for the Bug category, thus fixing the
issues starting from the most severe, which is not the case for
the other categories.

Index Terms—Technical debt, SonarQube, Replication study

I. INTRODUCTION

Software is becoming more and more important in our
daily lives. From simple daily tasks to complex company
management, nowadays everything is built on top of software.
In such a scenario, software systems are increasing their
size and complexity, hence becoming more demanding to
maintain. Moreover, the constant need to adapt them to new
environments and match new requirements generates a con-
tinuous and constant change process that requires developers
to satisfy all requirements in the right way and in the shortest
possible time. Consequently, developers often tend to overlook
good programming practices and principles to deliver the
most appropriate product on time [2]–[4]. This manner of
programming causes the introduction of the so-called technical

debt (TD) [5], i.e., a metaphor from the financial domain that
consists in adopting (intentionally or not [6]) a limited solution
instead of a better one that would require more effort.

Over the last years, several studies have proven the harm-
fulness of keeping technical debt alive in software systems
and the negative consequences it entails. These studies have
demonstrated that technical debt leads to cost increasing [7],
[8], product quality decreasing [9], [10], and a slow down in
the entire software development process [5], [11], thus being
detrimental to software systems.

Therefore, much effort has been spent to measure technical
debt, in order to make developers aware of its presence and
keep it under control. Nowadays, there is a large availability of
automatic static analysis tools (ASATs) for TD measurement:
e.g., Coverity Scan, Better Code Hub, Checkstyle, FindBugs,
PMD, just to list a few.

Among them, SonarQube1 is one of the best known and
most frequently adopted [12]. It allows monitoring TD evolu-
tion in software repositories and alerts developers when certain
specific technical debt types go beyond a specified threshold,
thus encouraging the developers’ intervention.

In a recent article by Lenarduzzi et al. [1] SonarQube
was adopted to investigate the diffuseness of technical debt
in Java systems of the Apache Software Foundation (ASF)
ecosystem. Major results of this work report that design issues
are among the most likely to appear and that developers tend
to resolve minor issues faster than major or critical ones.
However, we observed some important limitations that could
have threatened the validity of the provided findings.

Specifically, the dataset contained spurious data since Sonar-
Qube was executed a posteriori. Additionally, we found
that the authors discussed their results by simply counting
(and comparing) the occurrences of specific types/severities
of issues, without considering the actual weight these
types/severities had in the systems’ quality profiles. Finally,
we also observed that different time ranges were considered
for different projects in the dataset, this may have affected the
results because the number of issues could change significantly
over time, e.g., the comparison of Technical Debt items in
different projects could be significantly different if we consider
the commits in one month against those in 1 year.

1http://www.sonarsource.org/

http://www.sonarsource.org/

This paper presents a differentiated replication [13] of
the study by Lenarduzzi et al. [1] that aims to address the
limitations identified. In particular, we rely on a different
dataset providing real data about the SonarQube usage and the
issues generated considering commits in the same time range
for all the projects. We also weighted the count of occurrences
by considering how frequent issues of a certain type/severity
were with respect to the quality profile the projects rely on.

Our findings show that the vast majority of projects/commits
are characterized by a limited number of issue occurrences.
Additionally, we found that code smells are significantly more
diffused than the other types and that developers tend to
prioritize fixing activities only for "bug" issues.

Structure of the paper: Section II describes the related
literature. Section III discusses the reference work as well as
its limitations. Section IV reports the methodology adopted
for our replication. The results of our study are reported and
discussed in Section V. Section VI discusses the potential
threats to the validity of the study we conducted. Finally,
Section VII concludes the article and outlines future research
developments.

II. RELATED WORK

This section reports the most relevant literature related to the
diffuseness of TD. To our knowledge, the vast majority of
articles look into the distribution and growth of code smells,
but none of them look into SonarQube violations.

Vaucher et al. [14] looked into God Class code smells,
concentrating on whether they harm software systems for
lengthy periods and checking if the code smell is associated
with refactoring operations.

Olbrich et al. [15] studied the evolution of God Class and
Shotgun Surgery. They discovered that the distribution of
these code smells is not consistent over time, increasing and
decreasing with no relation to the project size.

In contrast, Chatzigeorgiou and Manakos [16], on the other
hand, looked into the evolution of a larger number of code
smells and discovered that the number of instances of code
smells grows steadily over time. Later, Arcoverde et al. [17],
corroborated this finding by studying the persistence of code
smells.

More recently, Tufano et al. [18] demonstrated that the per-
sistence of code smells in source code might result in a variety
of problems. They stated that this could be caused by the fact
that code smells affect code from the start of the development
process, and that some code smells are introduced during
refactoring efforts as well. They also claimed that nearly 80%
of code smells are never removed from the code and that the
remaining ones are removed by eliminating the smelly artifact
rather than by reworking operations.

Digkas et al. [19] looked into the evolution of Techni-
cal Debt over five years at the weekly snapshot granularity
level on 66 Apache ecosystem open-source software projects.
They identified that the size, the number of issues, and the
complexity indicators of the evaluated projects all increased
significantly over time. However, they noticed that as the

project metrics progressed, normalized Technical Debt de-
clined. Digkas et al. [20] also looked into how Technical Debt
builds up as a result of software maintenance. As a starting
point, they looked at 57 open-source Java software projects
from the Apache Software Foundation, analyzing them at the
weekly snapshot temporal granularity level and focusing on
the categories of issues that were fixed. The findings revealed
that a small fraction of issue types are responsible for the
majority of technical debt payback.

Amanatidis et al. [21] looked at the accumulation of Tech-
nical Debt in PHP applications, focusing on the relationship
between the debt level and the interest that must be paid
during corrective maintenance actions. They looked at ten
open-source PHP projects in terms of corrective maintenance
frequency and effort in connection to interest amount and
discovered a significant association between interest and the
amount of accrued Technical Debt.

Palomba et al. [22] investigated the diffuseness of 13 code
smells and their impact on two software qualities: change- and
fault-proneness, using 395 versions of 30 different open-source
Java apps. They looked at 17.350 examples of 13 code smells
that were discovered using a metric-based methodology. As a
result, they got that only seven of the 13 code smells were
highly dispersed, and their removal would have a significant
impact on the software’s change proneness. The benefit in
terms of fault proneness, on the other hand, was minimal or
non-existent. As a result, programmers should keep an eye on
these smells and refactor them when necessary to improve the
code’s general maintainability.

Finally, Lenarduzzi et al. [1] presented a study about the
diffuseness of technical debt issues in Apache projects. In this
work they counted the occurrences of technical debt issues,
analyzing what are the most frequent types and the severities
that arise. They also evaluated the time taken by developers
to fix issues concerning the different types and severities.
As a result, they observed that most of the issues output by
SonarQube are related to design concerns and that developers
resolve less-severe issues faster than more severe ones.

Our article focuses on this last work, by presenting a
replication study aiming to address some limitations that could
have conditioned the achieved findings.

III. REFERENCE WORK

The reference work of our replication is the case study by
Lenarduzzi et al. [1]. The work analyzes 33 projects from the
Apache Software Foundation (ASF) ecosystem to study (i) the
diffuseness of technical debt issues and (ii) the time required
to fix such issues. The term diffuseness refers to the presence
of Technical Debt (TD) items, i.e., how many TD items occur
and how they are distributed among projects, level of severity
and categories.

The next sections provide an overview of the methodologi-
cal details of reference work and discuss the major limitations
we identified.

2

A. Context

The context of the reference work consisted of 33 projects of
different ages, sizes, and domains from the ASF ecosystem. In
particular, the author’s selected projects that (i) were developed
in Java, (ii) were older than three years, (iii) had more than
1000 commits, (iv) contained more than 100 classes, and (v)
used an issue tracking system with at least 100 issues.

B. Design

Intending to identify the diffuseness of Technical Debt
issues in the source code, concerning the type and the severity
level of SonarQube issues, Lenarduzzi et al. [1] designed a
case study [23] revolved around three research questions.

First, Lenarduzzi et al. [1] aimed to assess the diffuseness
of SonarQube issues in Apache software systems (RQ1).
Then, they conducted a more in-depth analysis to study the
diffuseness of technical debt for the type and the severity level
of TD issues (RQ2). Finally, they also investigated the time
needed to resolve TD issues, according to type and severity
(RQ3).

C. Data Collection & Analysis

All the projects in the dataset were cloned from GitHub and
then each commit was analyzed by running SonarQube. The
authors in Lenarduzzi et al. [1] collected information about
all the violations, relying on the default rule set, and the time
needed to fix each rule. Then, they counted the occurrences
for each rule at a project and commit level and also examined
the correlations between the occurrences of technical debt and
the number of classes, methods, and lines of code in a commit
by relying on the Spearman correlation coefficient (RQ1).

In the context of RQ2, they grouped the issues by type
and severity to compare and comment on the diffuseness of
different type/severity groups.

Finally, in RQ3, they examined the number of days needed
to resolve issues by inspecting the SonarQube analyses of
subsequent commits.

D. Limitations

In the work presented by Lenarduzzi et al. [1] we identified
three major limitations that we aim to address in this paper.
First, in their study, they relied on the violations identified by
SonarQube to measure the diffuseness of technical debt issues.
However, to perform their study they launch SonarQube a pos-
teriori on the whole dataset but, unfortunately, this approach
does not allow to track the issues very precisely. As a matter
of fact, in some cases they found duplicated issues, referring
to the same lines of code and the same problem but with
different resolution times. In addition, launching SonarQube a
posteriori does not take into account the customization and the
usage of a custom quality profile, that allows the developer to
enable/disable certain rules.

A quality profile in Sonar is a set of rules that are used to
analyze the code. SonarCloud has a default quality profile for
each programming language, called SonarWay, which is not
editable. Users can define their quality profile by choosing

which rules to activate/deactivate. In other words, a quality
profile defines the rules used to find the violations in the code.

In the context of RQ2, they counted issues’ occurrences
grouped by type and severity. We think that such a count
could be not accurate enough to represent the actual weights of
specific type/severity groups. In particular, we think that the re-
sults are conditioned by the actual quality profiles the systems
are using, i.e., if a quality profile includes a low number of
issues of a certain type/severity, such type/severity will likely
result in a lower number of occurrences. Therefore, comparing
the number of occurrences in different types/severity groups
to each other could not be fair enough. Finally, we also found
that the authors of the reference article relied on different time
ranges for different projects. This could have led to inaccurate
findings when comparing the issues’ occurrences among the
different projects (RQ2).

Our work aims to address all these limitations by (i) chang-
ing the input dataset and, as a consequence, the data collection
phase, and (ii) considering weights when counting issues in
specific type/severity groups. The next section discusses our
methodology in detail.

IV. DIFFERENTIATED REPLICATION

The goal of our empirical study is to assess the sensitivity
of the results of the reference work, namely the study by
Lenarduzzi et al. [1], with the purpose of understanding
whether the findings provided are still observable from the
viewpoint of both researchers and practitioners, in a realistic
context. We have addressed the perspective of researchers
and practitioners as they are both interested in understanding
to what extent technical debt is actually diffused in software
systems and what is the time usually required to fix specific
issue types.

To this aim, we performed a differentiated replication of the
reference study by relying exactly on the same three research
questions (i.e., the ones reported in Section III). However,
we made some methodological changes that were necessary
to overcome the major limitations identified in the work by
Lenarduzzi et al. [1]. Specifically, we reported major changes
in the context selection, the data collection, and the data
analysis phases. The resulting research questions are listed
below:

RQ1: What is the diffuseness of Technical Debt issues in
software systems when real usage data are considered?

This RQ mirrors the RQ1 from the original work of Lenarduzzi
et al. [1]. Lenarduzzi et al.’s answer to this RQ considered
different types and levels of severity for each TD item, to
determine how the rules are grouped between different values
of severity and type, and the relative distribution in the projects
of rules among severity levels and types. We replicate this
RQ with the same methodology using an updated dataset, to
understand if the results of Lenarduzzi et al. are generalizable
or not.

3

RQ2: What is the diffuseness of Technical Debt issues in
software systems considering weights of different types and
severity levels when real usage data are considered?

This RQ mirrors the RQ2 from the original work of Lenarduzzi
et al. [1]. Lenarduzzi et al. does not consider the number
of rules active per types and severity levels. Is easy to
verify that the number of issues for a specific type/severity
level is proportional to the number of rules active for that
types/severity level.

RQ3: What is the lifespan of Technical Debt issues when
real usage data are considered in the same time interval?

This RQ mirrors the RQ3 from the original work of Lenarduzzi
et al. [1]. Lenarduzzi et al. in their works used a dataset
that includes projects of very different ages and that where
SonarQube was run a posteriori as described in section III-D.
These limitations affects the results, in particular is hard to
determine a real lifespan of issue if the developers are not
conscious about the existence of that issue in the code. For
this reason we analyzed projects where SonarQube is used by
the developers in development process.

A. Context Selection and Data Collection

One of the major limitations of the reference work was
about launching SonarQube analyses a posteriori (see Sec-
tion III-D). To overcome this issue, we relied on the infor-
mation available on Pandora [24]. This tool allowed us to
access all the SonarCloud 2 analyses actually performed on 96
Apache projects 3. Therefore, we were able to collect actual
information about the developer’s usage of SonarQube as well
as the issues raised by the tool. In this way we were able
to reliably reconstruct the history of the analyses, knowing
exactly, for each issue, the time range from when the issue
has been raised to when it has been closed.

Moreover, to overcome the threat of considering different
periods for the different projects, we based our analysis on all
the commits from 2018 to 2021 for all the 96 projects. The
reason for the selection of this specific time range relies on
the evolution of the quality profiles adopted by the projects in
our dataset. More details are reported in the following section.

B. Data Analysis

Another important limitation of the reference work was to
count and compare occurrences of specific types without con-
sidering weights, as explained in Section III-D. Our strategy
to overcome this limitation was to give weights to specific
type/severity groups, by counting how many issues in each
specific group appear in the quality profile the projects rely
on. With this respect, we performed a preliminary analysis of
the quality profiles of the considered projects. In particular,
first, we investigated whether the projects in our dataset used

2https://sonarcloud.io
3Dataset description available in our replication package [25]

(a) Types

(b) Severity levels

Fig. 1: Stacked bar plots reporting the percentage of active
rules in SonarQube quality profile from 2013 to 2021 per type
(a) and severity level (b)

a customized quality profile, hence relying on different sets of
rules. As a result, we found that all the projects relied on the
default Java quality profile, namely SonarWay 4.

However, SonarWay is in a continuous update process and,
unfortunately, there is no track of these updates. Therefore,
to calculate weights that are as accurate as possible, we
reconstructed the quality profile from 2013 to 2021 using the
information available in the changelog and the creation date
of each rule in the current quality profile. The result of this
preliminary study, reported in Figure 1 shows how the number
of active rules for each type and severity-level remains almost
constant over the years, in particular considering the period
from 2018 to 2021 (we excluded from this analysis 2022
because there are not enough information in the changelog). In
addition, the percentages for the year 2021 reported in Figure
1, also reflect the actual quality profile at the time of the study,
i.e., Feb 16th 22. Once assessed the stability of the quality
profile over time, we calculated the weights for each type
and severity level. To this aim we first counted the frequency
for each type/severity level; then we calculate the weight as
1 - the resulting percentage. This choice was made to give
more importance to the rules that are less likely to appear. In

4https://docs.sonarqube.org/latest/instance-administration/quality-profiles/

4

https://sonarcloud.io
https://docs.sonarqube.org/latest/instance-administration/quality-profiles/

TABLE I: Weights calculated by type and severity level

Group Weight

Type

BUG 0.71
CODE SMELL 0.46
VULNERABILITY 0.90
SECURITY HOTSPOT 0.93

Severity

BLOCKER 0.91
MAJOR 0.56
CRITICAL 0.80
MINOR 0.73
INFO 0.99

particular, we relied on the following formulas. The resulting
weights are reported in Table I.

severityweight(s) = 1− #rules of severity s

rules inQP
(1)

typeweight(t) = 1− #rules of type t

rules inQP
(2)

V. RESULTS AND DISCUSSION

This section reports and discusses the results obtained from
our investigation.

A. RQ1: diffuseness of Technical Debt items

Figure 2 reports the distribution of the 40 rules with the
highest percentage of commits affected. For each SonarCloud
rule-identifier, the figure shows the number of issues generated
by each rule on a log scale. As we can observe, the distribution
does not vary significantly between items. Table II reports
the descriptive statistics of the distributions of the top-40-
commit-affect rules for commit and project (the minimum is
not reported because it is always zero).

As we can observe from the table, the occurrences are not
constant on average. For instance, if we consider the average
per commit, the minimum value is 1.72 (suggesting a large
number of commits with few issues), and the maximum is
55.44. Moreover, analyzing Figure 4, it is possible to see that
the distributions for all rules per commit are skewed to the
right, thus indicating that there are many commits/projects
with few or zero occurrences.

When comparing our results with those of the reference
work, we can observe the first substantial differences. Specif-
ically, in the reference work, the authors found single rules to
be way denser in their dataset, both at the commit- and project-
level. Similarly, also in the percentage of affected commits,
there is a very large difference between our results and the ones
of the reference work. The reason behind such a difference
could rely on the fact that we considered real SonarQube usage
data instead of running the tool externally. Indeed, by going
through the raw data, available in our online appendix [25], it
is possible to observe that the vast majority of the analyzed
commits only contain a limited number of rules among the
entire rule list.

S3
77

6
S1

12
S1

19
2

S1
87

4
cD

Bl
oc

ks
S1

13
5

S2
29

3
S3

74
0

S1
07

5
S1

13
3

S1
17

2
S1

00
S1

14
9

S3
07

7
S2

69
9

S3
45

7
S1

25
S1

13
0

S1
06

6
S1

12
8

S2
62

9
S1

35
S1

18
6

S2
92

5
S1

18
1

S1
11

7
S1

07
S1

94
8

S2
25

9
S1

15
5

S1
60

4
S1

11
8

S1
61

2
S1

14
1

S3
82

4
S1

16
8

S1
90

5
S1

06
S1

15
S1

48
8

100

101

102

103

104

105

of

 o
cc

ur
en

ce
s

Fig. 2: Distribution of the 40 most common violated rules in
the dataset (RQ1)

¤ Summing Up RQ1: Considering real SonarQube usage
data instead of running the tool externally leads to a differ-
ent issues distribution with respect to the reference work.
Specifically, our study reports a way lower diffuseness of
SonarQube issues both at the commit- and project-level.

B. RQ2: Diffuseness of TD items by type and severity

To answer the second research question (RQ2), we used the
weight formula (1) (2) described in Section (IV-B) to consider
real distributions of issues, i.e., taking into account the number
of active rules per severity and type.

Table III reports the count of active rules grouped by
severity and type, the number of introduced items (the number
of issues related to the corresponding severity-level/type), the
weighted number of introduced items, the weighted percentage
of introduced items. In particular, the number of introduced
items represents the total number of issues for each type and
severity level, instead, the weighted number of introduced
items is the total number of issues obtained using the weighted
methodology described before and the weighted percentage
of introduced items is the percentage of issues for each type
and severity calculated based on the weighted number of
introduced items.

In Table IV we reported the average instances per commit,
the number of max instances in a commit, and the percentage
of the affected commits.

From the results, it is possible to observe how the CODE
SMELL instances are reduced by a factor of ≈0,5 by compar-
ing the INTRODUCED ITEMS and the INTRODUCED ITEMS
WEIGHTED columns, according to the weights reported in
Table I. However, even if such a weight is considered, this
type of issue still represents the ≈95% of the total issues
and arises in 97% of the commits. Way smaller percentages
are reported for BUG and VULNERABILITY issue types that
represent, respectively, ≈4% and ≈1% of the total issues. As

5

TABLE II: Distribution of the 40 most common violated rules among commit and projects (RQ1)

General Info Per commit Per Project

rule #
instances

max
instances

% affected
commits 25% mean std 50% 75% max 25% mean std 50% 75% max

S3824 17988 1361 19% 0 1.72 17.72 0 0 1361 0 179.88 1798.80 0 0 17988
S3776 580673 46589 52% 0 55.44 591.48 1 6 46589 0 5806.73 58067.30 0 0 580673
S3740 322934 26342 24% 0 30.83 388.58 0 0 26342 0 3229.34 32293.40 0 0 322934
S3457 74748 5809 22% 0 7.14 80.84 0 0 5809 0 747.48 7474.80 0 0 74748
S3077 26735 779 23% 0 2.55 20.71 0 0 779 0 267.35 2673.50 0 0 26735
S2925 73195 6107 20% 0 6.99 83.17 0 0 6107 0 731.95 7319.50 0 0 73195
S2699 107187 8064 22% 0 10.23 112.70 0 0 8064 0 1071.87 10718.70 0 0 107187
S2629 57638 2815 21% 0 5.50 54.96 0 0 2815 0 576.38 5763.80 0 0 57638
S2293 147118 28829 27% 0 14.05 303.48 0 1 28829 0 1471.18 14711.80 0 0 147118
S2259 59918 4941 20% 0 5.72 75.04 0 0 4941 0 599.18 5991.80 0 0 59918
S1948 57119 8939 20% 0 5.45 98.84 0 0 8939 0 571.19 5711.90 0 0 57119
S1905 63074 12259 18% 0 6.02 130.24 0 0 12259 0 630.74 6307.40 0 0 63074
S1874 243630 10672 32% 0 23.26 205.79 0 1 10672 0 2436.30 24363.00 0 0 243630
S1612 40335 2158 19% 0 3.85 36.03 0 0 2158 0 403.35 4033.50 0 0 40335
S1604 39607 2501 20% 0 3.78 34.48 0 0 2501 0 396.07 3960.70 0 0 39607
S1488 92373 9593 17% 0 8.82 142.46 0 0 9593 0 923.73 9237.30 0 0 92373
S135 58630 4231 21% 0 5.60 66.11 0 0 4231 0 586.30 5863.00 0 0 58630
S125 255734 20138 22% 0 24.42 313.12 0 0 20138 0 2557.34 25573.40 0 0 255734
S1192 418124 43517 32% 0 39.92 578.73 0 2 43517 0 4181.24 41812.40 0 0 418124
S1186 155876 15596 21% 0 14.88 184.72 0 0 15596 0 1558.76 15587.60 0 0 155876
S1181 40192 3322 20% 0 3.84 40.75 0 0 3322 0 401.92 4019.20 0 0 40192
S1172 128626 12147 23% 0 12.28 151.87 0 0 12147 0 1286.26 12862.60 0 0 128626
S1168 82657 7087 18% 0 7.89 92.45 0 0 7087 0 826.57 8265.70 0 0 82657
S1155 81319 9257 20% 0 7.76 111.98 0 0 9257 0 813.19 8131.90 0 0 81319
S115 497804 64327 18% 0 47.53 869.74 0 0 64327 0 4978.04 49780.40 0 0 497804
S1149 51178 4163 23% 0 4.89 54.98 0 0 4163 0 511.78 5117.80 0 0 51178
S1141 68798 9909 19% 0 6.57 104.34 0 0 9909 0 687.98 6879.80 0 0 68798
S1135 314021 18075 29% 0 29.98 323.08 0 1 18075 0 3140.21 31402.10 0 0 314021
S1133 156935 17845 23% 0 14.98 217.09 0 0 17845 0 1569.35 15693.50 0 0 156935
S1130 127671 18681 22% 0 12.19 207.56 0 0 18681 0 1276.71 12767.10 0 0 127671
S1128 221197 10782 22% 0 21.12 339.85 0 0 10782 0 2211.97 22119.70 0 0 221197
S112 275502 19397 33% 0 26.30 266.81 0 2 19397 0 2755.02 27550.20 0 0 275502
S1118 73413 4920 19% 0 7.01 83.71 0 0 4920 0 734.13 7341.30 0 0 73413
S1117 106318 10415 20% 0 10.15 141.97 0 0 10415 0 1063.18 10631.80 0 0 106318
S1075 29559 2840 23% 0 2.82 36.72 0 0 2840 0 295.59 2955.90 0 0 29559
S107 131515 21404 20% 0 12.56 277.32 0 0 21404 0 1315.15 13151.50 0 0 131515
S1066 121443 12396 22% 0 11.59 159.09 0 0 12396 0 1214.43 12144.30 0 0 121443
S106 209179 15215 18% 0 19.97 225.82 0 0 15215 0 2091.79 20917.90 0 0 209179
S100 71413 3917 23% 0 6.82 77.78 0 0 3917 0 714.13 7141.30 0 0 71413
cDBlocks 371433 15005 30% 0 35.46 305.62 0 2 15005 0 3714.33 37143.30 0 0 371433

TABLE III: Weighted distribution of issues among type and severity (RQ2)

TYPE/SEVERITY ACTIVE
RULES

INTRODUCED
ITEMS

INTRODUCED
ITEMS (W)

% INTRODUCED
ITEMS (W)

BUG 139 308393 220190.0638 4%
CODE SMELL 261 11761250 5445023.148 95%
VULNERABILITY 50 91773 82331.33333 1%
BLOCKER 43 264942 241500.6296 3%
CRITICAL 95 2106937 1695087.175 20%
MAJOR 215 4882056 2722298.716 33%
MINOR 129 3834150 2816443.519 34%
INFO 4 1073331 1064497 13%

a result, we can observe that when weights are considered to
count different types of SonarQube issues, our results are in
contrast with the reference work. Indeed, they found all the
types of issues to affect more than 90% of the commits.

The same discussion can be made for the severity levels:
also, in this case, we have very discordant results with respect
to the work by Lenarduzzi et al. [1].

While these differences could depend on the fact that
we weighted the occurrences of issues per group, we still
think that there could have been some measurement errors
when running SonarQube a posteriori, as already discussed in
Section V-A.

Figure 3 and Figure 4 report the distribution for the

issues among types an severities, the former shows the
distribution a project-level while the latter the distribu-
tion at commit level. At the project-level, the most com-
mon issues are CODE SMELL-INFO, CODE SMELL-
MINOR, CODE SMELL-MAJOR, VULNERABILITY-MINOR,
VULNERABILITY-BLOCKER issues, while at the commit-
level CODE SMELL-INFO are the most common issues. The
distribution varies largely between types, severities, projects,
and commits except for CODE SMELL at the project level,
where the distribution between the INFO, MINOR and MAJOR
is very similar. Another interesting data to observe is that for
BUG and VULNERABILITY there are no issues with INFO
severity. This can be related to the fact that these types, identify

6

TABLE IV: Distribution of issues at commit level (RQ2)

TYPE/SEVERITY
AVG

INSTANCES
PER COMMIT

MAX
INSTANCES
IN COMMIT

% AFFECTED
COMMITS

BUG 29.20 14966 46%
CODE SMELL 1113.44 103209 97%
VULNERABILITY 8.69 2330 24%
BLOCKER 25.08 15143 34%
CRITICAL 199.46 46589 63%
MAJOR 462.18 50323 82%
MINOR 362.98 103209 79%
INFO 101.61 39729 39%

(a) Bug (b) Code Smell (c) Vulnerability

Fig. 3: Issues distribution among projects (RQ2)

(a) Bug (b) Code Smell (c) Vulnerability

Fig. 4: Issues distribution among commit (RQ2)

by design more severe rules.
With the aim of studying the average contribution of

types/severities issues in our dataset, we also report stacked
bar plots reporting the weighted distributions of issues in
each project among type and severity. For the sake of space
limitation, we only included them in our online appendix [25].

¤ Summing Up RQ2: When weights are taken into account
to count different types/severities of SonarQube issues, our
results report results that are in contrast with the reference
work. While in Lenarduzzi et al. [1] authors found all the
types of issues to affect more than 90% of the commits, in
our case this only applies for Code Smell issues.

C. RQ3: What is the lifespan of TD issues

Table V reports the number of days needed to resolve the
issues grouped by type and severity. Considering the severity,
it seems that the average of days needed to close a BLOCKER
issue is smaller than the days needed to close a INFO issue.
MINOR issues have the smallest value. By deeper inspecting
this aspect, it seems that the developers of the considered

projects start first fixing BUG issues, then CODE SMELL
issues, and finally VULNERABILITY issues.

Figure 5 reports the time taken to fix issues considering
combinations of severities and types. As for BUG issues, the
results are in line with the expectations, namely, the higher the
severity, the faster the resolution. The same does not apply to
the other two categories, where the fixing time seems not to be
correlated with the severity. Indeed, as for CODE SMELL is-
sues, we can observe that MINOR issues are solved faster than
MAJOR and BLOCKER ones. Similarly, for VULNERABILITY
issues, BLOCKER issues require more time to be solved with
respect to CRITICAL and MAJOR ones. This result can be
explained by the nature of the issue types themselves. Indeed,
high-severity bugs can cause relevant issues in the code, hence
developers tend to solve them faster. Code smells, instead, are
associated with design issues that do not necessarily lead to
issues in the short period.

Figure 6a and Figure 6b show the weighted distribution of
the issues that were still open at the time of our last analysis
(April 22th, 2022). We only considered issues opened from
2018 to 2021. According to the results, CODE SMELL issues
represent more than 90% of the total open issues. Once again,

7

TABLE V: Number of days needed to resolve issues (RQ3)

TYPE/SEVERITY AVG MEDIAN MAX STDEV
BLOCKER 242.85 149.18 1279.91 252.23
CRITICAL 302.36 344.46 1437.55 227.64
MAJOR 284.82 221.06 1526.40 243.22
MINOR 201.46 84.70 1557.07 244.87
INFO 461.11 395.46 1525.16 370.70
CODE_SMELL 281.17 195.44 1557.07 282.59
BUG 232.11 132.10 1275.27 269.26
VULNERABILITY 394.95 426.75 1279.91 258.33

(a) Bug (b) Code Smell (c) Vulnerability

Fig. 5: Time to resolve issues among category and severity per project (RQ3)

(a) (b)

Fig. 6: Stacked bar plots reporting the weighted distribution
of open issues per severity (a) and type (b) (RQ3)

the results indicate that developers tend to give less importance
to design issues, keeping it into the code and providing fixes
only at a later time.

Inspecting the average time to fix an issue we discovered
some rules that are never been fixed in these years, thus no
one issue raised by the violation of one of these rules has been
closed by a developer. In total there are 49 rules never fixed,
22 are CODE SMELL, 14 BUG, 8 SECURITY HOTSPOT
and 5 VULNERABILITY. Moreover, the issues raised by the
violation of these rules have been introduced in a time range
that goes from 2018 to 2021, with a peak in 2020 (4600 issues
introduced over 10.000 of total issues never fixed until now).
Investigating the number of issues fixed and the number of
open issues we discover that over 12 million issues, about
11 million are still open, and only 7% of issues have been
resolved.

¤ Summing Up RQ3: Developers tend to fix bug issues
faster than vulnerability and code smell issues. For bug
issues the severity seems to play an important role, thus
more severe issues are solved faster than less severe ones.
The same does not apply to code smells and vulnerabilities.

VI. THREATS TO VALIDITY

This section reports the threats to construct, internal, and
external validity of the experimentation we conducted and
presented in this study.

Construct Validity. To answer our RQs we focused on the
Sonar quality profile and its role in the distribution of the
issues among severity and type. Unfortunately, Sonar does not
save the history of the quality profile, so we reconstructed it
based on the information available (changelog, date of rule
creation). We performed the quality profile reconstruction in
a very accurate way, however, we are aware that it could still
contain some approximation errors.

Furthermore, we are aware that not all issues raised by Sonar
are Technical Debt issues, but given the nature of this study,
we preferred to be consistent with the replicated work and
refer to all issues raised by Sonar as Technical Debt items
like Lenarduzzi et al. [1] did in their work.

Internal Validity. We have chosen to analyze commits in
a specific date frame (from 2018 to 2021). The reason for this
choice regards the consistency of the quality profile over the
years. Therefore, we are aware that the analyzes carried out
are limited by this factor. Hence, we are conscious that this
choice did not allow us to carry out analyzes on a larger scale
and therefore consider a longer period of time, which could
have returned more precise results.

External Validity. We selected all Java projects belonging
to Apache Foundation stored in Pandora [24] system. How-
ever, even if these projects present different characteristics, we
are aware that other projects, in others organizations, using
different Sonar quality profiles could reach different results.

VII. CONCLUSION

In this work, we have presented a replication of the study
by Lenarduzzi et al. [1]. Starting from three major limitations

8

of the reference study, we addressed them and repeated all
the analyses again. The results achieved, pointed out a set
of differences with the reference work. As for RQ1, we
found SonarQube issues to be way less diffused than what
previously reported. In the context of RQ2, we obtained similar
outcomes, finding that issues of specific types/severities are
less likely to appear in projects and commits with respect to
the reference study. Finally, in RQ3 we achieved the same
outcome of the reference work only for two out of the three
types of SonarQube issues. Specifically, we found that in the
case of “bug” issues higher severities lead to faster fixing
interventions.

REFERENCES

[1] V. Lenarduzzi, N. Saarimaki, and D. Taibi, “On the diffuseness of
code technical debt in java projects of the apache ecosystem,” in 2019
IEEE/ACM International Conference on Technical Debt (TechDebt).
IEEE, 2019, pp. 98–107.

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya et al., “Managing technical debt
in software-reliant systems,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research, 2010, pp. 47–52.

[3] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[4] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman, “Technical
debt: Showing the way for better transfer of empirical results,” in
Perspectives on the Future of Software Engineering. Springer, 2013,
pp. 179–190.

[5] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[6] E. Allman, “Managing technical debt,” Communications of the ACM,
vol. 55, no. 5, pp. 50–55, 2012.

[7] P. Thibodeau, “Counting ‘technical debt’,” Information Age, vol. 64,
2011.

[8] Y. Guo, R. O. Spínola, and C. Seaman, “Exploring the costs of tech-
nical debt management–a case study,” Empirical Software Engineering,
vol. 21, no. 1, pp. 159–182, 2016.

[9] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE, 2012, pp. 306–315.

[10] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. D. Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[11] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” IEEE software, vol. 29,
no. 6, pp. 22–27, 2012.

[12] V. Lenarduzzi, A. Sillitti, and D. Taibi, “A survey on code analysis
tools for software maintenance prediction,” in International Conference
in Software Engineering for Defence Applications. Springer, 2018, pp.
165–175.

[13] M. D. Uncles and S. Kwok, “Designing research with in-built differ-
entiated replication,” Journal of Business Research, vol. 66, no. 9, pp.
1398–1405, 2013, advancing Research Methods in Marketing.

[14] S. Vaucher, F. Khomh, N. Moha, and Y. Gueheneuc, “Tracking design
smells: Lessons from a study of god classes,” in Working Conference
on Reverse Engineering, 2009, pp. 145–154.

[15] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,” in
Int. Symp. on Empirical Software Engineering and Measurement, 2009.

[16] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in Int. Conference on the Quality of
Information and Communications Technology, 2010, pp. 106–115.

[17] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: Preliminary results of an explanatory survey,”
in Workshop on Refactoring Tools, 2011, pp. 33–36.

[18] P. F. Tufano, M., G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and A. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software
Engineering, vol. 43, no. 11, pp. 1063–1088, Nov 2017.

[19] G. Digkas, A. C. M. Lungu, and P. Avgeriou, “The evolution of technical
debt in the apache ecosystem.” Springer, 2017, pp. 51–66.

[20] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampat-
zoglou, “How do developers fix issues and pay back technical debt in the
apache ecosystem?” in Int. Conference on Software Analysis, Evolution
and Reengineering (SANER), 2018, pp. 153–163.

[21] T. Amanatidis, A. Chatzigeorgiou, and A. Ampatzoglou, “The relation
between technical debt and corrective maintenance in php web applica-
tions,” Information and Software Technology, vol. 90, 2017.

[22] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. D. Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, Jun 2018.

[23] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[24] H. Nguyen, F. Lomio, F. Pecorelli, and V. Lenarduzzi, “Pandora:
Continuous mining software repository and dataset generation,” in
EEE International Conference on Software Analysis, Evolution and
Reengineering (SANER2022). IEEE, 2022.

[25] D. Amoroso d’Aragona, F. Pecorelli, M. T. Bal-
dassarre, and V. Lenarduzzi, “Online appendix,” 2022.
[Online]. Available: https://github.com/darioamorosodaragona-tuni/
TD-Diffuseness-in-Apache-A-Replication-Study-Online-Appendix

9

https://github.com/darioamorosodaragona-tuni/TD-Diffuseness-in-Apache-A-Replication-Study-Online-Appendix
https://github.com/darioamorosodaragona-tuni/TD-Diffuseness-in-Apache-A-Replication-Study-Online-Appendix

	Introduction
	Related Work
	Reference Work
	Context
	Design
	Data Collection & Analysis
	Limitations

	Differentiated Replication
	Context Selection and Data Collection
	Data Analysis

	Results and Discussion
	RQ1: diffuseness of Technical Debt items
	RQ2: Diffuseness of TD items by type and severity
	RQ3: What is the lifespan of TD issues

	Threats to Validity
	Conclusion
	References

