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Abstract—Metamorphic Testing (MT) is a testing technique
that can effectively alleviate the oracle problem. MT uses Meta-
morphic Relations (MRs) to determine if a test case passes or
fails. MRs specify how the outputs should vary in response to
specific input changes when executing the System Under Test
(SUT). If a particular MR is violated for at least one test input
(and its change), there is a high probability that the SUT has a
fault. On the other hand, if a particular MR is not violated, it
does not guarantee that the SUT is fault free. However, deciding
if the MR is being violated due to a bug or because the MR
does not hold/fit for particular conditions generated by specific
inputs remains a manual task and unexplored. In this paper, we
develop a method for refining MRs to offer hints as to whether
a violation results from a bug or arises from the MR not being
matched to certain test data under specific circumstances. In our
initial proof-of-concept, we derive the relevant information from
rules using the Association Rule Mining (ARM) technique. In
our initial proof-of-concept, we validate our method on a toy
example and discuss the lessons learned from our experiments.
Our proof-of-concept demonstrates that our method is applicable
and that we can provide suggestions that help strengthen the test
suite for regression testing purposes.

Index Terms—Metamorphic testing, metamorphic relation,
association rule mining, passive testing.

I. INTRODUCTION

Software testing is a crucial stage in the software develop-
ment life cycle as it ensures the software’s proper operation
and quality. One of the most significant challenges in software
testing is the test oracle problem. A test oracle determines
the System Under Test’s (SUT) output for a given input.
The test oracle problem occurs when the SUT Ilacks an
oracle or when creating one to verify the computed outputs
is practically impossible [1]. Metamorphic Testing (MT) is
a software testing approach proposed by Chen et al. [2] to
alleviate the test oracle problem.

In contrast to traditional testing techniques, MT examines
the relations between input-output pairs of consecutive SUT
executions rather than the individual outputs. The relations
between SUT inputs and outputs in MT are known as Meta-
morphic Relations (MRs). MRs specify how the outputs should
vary in response to specific input changes [3]. When an MR
is violated for at least one test input and its change, there
is a strong likelihood that the SUT has a fault. However, the
absence of violation does not ensure that the SUT is fault-free.
As a result, the suitability of the MRs employed significantly
impacts the effectiveness of MT [3].

In current practice, the identification and selection of MRs
are made manually, requiring a deep understanding of the
SUT and its problem domain. The requirement for domain
knowledge makes automatic MR identification challenging
[3], [4]. Another critical challenge is the need to distinguish
automatically whether a particular MR violation is due to a
fault in the SUT or because the MR does not satisfy or fully
fit a specific statement/method/function of the SUT for certain
test data. In current practice, interpreting an MR violation is an
entirely manual effort. It is important to highlight that the cost,
in terms of time and resources, of the MT approach is related
to the amount of MRs used [5], [6]. Thus, as the number of
MRs grows, the number of test cases may grow exponentially.
As a result, the execution time and the time needed for manual
inspection of MR violations will also increase.

Some approaches indirectly reduce the manual effort
required to interpret the meaning of an MR violation.
For instance, Cao et al. [7] provides quantitative sugges-
tions/guidance for developing automated means of select-
ing/prioritising MR for cost-effective MT. Srinivasan et al. [5],
[6] proposed two MR prioritisation approaches to improve
MT’s efficiency and effectiveness. These approaches use (i)
fault detection information and (ii) statement/branch coverage
information to prioritise MRs. Zhang et al. [8] suggested
strategies to clean MRs by deleting duplicate or redundant
MRs. These approaches offer indirect help since by prioritising
or reducing the set of MRs, the number of test cases will be
reduced as well. Thus, the manual effort of inspection through
the violated MRs is less.

Motivated by the above, we ask ourselves the following
research question: How can MRs be refined based on test
data?. To answer this question, we developed a method for
refining MRs that suggest whether a detected MR violation
results from a fault in the SUT or arises from the fact that the
MR does not apply to the used test data. Our method assumes
that a predefined set of MRs is provided and uses the concepts
of fuzz testing, passive testing, and rule mining.

First, our method uses a fuzzer to feed random data to the
SUT. Second, it performs the necessary input transformations
following the indications of the MRs. Third, similar to passive
tests, logs are produced with information related to inputs,
outputs, and whether or not MRs are violated. Those logs
are used to feed a mining algorithm. Our method employs



association rule mining (ARM). In our context, the purpose
of ARM is to extract interesting relationships between the
inputs and whether or not the MR is violated. ARM is
an unsupervised machine learning (ML) method [9]. ARM
algorithms attempt to find relationships or associations be-
tween categorical variables in large transactional datasets [10].
We were particularly interested in understanding whether the
information provided by the resulting model helps in deciding
whether there is a fault or whether the MR does not fully
fit the specific method/function/statement when the violation
occurs.

In our initial proof-of-concept, we validate our method on
a toy example and discuss the lessons learned from our ex-
periments. Our proof-of-concept demonstrates that our method
is applicable and can provide suggestions that help strengthen
the test suite for regression testing purposes. We published the
replication package to facilitate future research.

The rest of the paper is structured as follows. Section II
presents the main concepts used in our research. In Section III,
we describe the proposed method. In Section IV, we present
our results and discuss threats to validity. Section V presents
the related work. Finally, we conclude the paper in Section VI.

II. BACKGROUND

This section presents the key concepts used in our research.
Section II-A introduces the MT approach. Section II-B pro-
vides a brief description of test data generation techniques,
and Section II-C gives a brief introduction to ARM.

A. Metamorphic Testing

MT is a software testing approach that alleviates the test
oracle problem. MT aims to exploit the internal properties of
a SUT to either check its expected outputs or generate new test
cases. Figure 1 shows the MT basic workflow. Overall, MT
works by checking the relation between the inputs and outputs
of multiple executions of the SUT. Such relations are called
MRs. MRs specifies how the outputs should change according
to specific variations made to the input. Overall, MT follows
four major steps:

1) Create a set of initial tests or source test cases.

2) Identify an appropriate list of MRs that the SUT should
satisfy.

3) Create follow-up test cases by applying the input trans-
formations required by the identified MRs in Step 2 to
each source test case.

4) Execute the corresponding initial and follow-up test case
pairs.

5) Check if the source tests and follow-up tests output
change matches the change predicted by the MR.

The final step needs further interpretation of the MT work-
flow output based on the Non-violation of MRs. When a Non-
violation is presented, it is not guaranteed that the SUT is
implemented correctly. However, if an MR is violated for
specific test cases, it must be a fault in the SUT, assuming
the MR is defined correctly.
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Fig. 1: MT basic workflow

B. Test Data Generation

In software testing, test data corresponds to the input data
used during test execution. Test data is used for positive
testing, verifying that functions of the SUT generate antici-
pated outputs for given inputs, and negative testing, examin-
ing the SUT’s capacity to handle atypical, extraordinary, or
unexpected inputs [ref]. Inadequately constructed testing data
could only cover some potential test cases, which would be
detrimental to the software’s quality.

Our method does not attempt to add something new in test
data generation techniques. Instead, we take advantage of Fuzz
Testing for generating test data. Fuzz Testing, often known as
“fuzzing,” is a software testing approach involving injecting
erroneous or random data, or “FUZZ,” into software systems
to find coding errors and security flaws. Fuzz testing involves
injecting data using automated or somewhat automated meth-
ods and evaluating the system for various exceptions, such as
system failure or malfunction of built-in code, etc [11].

Overall, fuzzing consists of three components, i.e., input
generator, executor, and defect monitor [11]. The input gener-
ator provides the executor with several inputs, and the executor
runs target programs on the inputs. Then, fuzzing monitors
the execution to check if it discovers new execution states or
defects (e.g., crashes). Fuzzing can be divided into Generation-
based and Mutation-based fuzzing. Mutation-based fuzzing
alters existing data samples to create new test data. Generation-
Based fuzzing defines new data based on the system’s input or
the target SUT function. It starts generating input from scratch
based on the specification.

C. Association Rule Mining

ARM is a rule-based unsupervised ML method that al-
lows discovery relations between variables or items in large
databases. ARM has been used in other fields, such as business
analysis, medical diagnosis, and census data, to find out
patterns previously unknown [10]. The ARM process consists
of at least two major steps: finding all the frequent itemsets
that satisfy minimum support thresholds and generating strong
association rules from the frequently derived itemsets by
applying a minimum confidence threshold.

A large variety of ARM algorithms exist. [12]. In our
experiments, we use the Apriori algorithm from Python3
Efficient-Apriori library [13]. It is well known that the Apriori
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Fig. 2: Overview of the method for refining MRs based on rule mining

algorithm is exhaustive; it finds all the rules with specified
support and confidence. In addition, ARM doesn’t require
labelled data and is, thus, fully unsupervised. Below we define
important terminology regarding ARM:

Itemset: Let X; be items, then I ={Xj,..., Xy} is an Itemset
of k different items, with k > 1.

Association rule: Consider a dataset D, having m different
types of items and n transactions defined by the itemsets
constructed from the items. An association rule exposes the
relationships between the elements of the itemsets in the set
of n transactions.

Support: The support of an association rule involving
itemsets X and Y is the percentage of transactions in dataset
D that contain itemsets X and Y. The support of an association
rule X - Y:

support(X —Y) = support(X UY) = P(XUY)

Confidence: The confidence is the percentage of transac-
tions in the dataset D with itemset X that also contains the
itemset Y. The confidence is calculated using the conditional
probability, which is further expressed in terms of itemset
support: con fidence(X — Y) = P(Y|X) = support(X U
Y')/support(X)

Lift: Lift is used to measure the frequency of the occurrence
of X and Y together if both are statistically independent of
each other. The lift of rule (X — Y) is defined as lift(X —
Y) = confidence(X — Y)/support(Y).

A lift value of 1 indicates that X and Y appear as frequently
together as they appear individually under the assumption of
conditional independence.

III. METHOD

Figure 2 presents an overview of the method for refining
MRs based on rule mining. In general, the proposed method
comprises two phases. Phase I is in charge of identifying
the degree of applicability of the set of MRs selected. It is
important to highlight that our method does not cover the
selection of appropriate MRs. We assume that there is already
a predefined set of several MRs. Phase II uses the refined MRs
to create or improve the test suite for future SUT versions.

Thus, the output of this phase could be seen as a regression
test suite. Each phase is thoroughly described below:

A. Phase I

Phase I comprises three modules: Test Data Generation
Module (TDG Module), Metamorphic Test Module (MT Mod-
ule) and Analyser Module. Overall, the TDG Module produces
the test data that will feed the SUT and the MT Module.
In the MT Module, the test data is transformed based on
the indications of each MR; then, such transformed data is
executed against the SUT. Both SUT outputs, the output
produced with test data and the transformed test data, are
executed against SUT, are checked against the MRs in the
MR Checker. Then, the test data and the results of the MR
Checker Module are organised and stored in a Log file. The
Log file is used in the Analyser Module, where processed and
refined MRs based on rules are extracted. These modules, their
internal settings and their activities are detailed below:

1) TDG Module: This module generates the test data,
which will feed the SUT. It is important to note that our
method does not try to add something new in the field of test
data generation techniques. As we explained in Section II-B,
our method uses fuzzing testing to generate test data. Overall,
the basic fuzzing workflow involves three basic components,
input generator, executor, and defect monitoring. There are
open-source tools that can be used in this module. However,
it is necessary to consider the SUT’s application domain.
For instance, fuzzers such as SPIKE proxy, Peach Fuzzer,
and OWASP WSFuzzer are highly recommended for security
purposes in web systems. Also, the programming language
must be considered when selecting the fuzzer. For instance,
0SS-Fuzz, Google’s open-source fuzzing platform, supports
Java and Python language for finding security vulnerabilities,
stability issues, and functional bugs. Regardless of the Fuzzer
used, this module’s most important is storing the generated
test data.

2) MT Module: Overall, this module is responsible for
performing the test data transformation based on the changes
in the inputs specified by the MRs, executing the transformed



test data, and checking if the test data and the transformed
test data outputs match the change predicted by the MRs.
This module has three main activities, Set of MRs, Test data
transformations, and MR Checker.

o Set of MRs: It is important to note that our approach does
not involve the initial selection of the MRs. Our approach
assumes the prior existence of a predefined set of MRs.

o Test data transformation: This activity is in charge of
transforming the test data according to the change speci-
fied by each MR. To the best of our knowledge, no tool
performs this activity automatically, i.e., the translation
of input change described by the MR and its meaning
into code. Thus, this is considered to be a manual task.

e MR Checker: This activity is responsible for checking
that both outputs, test data and transformed test data
match the change predicted by the corresponding MR.

Once the test data is generated, transformed, and compared
by the MR Checker, i.e., the verdict of the MR Checker is
ready, a Log file is produced with the following information:
execution ID, test data, function call, and the MR Checker
verdict per MR.

3) Analyser Module: The Analyzer Module is in charge of
discovering interesting relations between test data and whether
or not a certain MR has been violated. This module has
three main activities, Pre-processing, Tester feedback, and Rule
mining. Below we describe each activity in detail as well as
their internal process:

o Pre-processing: This activity is responsible for ensuring
that the data is correct, consistent and usable. Also, it
shows the tester an initial summary of the percentage of
violations and not violations per each MR and function
call. This activity has three main functions: data quality,
clean, and summary report. The data quality function is
responsible for checking that Log has no missing data,
as well as removing the rows that are not needed or in-
consistent rows. The clean removes duplicate entries. The
Summary report is based on the percentage of violations
and no-violation per MRs. Also, it provides the tester
with the ability to inspect some random sample values
and atypical values. This is done to increase confidence
in the suitability of the MRs.

o Tester feedback: This activity is in charge of qualifying
MR’s verdict based on the summary report provided
by the Pre-processing activity. Here the tester needs to
perform two checks when there is an incorrect and correct
behaviour of the MR Checker output:

a) Incorrect behaviour: The tester evaluates whether
there is an obvious fault in the SUT. Phase I should
be repeated as long the fault is present.

b) Correct behaviour: In the correct behaviour there are
two possibilities.

b.1) MR not violated which represents a positive test.

b.2) MR violated which represents a negative test.

If specific MR is violated 100% of the time, we assume
that the MR does not apply to the tested function. On

the other hand, if it is not violated 100% of the time, we
assume that the MR matches the tested function. In both
cases, the tester can directly decide whether to include
them in the Rule file. Those 100% violations could be
used as negative tests and the 100% of no violations as
positive tests. We also look at the atypical values; for
instance, if the MR was violated or not violated only

10% of the time.

e Rule mining (predefined data type relations): This
activity is responsible for generating the rule set by
discovering interesting relationships between the test data
and whether or not a particular MR has been violated.
This activity has three internal steps:

1) Encoding: This step is in charge of preparing the
data according to the requirements of the rule mining
algorithm. For example, Apriori [14], which is the
algorithm used in this paper, works only with cat-
egorical features. Thus, this component categorises
and generalises the numerical inputs into string rep-
resentations.

2) Rule generation: This step is responsible for generat-
ing the set of rules using the Apriori ARM algorithm.

3) Data type relation: This step is in charge of gener-
alising the data based on its data type relation. This
data type is predefined. For example, the test data for
SUT can be generalised using partial order theory.
The partial order defines a notion of comparison be-
tween at least two elements, e.g., input, and input,.
The two elements input, and input, can be in any of
four mutually exclusive relationships to each other:

input, < inputy
input, = input,
input, > inputy
input, and input, are incomparable
The latter relationship is not present in our data.

B. Phase I

Phase II is in charge of generating the test suite for
regression testing purposes. Overall, this phase takes the Log,
which has the test data generated and takes the Log with the
set of rules for generating the final test suite.

IV. RESULTS AND DISCUSSION

This section presents and discusses the preliminary results
of our approach. Let’s consider the Algorithm 1 as the SUT.
Algorithm 1 is a program that computes three basic arithmetic
operations, addition, subtraction, and multiplication between
two integers. The full set of data generated during our ex-
periments, as well as all scripts, can be found in our GitHub
repo’.

A. Phase I

1) Test Data Generation Module: In this module, we
create a fuzzer based on a random number generator. For this,

Thttps://github.com/aduquet/VST2023-BugORNOTbug
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Algorithm 1 Calculator()

1: procedure ADDSUB(int a, int b)
2 function ADD(a, b)

3 return a + b

4: function SUB(a, b)

5 return a - b

6 function MUL(a, b)

7 return a * b

we use the NumPy random function in Python. A total of 100
random numbers, elements of {0, 1, 2, ..., 9}, were generated
for input, and inputy, following a uniform distribution. Since,
for some MRs, a constant is needed, it was generated only
once and reused every time it was needed. Figure 3 shows the
histogram of the generated test data, i.e., input, and input.

Count

2 3 4 5 6 7
Input values

Fig. 3: Distribution of data generated for input, and input,

2) MT Module:

e Set of MRs: Table I describes the set of MRs for
Algorithm 1. For our SUT, we take advantage of the
generic rules of arithmetic to build a set of four MRs
that may apply to the SUT. MR,, MR3, and MR, need
a constant k. That constant was randomly generated only
once and reused each time it was needed.

TABLE I: Set of MRs for Algorithm 1

MR | Change in the input | Expected output
MR; | Permute the inputs Remain equal
MR> | Multiply by a positive constant k& > 1 Increase

MR3 | Adding a positive constant k to each operand Remain equal

MR, | Subtracting a positive constant k from each operand | Remain equal

o Test data transformation Table 11 shows how the inputs
are transformed following the MR indications.

e MR Checker: Table III shows how the MR Checker
checks the outputs following the expected output pre-
dicted by the MRs and gets the verdict, i.e., not violated
or violated for our SUT.

3) Analyser Module:
e Pre-procesing: Figure 4 shows an example of the sum-

mary report for Algorithm 1, i.e., not violated or violated,
with a controlled input space.

Tester feedback: Figure 4 shows the percentage of MR
not violated and violated per function call. From the first
line, which belongs to the ADD function, we can see that
for MR3 and MRy, there are 100% violations. In this case,
we assume that MR3 and MR4 do not apply to the SUM
function. However, we have two options: include a test
(negative test) for all test data or not include it. on the
other hand, MR1 and MR2 present 100% and 99% of not
violation respectively. After inspecting random samples to
check, we can conclude that MR; and MRy completely
match the ADD function. This means that MR1 and 99%
of MRy will be directly included in the set of rules to
build positive tests in phase II. The 1% violation is a
particular case for MRy in the ADD function, which
occurs whenever input, and input, are equal to 0.

MR, in Function ADD MR, in Function ADD MR, in Function ADD MR, in Function ADD
10%
100.0% 99.0% 100.0% 100.0%
MR, in Function SUB MR, in Function SUB MRy in Function SUB MR, in Function SUB
6.0%
0%
61.0%
%4.0% 100.0% 1000%
MR, in Function MUL MR, in Function MUL MR, in Function MUL MR, in Function MUL
1.0% a0%
100.0% 89.0% 1000% 91.0%
Violated Not violated

Fig. 4: Summary report for the tester feedback

In the second line of pie charts in the Figure 4, which
belongs to the SUB function, you can see the opposite
behaviour of MR3 and MRy compared to the ADD
function. For these MR we have 100% non-violations.
This indicates that the MRs fully match the SUB function.
Like MR and MR5 in the ADD function, MR3 and MR,
can go directly as a positive test for the SUB function in
phase II. We can’t say to much about MR; and MRs
for SUB function. These MRs, i.e., MR; and MR, are
the ones who we are interested to analyse with the rule
mining.

The results from MUL function are in the third line of
the pie charts in the Figure 4. In this function, one can
see that MR; and M R3 behave the same as in the ADD
function, which means that MUL also fully matches MR
and can be included directly in the final rules. It similarly



TABLE II: Test data transformations of the test data according with the MRs described in Table I for Algorithm 1

MR ‘ Input change

‘ Test data (input,, input;) ‘ transformed test data (T-input,, T-input;)

MR; Permute the inputs

MR2 | Multiply by a positive constant k > 1

MRs3 | Adding a positive constant k£ to each operand

MRy | Subtracting a positive constant k from each operand

Tinputa =a, inputy = b

T-input, = b, T-input;, = a

T-input, = a * k , T-input, = b * k
T-input, = a + k, T-input, =b + k
T-input, = a - k, T-input, =b - k

T a, b are elements of {0, 1, 2, ..., 9}

TABLE III: MR Checker verdict example according with the expected outputs predicted by the MRs described in Table I for
Algorithm 1

MR ‘ Expected output ‘ Test data

‘ transformed test data

| MR Checker | Verdict

MR

Remain equal T-input, = b, T-input, = a

T t, =
MR2 Increase 1npula =4 T-input, =a * k, T-input, =b * k
MR3 Remain equal tinoutr = b T-input, =a + k, T-input, =b + k
MR, | Remain equal putsy = T-input, = a - k, T-inputy =b - k

SomeFunc(input,,inputy) == SomeFunc(T-input,, T-inputy) True: No-Violated
SomeFunc(input,,inputy) < SomeFunc(T-input,, T-input;) '
SomeFunc(input,,inputy) == SomeFunc(T-input,, T-inputp)

. . . . False: Violated
SomeFunc(input,,inputy) == SomeFunc(T-input,, T-inputy)

T a, b are elements of {0, 1, 2, ..., 9}

SomeFunc refers to a function call of the class, i.e., ADD, SUB or MUL in Algorithm 1

TABLE IV: MR Checker output example

id | (input,,input;) | Func Call | MR; | MRy | MR3 | MRy
0 (0,0) add v X X X
1 (1,1) sub v X X X
2 2,1) mul v X X X
299 | (9,9) add v v X X
v': Not violate, X: Violated

happens with MR3; it has the same behaviour as the ADD
function, meaning we can treat it in the same way as MRj
for ADD function. The 11% of the violated cases in MUL
function for MRy occurs whenever input, or input, are
equal to 0. Here one could assume that we have other
particular case in the test data. It indicates that we can
use the this particular case to create a negative MR, test
for MUL. It cannot be the same as in the ADD function
since in the MUL function, these violations occur when
either input, or input, is 0, and in ADD function, both
inputs must be equal to zero. From the information in
Figure 4 one can assume the following:

a) MR; applies to ADD and MUL function for all the
test data.

b) MRj applies to the SUB function for almost all the
test data, but when input, == input, == 0, MRy must
be used as a negative test.

¢) MRg3 and MR, does not apply to the ADD function.

d) MRj3; and MRy applies to the SUB function for all
the test data.

f) MR3 does not apply to the MUL function.

o Rule mining: We apply the Apriori algorithm with mini-

mal support and maximum confidence thresholds, i.e., 0.2
and 1. We created the data type relation in the following
way:

input, < inputy

input, = input

input, > input,

Table V shows the final set of detected rules. The first
three rules are the ones that were directly inferred from
the Tester Feedback. The other three rules are the output
of the ARM. Table V shows that the relation a<b has
the largest support. This is due to the amount of samples
that fall in that range. The lower support belongs to the
relation a == b, meaning that not many samples fall into
that range.

TABLE V: Final set of rules

RHS | LHS | conf | sup | lift
(Ca==b==0, ADD) MR32 = Violated

(’a == b’, SUB) MR2 = Not violated

(Ca==0"or’b == (0’, MUL) | MR2 = Violated

(a < b’, SUB) MR2 = Violated 1.0 046 | 1.639
(’a > b’, SUB) MR2 = Not violated | 1.0 0.32 | 2.564
(a==1b’, SUB) MR3 = Violated 1.0 0.06 | 1.639

RHS: Right Hand Side, LHS: Left Hand Side

B. Phase I

With the information assumed in the feedback tester step
and the Table V, one can create a test suite for regression
testing purposes. Figure 5 shows an example of test code for
the SUB function using MR; and the ADD function using
MRj;. The full example can be found in our GitHub repository.

C. Remarks on effectiveness

In terms of MRs selection, our method cannot be worse
than any existing method that manually create MRs. First, our
method reuses the already created MRs. Second, our method
can add more MRs by refining the existing ones with specific
test data. Regarding the inspection of the truthfulness of the
test output, i.e., whether or not the MR is violated, it is
important to note that using our approach, whatever the results
of throwing data against the set of MRs, it will always be the
same situation if the MRs have been manually created. In



from toy_example import calculator
from unittest import TestCase

class AddSubTest(TestCase):
global a, b, constant
a=1[0,2,3,2,0]
b =1[1,2,9,1,2]
constant = 9
def test_sub_MR1(self):

for i in range(@,len(a)):

if alil == b[i] == @ or b[i] == a[i]:
expected = calculator(b[i],al[i]).subtraction()
self.assertEqual(calculator(alil,b[i]).subtraction(), expected)

else:
expected = calculator(b[i],al[i]).subtraction()
self.assertNotEqual(calculator(alil,b[i]).subtraction(), expected)

def test_add_MR2(self):
# Output must to be <

for i in range(®,len(a)):

# Violation case

if alil == @ and b[i] == 0 :
expected = calculator(constant * a[il, constant % b[i]).add()
self.assertEqual(calculator(alil,b[i]).add(), expected)

#No-violation case

else:
expected = calculator(constant * a[i], constant * b[i]).add()
self.assertlLess(calculator(alil,b[i]).add(), expected)

Fig. 5: Example test suit using refined MRs

fact, it is part of the MT approach to inspect such results, i.e.,
whether or not the MR is violated.

The advantage of our approach is that it can provide hard
facts on which MRs out of the set of MRs can and cannot be
applied. In this regard, our approach reduces the time spent in
selecting MRs, which is a manual and very time-consuming
task. The downside of our approach is the time required for
setup, the runtime of MRs against the test data, and manual
inspection. However, the execution of the MRs with the test
data can be automated, and the manual inspection is performed
only once.

In terms of the effectiveness of our approach to finding
defects, we face the same problem as any testing approach. It
is well known that there is an open and old discussion about
the dependency of test data and test cases. Any approach that
uses MR can only find fault with them if the test data is
chosen wisely. The proper selection of test data is planned
to be explored in the future.

D. Threats to validity

In the context of our proof-of-concept validation, two types
of threats to validity are most relevant: threats to internal and
external validity.

1) Internal validity: We used a well-known program as a
proof-of-concept and the most common ARM algorithm to
achieve internal validity. It is not fully clear in which situations
the ARM is the best choice for our method. Future research
in the direction of evaluating different ARM algorithms and
feature selection needs to be done.

2) External validity: With regard to external validity, our
study is rather limited since we only use one well-understood
class in our experiments. Thus, the actual scope of the effec-
tiveness of our proposed method is yet to be determined.

3) Construct validity: In this paper, we used the NumPy
package, in particular its random function, to generate the
test data. The usage of these third-party libraries represents
potential threats to construct validity. To avoid this, we verified
that the results produced by the random function are uniform
by manually inspecting the generated distributions.

V. RELATED WORK

Since MT was introduced in 1998 by Chen et al. [2], MT has
been demonstrated to be an effective technique for testing in a
variety of application domains. Several studies have shown MT
as a strong technique for testing the “non-testable programs”
where an oracle is unavailable or too difficult to implement
[15]-[18]. Also, MT has been demonstrated to be an effective
technique for testing in a variety of application domains, e.g.,
autonomous driving [19], [20], cloud and networking systems
[21], [22], bioinformatic software [23], [24], scientific software
[25]. However, the efficacy of MT heavily relies on the specific
MRs employed and its interpretation of the meaning of MR
violations.

As we mentioned before, some approaches indirectly reduce
the manual effort required to interpret the meaning of an MR
violation through prioritisation. For instance, Cao et al. [7]
provides quantitative suggestions/guidance for developing au-
tomated means of selecting/prioritising MR for cost-effective
MT. Srinivasan et al. [5], [6] proposed two MR prioritisation
approaches to improve MT’s efficiency and effectiveness.
These approaches use (i) fault detection information and
(i1) statement/branch coverage information to prioritise MRs.
Zhang et al. [8] suggested strategies to clean MRs by deleting
duplicate or redundant MRs. These approaches offer indirect
help since by prioritising or reducing the set of MRs, the
number of test cases will be reduced as well. Thus, the manual
effort of inspection through the violated MRs is less.

VI. CONCLUSION AND FUTURE WORK

We presented a new ARM-based method for refining MRs
that suggest whether a detected MR violation results from a
fault in the SUT or arises from the fact that the MR does
not apply for the used test data. Our method assumes that a
predefined set of MRs is provided and uses the concepts of
fuzz testing and ARM. Our method consists of two phases.
The purpose of Phase I is to evaluate the level of applicability
of the chosen set of MRs.

In phase I, there are three main modules: TDG Module, MT
Module, and Analyser Module. The TDG Module generates
the test data that will be sent to the MT Module and SUT.
According to each MR’s instructions, the test data is changed
in the MT Module before being run against the SUT. In
the MR Checker, the output from running test data and the
transformed test data against SUT are compared to the changes
predicted by the MRs. The test data and the MR Checker
Module’s results are then organised and saved in a Log file.
The Analyser Module uses the Log file to process and improve
MRs according to relations test data and whether or not the
MR is violated.



Phase II is in charge of analysing the final set of rules and
creating the new test suite. In our proof-of-concept, we used a
toy example, a program that computes three basic arithmetic
operations, addition, subtraction, and multiplication between
two integers. We show step by step the execution of our
method and its expected outputs from each module.

An advantage of our method is that it can be applied not on
the SUT with only integer inputs and outputs but on the class
under test where we can have any inputs. Also, of mixed types
of data. Thus, our method can be generalised for inputs of any
type, not only for integers. It removes some limitations on the
type of SUT that can be analysed. The weakness of our method
is the need for manual feedback from the tester. However,
compared with the manual effort already needed in the MT
approach, we consider that the effort needed in our approach is
less. We must manually translate the rules into assertions (test
code) to generate the final test suite. For efficiency reasons, it
would be better to have an automatic translation of the rules
generated into test code. Unfortunately, there is no simple way
to do this.

Given the limitations of our study, more experiments have
to be conducted to test our proposed method empirically. We
are currently focusing on extending our experiments in three
directions. First, we will add more MRs in the initial set
of MRs to test the sensitivity of our method with regard to
the filtering MRs that have no relation to the SUT. We will
systematise this by using the relation between the input type
and the MR. Second, we will apply our proposed method to
more SUT. Third, we will do a mutation analysis to evaluate
the effectiveness of our approach.
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