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Abstract— Recently, flash memories have become a competitive
solution for mass storage. The flash memories have rather dif-
ferent properties compared with the rotary hard drives. That is,
the writing of flash memories is constrained, and flash memories
can endure only limited numbers of erases. Therefore, the design
goals for the flash memory systems are quite different from these
for other memory systems. In this paper, we consider the problem
of coding efficiency. We define the “coding-efficiency” as the
amount of information that one flash memory cell can be used
to record per cost. Because each flash memory cell can endure a
roughly fixed number of erases, the cost of data recording canbe
well-defined. We define “payload” as the amount of information
that one flash memory cell can represent at a particular moment.
By using information-theoretic arguments, we prove a coding
theorem for achievable coding rates. We prove an upper and
lower bound for coding efficiency. We show in this paper that
there exists a fundamental trade-off between “payload” and
“coding efficiency”. The results in this paper may provide useful
insights on the design of future flash memory systems.

I. I NTRODUCTION

Recently, flash memories have become a competitive solu-
tion for mass storage. Compared with the conventional rotary
hard drives, flash memories have high random access read
speed, because there is no mechanical seek time. Flash mem-
ory storage devices are also more lightweight, power efficient,
and kinetic shock resistant. Therefore, they are becoming
desirable choices for many applications ranging from high-
speed servers in data centers to portable devices.

Flash memories are one type of solid state memories. Each
piece of flash memory usually contains multiple arrays of
flash memory cells. Each memory cell is a transistor with
a floating gate. Information is recorded using one memory
cell by injecting and removing electrons into and from the
floating gate. The process of injecting electrons is called
programming and the process of removing electrons is called
erase. Programming increases the threshold voltage level of the
memory cell, while erase decreases the threshold voltage level.
The threshold voltage level of the memory cell is the voltage
level at the control gate that the transistor becomes conducting.
In the reading process for the memory cell, the threshold
voltage level is detected, thus the recorded information can
be recovered.

The memory cells are organized into pages and then into
blocks. The programming is page-wise and erase is block-
wise. Usually, one memory block is first erased, so that all
memory cells within the block return to an initial threshold
voltage level. After the erase operation, the pages in the
block are programmed (possibly multiple times), until normal

threshold voltage level ranges are used up. Then, the memory
block is erased again for further use.

One challenge for flash memories is that the number of erase
operations that one memory cell can withstand is quite limited.
For current commercial flash memories, such maximal num-
bers of block erase operations range from 5,000 to 100,000.
After such a limited number of erase operations, the flash
memory cell would become broken or unreliable. Therefore,
data encoding methods must be carefully designed to address
such an issue.

In fact, flash memories can be considered as one type of
write-once-memories. The write-once-memories were first dis-
cussed in the seminal work by Rivest and Shamir [1]. Previous
examples of write-once-memories include digital optical disks,
punched paper tapes, punched cords, and programmable read-
only memories etc. Rivest and Shamir show that by using
advanced data encoding methods, the write-once-memories
can be rewritten. In [1], one theorem for the achievable
data recording rates of binary write-once-memories has been
proven using combinatorial arguments. During the passed
research, many data encoding methods for rewriting the write-
once-memories have been proposed, see for example, [2] [3]
etc.

In this paper, we consider a coding efficiency problem
for data encoding on flash memories. Unlike other type of
computer memories, the cost of data encoding can be well-
defined for flash memories. That is, the cost for each erase
operation can be defined based on the cost of the flash memory
block and the total number of erase operations that the memory
block can have. The coding efficiency problem is therefore
the problem of recording more information using fewer erase
operations. To our best knowledge, such a design problem for
flash memories has never been discussed before.

We assume that one flash memory block hasN cells, and
each cell can takeK voltage levels. We assume that the data
encoding scheme uses the memory block forT rounds between
two consecutive erase operations. That is, in the first round, a
messageM [1] is recorded using the block, and in the second
round, a new messageM [2] is recorded, and so on. Suppose
thatNlt bits are recorded during thet-th round. We define the
payloadp and coding efficiencyc as

p =
1

T

T
∑

t=1

lt, c =
α

K

T
∑

t=1

lt, (1)

where,α is a constant depending on the type of the memory
block, e.g., NOR type, NAND type, single-level-cell, multi-
level-cell etc. The constantα may be used to reflect the cost
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for the flash memory block. It should be clear that the coding
efficiency measures the amount of recording information per
voltage level cost. We may also define the voltage level cost
per recorded bit, which is exactly1/c.

In this paper, we first prove a coding theorem for achievable
rates of data encoding on flash memories using information-
theoretic arguments. Using the coding theorem in this paper,
we prove an upper bound for the optimal coding efficiency.
We also show a lower bound of optimal coding efficiency
using a specific coding scheme. Surprisingly, we find that there
exists a tradeoff between the optimal coding efficiency and
payload. These results may provide useful insights and tools
for designing future flash memory storage systems.

The rest of this paper is organized as follows. In Section II,
we present the coding theorem for achievable coding rates. In
Section III, we show the upper bound of the optimal coding
efficiency. In Section IV, we present the lower bound for
optimal coding efficiency using a specific coding scheme. The
coding efficiency to payload tradeoff is discussed in Section
V. Some concluding remarks are presented at Section VI.

II. CODING THEOREM

We consider a memory block withN memory cells. Each
memory cell can takeK threshold voltage levels, that is, each
memory cell can be at one of the states0, 1, . . . ,K− 1. After
one erase operation, all memory cells are at the stateK − 1.
During each programming process, the state of each cell can
be decreased but never increased. Assume that the memory
block can be reliably used forT rounds of information record-
ing, where messagesM(1),M(2), . . . ,M(t), . . . ,M(T ) are
recorded. We define the corresponding data rate in thet-
th round l(t) = log2(|M(t)|)/N , where |M(t)| denote the
alphabet size of the messageM(t). In this case, we say that
the sequence of data ratesl(t), t = 1, . . . , T is achievable. We
assume that all theT messages are statistical independent.
We denote the state of then-th cell in the block during
time t by Xn(t). We use the notationXN

1 (t) to denote the
sequenceX1(t), X2(t), . . . , XN (t). Similarly, Xn

1 (t) denotes
the sequenceX1(t), X2(t), . . . , Xn(t), where1 ≤ n ≤ N .
We useH(·) to denote the entropy and conditional entropy
functions as in [4].

Theorem 2.1: A sequence of data ratesl(t), t = 1, . . . , T
is achievable, if and only if, there exist random variables
U(1), . . . , U(T ) jointly distributed with a probability distri-
butionP (U(1), . . . , U(T )), such that,

P (U(t) = j|U(t− 1) = i) = 0, if j > i, for t = 2, . . . , T,

l(t) ≤ H (U(t)|U(t− 1)) , for t = 2, . . . , T,

l(1) ≤ H (U(1)) . (2)

By convention,U(0) = K − 1 with probability 1.
Proof: The achievable part is proven by random binning.

For thet-th round of data recording, we construct a random
code by throwing typical sequences ofU(t) into exp {Nl(t)}
bins uniformly in random. The messagem(t) is encoded by
finding a sequenceXN

1 (t) in the m(t)-th bin, such that the

sequenceXN
1 (t) is jointly typical with XN

1 (t − 1). If such
a sequence can not be found, then one encoding error is
declared.

Suppose thatl(t) ≤ H (U(t)|U(t− 1)) − 2ǫ, where ǫ is
an arbitrarily small positive number. Then, the probability of
encoding error can be upper bounded as follows.

P(error) =

(

1− 1

exp(Nl(t))

)N1

(a)

≤ exp

(

− N1

exp(Nl(t))

)

(b)

≤ exp

(

− exp (N (H(U(t)|U(t− 1))− ǫ))

exp {N (H(U(t)|U(t− 1))− 2ǫ)}

)

≤ exp (− exp(ǫN)) (3)

where,N1 denotes the number of typical sequencesXN
1 (t)

that are jointly typical withXN
1 (t − 1), (a) follows from the

inequality, (1 − x) ≤ exp(−x), for 0 ≤ x < 1, (b) follows
from the fact thatN1 ≥ exp {N (H(U(t)|U(t− 1))− ǫ)}.
The achievable part of the proof then follows from the fact
that ǫ can be taken arbitrarily small.

We prove the converse part by constructing some random
variablesU(1), . . . , U(T ), which satisfy the conditions in the
theorem. Assume that there exists at least one coding scheme,
which satisfies the conditions in the theorem.

In the first step, we wish to show

H (M(t)) ≤ H
(

XN
1 (t)

∣

∣XN
1 (t− 1)

)

(4)

This is because, on the one hand,

H
(

M(t), XN
1 (t)|XN

1 (t− 1)
)

= H
(

XN
1 (t)|XN

1 (t− 1)
)

+H
(

M(t)|XN
1 (t), XN

1 (t− 1)
)

(a)
= H

(

XN
1 (t)|XN

1 (t− 1)
)

(5)

where, (a) follows from the fact thatM(t) can be completely
determined by observingXN

1 (t). On the other hand,

H
(

M(t), XN
1 (t)|XN

1 (t− 1)
)

= H
(

M(t)|XN
1 (t− 1)

)

+H
(

XN
1 (t)|M(t), XN

1 (t− 1)
)

(a)
= H (M(t)) +H

(

XN
1 (t)|M(t), XN

1 (t− 1)
)

(6)

where, (a) follows from the fact thatM(t) is independent of
XN

1 (t− 1).
In the second step, we can show that

H (M(t)) ≤
N
∑

n=1

H (Xn(t)|Xn(t− 1)) (7)

This is because,

H
(

XN
1 (t)|XN

1 (t− 1)
)

=

N
∑

n=1

H
(

Xn(t)|Xn−1
1 (t), XN

1 (t− 1)
)

≤
N
∑

n=1

H (Xn(t)|Xn(t− 1)) (8)



where the last inequality follows from the fact that conditions
do not increase entropy.

Let us define random variablesZ,U(1), U(2), , . . . , U(T )
as follows. The random variableZ takes values in
{1, 2, . . . , N} uniformly in random.

U(t) = Xn(t), if Z = n (9)

The probability distribution of the random variables
Z,U(1), U(2), , . . . , U(T ) can be factored as follows.

P(Z)

T
∏

t=1

P(U(t)|U(1), . . . , U(t− 1), Z) (10)

It can be checked that

P (U(t) = j|U(t− 1) = i) = 0, if j > i (11)

Finally, we wish to show that

Nl(t) = H (M(t)) ≤ NH (U(t)|U(t− 1)) (12)

This is because

H(M(t)) ≤
N
∑

n=1

H (Xn(t)|Xn(t− 1))

(a)
= NH (U(t)|U(t− 1), Z)

(b)

≤ NH (U(t)|U(t− 1)) (13)

where, (a) follows from the definition ofZ, (b) follows from
the fact that conditions do not increase entropy.

Therefore, we have constructed the random variables
U(1), . . . , U(T ), which satisfy the conditions in the theorem.
The theorem is proven.

III. U PPERBOUND

In this section, we prove an upper bound for the achievable
coding efficiency. It is clear that the coding efficiency can
be calculated based on the Theorem 2.1 by forming an
optimization problem. Let us define a random variableV (t) =
U(t − 1) − U(t) with an alphabet{0, 1, . . . ,K − 1}. With a
given payloadp, the optimization problem is as follows.

min
P(V (1),...,V (t),...V (T ))

E

[

∑

t

V (t)

]

(14)

Subject to:
∑

t

H(V (t)|U(t− 1)) ≥ Tp (15)

P

(

∑

t

V (t) ≥ K

)

= 0 (16)

By convention,U(0) = K − 1 with probability 1. It should
be clear that the coding efficiency

c ≤ αTp
∑

t E(V (t)∗)
(17)

whereV (t)∗ denotes the minimizer of the optimization prob-
lem.

However, the above optimization problem is difficult to
solve in closed-form. We will consider instead a relaxed
optimization problem. First, we remove the constraint in Eqn
16. Second, we relax the constraint

∑

t H(V (t)|U(t − 1)) ≥
Tp to

∑

t H(V (t)) ≥ Tp, due to the fact that conditions do
not increase entropy. Thus, the original optimization problem
becomes

min
P(V (1),...,V (t),...V (T ))

E

[

∑

t

V (t)

]

Subject to:
∑

t

H(V (t)) ≥ Tp (18)

In a final step, because all the constraint and objective
functions only depend on marginal distributions ofV (t), we
may further relax the above optimization problem by replacing
the joint distribution

P(V (1), . . . , V (t), . . . , V (T )) (19)

with a set of pseudo marginal distributions

P(V (1)), . . . ,P(V (t)), . . . ,P(V (T )) (20)

The pseudo marginal distributions may or may not correspond
to a joint distribution. The final relax optimization problem is
thus as follows.

min
P(V (1)),...,P(V (t)),...,P(V (T )))

E

[

∑

t

V (t)

]

Subject to:
∑

t

H(V (t)) ≥ Tp (21)

Using the Lagrangian method, we can find that the optimal
distribution forV (t) takes the following form

P(V (t) = j) =
exp(−βtj)

∑K−1
s=0 exp(−βts)

(22)

for a certain parameterβt > 0. Let us define the cost function
cost(βt) and rate function rate(βt) at the t-th data encoding
round as follows.

cost(βt) = E [V (t)] , rate(βt) = H(V (t)) (23)

whereV (t) has a probability distribution in Eqn. 22. Both the
two functions have closed-form formula,

cost(βt) =

∑K−1
j=0 j exp(−βtj)
∑K−1

s=0 exp(−βts)

rate(βt) = βtcost(βt) + log

(

K−1
∑

s=0

exp(−βts)

)

(24)

Theorem 3.1: The coding efficiencyc is upper bounded by

c ≤ α
∑

t rate((βt))
∑

t cost(βt)
(25)

where,βt corresponds to the solution to the relaxed optimiza-
tion problem in Eqn. 21.



Proof: The optimal value of a relaxed maximization
optimization problem is greater than or equal to the optimal
value of the original optimization problem.

In our further discussion, we need to define a stage coding
efficiency function

f(β) =
rate(β)
cost(β)

(26)

Lemma 3.2:

d(rate(β))
d(cost(β))

= β (27)

Proof:

d rate(β)
d cost(β)

=
cost(β) + βcost′(β) +

∑

k −k exp(−βk)/
∑

s exp(−βs)

cost′(β)

=
cost(β) + βcost′(β) − cost(β)

cost′(β)
= β

(28)

where, the derivatives at the right hand sides are with respect
to β.

Lemma 3.3: The function cost(β) is a decreasing function
with respect toβ.

Proof: In order to show that cost(β) is a decreasing func-
tion, it is sufficient to show thatlog(cost(β)) is a decreasing
function. The derivative oflog(cost(β)) is

∑K−1
k=0 k exp(−kβ)
∑K−1

k=0 exp(−kβ)
−
∑K−1

k=0 k2 exp(−kβ)
∑K−1

k=0 k exp(−kβ)
(29)

By using the Cuachy-Schwarz inequality, we have

[

K−1
∑

k=0

k exp(−kβ)

]2

≤
K−1
∑

k=0

exp(−kβ)
K−1
∑

k=0

k2 exp(−kβ)

(30)

and the equality holds only whenβ goes to infinity. It thus
follows that the derivative oflog(cost(β)) is strictly negative
for any finiteβ. The lemma follows.

Lemma 3.4: The functionf(β) is an increasing function
with respect toβ.

Proof: The derivative off(β) is as in Eqn. 31.
The lemma is proven if we can show that
[

∑K−1
k=0 exp(−kβ)

] [

∑K−1
k=0 k2 exp(−kβ)

]

[

∑K−1
k=0 k exp(−kβ)

]2 ≥ 1 (32)

That is,

[

K−1
∑

k=0

k exp(−kβ)

]2

≤
[

K−1
∑

k=0

exp(−kβ)

] [

K−1
∑

k=0

k2 exp(−kβ)

]

(33)

We can show that this is indeed the case by using the Cuachy-
Schwarz inequality,

(

∑

k

√
xkyk

)2

≤
(

∑

k

xk

)(

∑

k

yk

)

(34)

Theorem 3.5: In the solution to the optimization problem
in Eqn. 21,

β1 = β2 = . . . = βt = . . . = βT = β. (35)

Therefore, the coding efficiency

c ≤ αrate((β))
cost(β)

(36)

Proof: The theorem is proven by contradiction. Suppose
that in the optimization solution for Eqn. 21, there existβs and
βt such thatβs > βt. According to Lemma 3.3, cost(βs) <
cost(βt). We may modifityβs andβt slightly into βs −∆βs

andβt +∆βt, such that

cost(βs −∆βs) = cost(βs) + ∆cost (37)

cost(βt +∆βt) = cost(βt)−∆cost (38)

where∆cost> 0. Therefore, the total sum of cost functions
remains the same. On the other hand, the rate function
corresponding toβs increases with derivativeβs, and the rate
function corresponding toβt decreases with derivativeβt. The
total sum of rate functions increases. Therefore,βs andβt can
not be a part of the optimization solution. This results in a
contradiction. The theorem is proven.

IV. A CHIEVABLE LOWER BOUND USING RANDOM

CODING ARGUMENTS

In this section, we prove a lower bound for the coding
efficiency by using a specific random coding scheme. The
data encoding scheme consists of multiple stages. During all
the stages, the cells in the block are restricted to take one of
two states,k or k − 1, wherek = 1, . . . ,K − 1. Assume in
a certain stage, there arel cells that take the statek − 1, and
the restN − l cells take statek. Then, during this stage, the
state of only one memory cell is changed fromk to k − 1
and l(t) = log2⌊(1 − ǫ)(N − l)⌋ bits can be recorded, where
⌊·⌋ denotes the floor function, andǫ is a small real number,
0 < ǫ < 1.

The data encoding process is as follows. Let us throw
all the sequences of symbols with lengthN and alphabet
{0, 1, 2, . . . ,K − 1} into 2(l(t)) bins uniformly in random. If
the to-be-recorded message ism[t], then we check them[t]-
th bin. We try to find one sequence in the bin, such that the
current configuration of the memory cells can be modified to
be equal to the sequence by turning the state of one memory
cell Xn from k to k−1. If such a sequence can be found, then
we turn the state of the memory cellXn from k to k − 1. If
such a sequence can not be found in the bin, then a decoding
error is declared and we randomly turn one memory cell from
k to k − 1 and go to the next coding stage.



f ′(β) = log

(

K−1
∑

k=0

exp(−kβ)

)











−1 +

[

∑K−1
k=0 exp(−kβ)

] [

∑K−1
k=0 k2 exp(−kβ)

]

[

∑K−1
k=0 k exp(−kβ)

]2











(31)

We assume that the data decoding process knows the
random coding schemes, for example, by sharing the same
random source with the encoder, or using a pseudo random
source. In the first step of data decoding, the decoder can
determine the stage of data encoding by looking at the states
of the memory cells and the numberl of cells being at the
statek−1. The recorded messagem(t) can then be recovered
by looking at the bin index of the current configuration of the
memory cells.

The encoding error probability can be bounded as follows,

P(error) ≤
[

1− 1

⌊(1− ǫ)(N − l)⌋

]N−l

(a)

≤ exp

(

− N − l

⌊(1− ǫ)(N − l)⌋

)

≤ exp

( −1

1− ǫ

)

(39)

where, (a) follows from the inequality,(1 − x)y ≤
exp(−xy), for x ∈ (0, 1), y ≥ 0.

The expected total amount of recoded information between
two erase operations can be bounded as

E(rate) ≥ (K − 1)

×
N
∑

l=0

[

1− exp

( −1

1− ǫ

)]

log2 (⌊(1− ǫ)(N − l)⌋) (40)

For sufficiently largeN and ǫ = 0.5, the total expected
recorded information is lower bounded as

E(rate) ≥ (K − 1)N

2
[1− exp (−2)] log (N/2) (41)

Therefore, the coding efficiency is bounded as follows.

c ≥ α

2
[1− exp (−2)] log (N/2) (42)

The payload can be calculated as

p =
1

N2

N−1
∑

l=0

log2 (⌊(1− ǫ)(N − l)⌋) (43)

Based on the above discussions in this section, we arrive at
the following theorem.

Theorem 4.1: The optimal coding efficiency forK levelN
cell flash memories can go to infinity asN goes to infinity.

V. THE CODING-EFFICIENCY-TO-PAYLOAD TRADEOFF

Some important insights can be gained from the upper and
lower bounds for coding efficiency proved in the previous
sections. From the upper bound, it can be seen clearly that
the coding efficiency decreases as the payload increases. From
the lower bound, it can be seen that the coding efficiency may
go to infinity as the payload decreases to zero. Therefore, we
can conclude that there exists a tradeoff between the coding

efficiency and payload. The tradeoff is illustrated in Fig. 1. In
the figure, the upper and lower bound for coding efficiency
are shown, where the x-axis shows the payload. We assume
α = 1, and the flash memories are 8-level (3bit) TLC type
flash memories.
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Fig. 1. Upper and lower bounds for coding efficiency of 3-bit flash memory
cells.

VI. CONCLUSION

In this paper, we study the coding efficiency problem for
flash memories. A coding theorem for achievable rates is
proven. We prove an upper and lower bounds for the coding
efficiency. We show that there exists a tradeoff between the
coding efficiency and payload. Our discussions in this paper
provide useful insights on the design of future flash memory
systems.
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Abstract— Recently, flash memories have become a competitive
solution for mass storage. The flash memories have rather dif-
ferent properties compared with the rotary hard drives. That is,
the writing of flash memories is constrained, and flash memories
can endure only limited numbers of erases. Therefore, the design
goals for the flash memory systems are quite different from these
for other memory systems. In this paper, we consider the problem
of coding efficiency. We define the “coding-efficiency” as the
amount of information that one flash memory cell can be used
to record per cost. Because each flash memory cell can endure a
roughly fixed number of erases, the cost of data recording canbe
well-defined. We define “payload” as the amount of information
that one flash memory cell can represent at a particular moment.
By using information-theoretic arguments, we prove a coding
theorem for achievable coding rates. We prove an upper and
lower bound for coding efficiency. We show in this paper that
there exists a fundamental trade-off between “payload” and
“coding efficiency”. The results in this paper may provide useful
insights on the design of future flash memory systems.

I. I NTRODUCTION

Recently, flash memories have become a competitive solu-
tion for mass storage. Compared with the conventional rotary
hard drives, flash memories have high random access read
speed, because there is no mechanical seek time. Flash mem-
ory storage devices are also more lightweight, power efficient,
and kinetic shock resistant. Therefore, they are becoming
desirable choices for many applications ranging from high-
speed servers in data centers to portable devices.

Flash memories are one type of solid state memories. Each
piece of flash memory usually contains multiple arrays of
flash memory cells. Each memory cell is a transistor with
a floating gate. Information is recorded using one memory
cell by injecting and removing electrons into and from the
floating gate. The process of injecting electrons is called
programming and the process of removing electrons is called
erase. Programming increases the threshold voltage level of the
memory cell, while erase decreases the threshold voltage level.
The threshold voltage level of the memory cell is the voltage
level at the control gate that the transistor becomes conducting.
In the reading process for the memory cell, the threshold
voltage level is detected, thus the recorded information can
be recovered.

The memory cells are organized into pages and then into
blocks. The programming is page-wise and erase is block-
wise. Usually, one memory block is first erased, so that all
memory cells within the block return to an initial threshold
voltage level. After the erase operation, the pages in the
block are programmed (possibly multiple times), until normal

threshold voltage level ranges are used up. Then, the memory
block is erased again for further use.

One challenge for flash memories is that the number of erase
operations that one memory cell can withstand is quite limited.
For current commercial flash memories, such maximal num-
bers of block erase operations range from 5,000 to 100,000.
After such a limited number of erase operations, the flash
memory cell would become broken or unreliable. Therefore,
data encoding methods must be carefully designed to address
such an issue.

In fact, flash memories can be considered as one type of
write-once-memories. The write-once-memories were first dis-
cussed in the seminal work by Rivest and Shamir [?]. Previous
examples of write-once-memories include digital optical disks,
punched paper tapes, punched cords, and programmable read-
only memories etc. Rivest and Shamir show that by using
advanced data encoding methods, the write-once-memories
can be rewritten. In [?], one theorem for the achievable
data recording rates of binary write-once-memories has been
proven using combinatorial arguments. During the passed
research, many data encoding methods for rewriting the write-
once-memories have been proposed, see for example, [?] [?]
etc.

In this paper, we consider a coding efficiency problem
for data encoding on flash memories. Unlike other type of
computer memories, the cost of data encoding can be well-
defined for flash memories. That is, the cost for each erase
operation can be defined based on the cost of the flash memory
block and the total number of erase operations that the memory
block can have. The coding efficiency problem is therefore
the problem of recording more information using fewer erase
operations. To our best knowledge, such a design problem for
flash memories has never been discussed before.

We assume that one flash memory block hasN cells, and
each cell can takeK voltage levels. We assume that the data
encoding scheme uses the memory block forT rounds between
two consecutive erase operations. That is, in the first round, a
messageM [1] is recorded using the block, and in the second
round, a new messageM [2] is recorded, and so on. Suppose
thatNlt bits are recorded during thet-th round. We define the
payloadp and coding efficiencyc as

p =
1

T

T
∑

t=1

lt, c =
α

K

T
∑

t=1

lt, (1)

where,α is a constant depending on the type of the memory
block, e.g., NOR type, NAND type, single-level-cell, multi-
level-cell etc. The constantα may be used to reflect the cost
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for the flash memory block. It should be clear that the coding
efficiency measures the amount of recording information per
voltage level cost. We may also define the voltage level cost
per recorded bit, which is exactly1/c.

In this paper, we first prove a coding theorem for achievable
rates of data encoding on flash memories using information-
theoretic arguments. Using the coding theorem in this paper,
we prove an upper bound for the optimal coding efficiency.
We also show a lower bound of optimal coding efficiency
using a specific coding scheme. Surprisingly, we find that there
exists a tradeoff between the optimal coding efficiency and
payload. These results may provide useful insights and tools
for designing future flash memory storage systems.

The rest of this paper is organized as follows. In Section II,
we present the coding theorem for achievable coding rates. In
Section III, we show the upper bound of the optimal coding
efficiency. In Section IV, we present the lower bound for
optimal coding efficiency using a specific coding scheme. The
coding efficiency to payload tradeoff is discussed in Section
V. Some concluding remarks are presented at Section VI.

II. CODING THEOREM

We consider a memory block withN memory cells. Each
memory cell can takeK threshold voltage levels, that is, each
memory cell can be at one of the states0, 1, . . . ,K− 1. After
one erase operation, all memory cells are at the stateK − 1.
During each programming process, the state of each cell can
be decreased but never increased. Assume that the memory
block can be reliably used forT rounds of information record-
ing, where messagesM(1),M(2), . . . ,M(t), . . . ,M(T ) are
recorded. We define the corresponding data rate in thet-
th round l(t) = log2(|M(t)|)/N , where |M(t)| denote the
alphabet size of the messageM(t). In this case, we say that
the sequence of data ratesl(t), t = 1, . . . , T is achievable. We
assume that all theT messages are statistical independent.
We denote the state of then-th cell in the block during
time t by Xn(t). We use the notationXN

1 (t) to denote the
sequenceX1(t), X2(t), . . . , XN (t). Similarly, Xn

1 (t) denotes
the sequenceX1(t), X2(t), . . . , Xn(t), where1 ≤ n ≤ N .
We useH(·) to denote the entropy and conditional entropy
functions as in [?].

Theorem 2.1: A sequence of data ratesl(t), t = 1, . . . , T
is achievable, if and only if, there exist random variables
U(1), . . . , U(T ) jointly distributed with a probability distri-
butionP (U(1), . . . , U(T )), such that,

P (U(t) = j|U(t− 1) = i) = 0, if j > i, for t = 2, . . . , T,

l(t) ≤ H (U(t)|U(t− 1)) , for t = 2, . . . , T,

l(1) ≤ H (U(1)) . (2)

By convention,U(0) = K − 1 with probability 1.
Proof: The achievable part is proven by random binning.

For thet-th round of data recording, we construct a random
code by throwing typical sequences ofU(t) into exp {Nl(t)}
bins uniformly in random. The messagem(t) is encoded by
finding a sequenceXN

1 (t) in the m(t)-th bin, such that the

sequenceXN
1 (t) is jointly typical with XN

1 (t − 1). If such
a sequence can not be found, then one encoding error is
declared.

Suppose thatl(t) ≤ H (U(t)|U(t− 1)) − 2ǫ, where ǫ is
an arbitrarily small positive number. Then, the probability of
encoding error can be upper bounded as follows.

P(error) =

(

1− 1

exp(Nl(t))

)N1

(a)

≤ exp

(

− N1

exp(Nl(t))

)

(b)

≤ exp

(

− exp (N (H(U(t)|U(t− 1))− ǫ))

exp {N (H(U(t)|U(t− 1))− 2ǫ)}

)

≤ exp (− exp(ǫN)) (3)

where,N1 denotes the number of typical sequencesXN
1 (t)

that are jointly typical withXN
1 (t − 1), (a) follows from the

inequality, (1 − x) ≤ exp(−x), for 0 ≤ x < 1, (b) follows
from the fact thatN1 ≥ exp {N (H(U(t)|U(t− 1))− ǫ)}.
The achievable part of the proof then follows from the fact
that ǫ can be taken arbitrarily small.

We prove the converse part by constructing some random
variablesU(1), . . . , U(T ), which satisfy the conditions in the
theorem. Assume that there exists at least one coding scheme,
which satisfies the conditions in the theorem.

In the first step, we wish to show

H (M(t)) ≤ H
(

XN
1 (t)

∣

∣XN
1 (t− 1)

)

(4)

This is because, on the one hand,

H
(

M(t), XN
1 (t)|XN

1 (t− 1)
)

= H
(

XN
1 (t)|XN

1 (t− 1)
)

+H
(

M(t)|XN
1 (t), XN

1 (t− 1)
)

(a)
= H

(

XN
1 (t)|XN

1 (t− 1)
)

(5)

where, (a) follows from the fact thatM(t) can be completely
determined by observingXN

1 (t). On the other hand,

H
(

M(t), XN
1 (t)|XN

1 (t− 1)
)

= H
(

M(t)|XN
1 (t− 1)

)

+H
(

XN
1 (t)|M(t), XN

1 (t− 1)
)

(a)
= H (M(t)) +H

(

XN
1 (t)|M(t), XN

1 (t− 1)
)

(6)

where, (a) follows from the fact thatM(t) is independent of
XN

1 (t− 1).
In the second step, we can show that

H (M(t)) ≤
N
∑

n=1

H (Xn(t)|Xn(t− 1)) (7)

This is because,

H
(

XN
1 (t)|XN

1 (t− 1)
)

=

N
∑

n=1

H
(

Xn(t)|Xn−1
1 (t), XN

1 (t− 1)
)

≤
N
∑

n=1

H (Xn(t)|Xn(t− 1)) (8)



where the last inequality follows from the fact that conditions
do not increase entropy.

Let us define random variablesZ,U(1), U(2), , . . . , U(T )
as follows. The random variableZ takes values in
{1, 2, . . . , N} uniformly in random.

U(t) = Xn(t), if Z = n (9)

The probability distribution of the random variables
Z,U(1), U(2), , . . . , U(T ) can be factored as follows.

P(Z)

T
∏

t=1

P(U(t)|U(1), . . . , U(t− 1), Z) (10)

It can be checked that

P (U(t) = j|U(t− 1) = i) = 0, if j > i (11)

Finally, we wish to show that

Nl(t) = H (M(t)) ≤ NH (U(t)|U(t− 1)) (12)

This is because

H(M(t)) ≤
N
∑

n=1

H (Xn(t)|Xn(t− 1))

(a)
= NH (U(t)|U(t− 1), Z)

(b)

≤ NH (U(t)|U(t− 1)) (13)

where, (a) follows from the definition ofZ, (b) follows from
the fact that conditions do not increase entropy.

Therefore, we have constructed the random variables
U(1), . . . , U(T ), which satisfy the conditions in the theorem.
The theorem is proven.

III. U PPERBOUND

In this section, we prove an upper bound for the achievable
coding efficiency. It is clear that the coding efficiency can
be calculated based on the Theorem 2.1 by forming an
optimization problem. Let us define a random variableV (t) =
U(t − 1) − U(t) with an alphabet{0, 1, . . . ,K − 1}. With a
given payloadp, the optimization problem is as follows.

min
P(V (1),...,V (t),...V (T ))

E

[

∑

t

V (t)

]

(14)

Subject to:
∑

t

H(V (t)|U(t− 1)) ≥ Tp (15)

P

(

∑

t

V (t) ≥ K

)

= 0 (16)

By convention,U(0) = K − 1 with probability 1. It should
be clear that the coding efficiency

c ≤ αTp
∑

t E(V (t)∗)
(17)

whereV (t)∗ denotes the minimizer of the optimization prob-
lem.

However, the above optimization problem is difficult to
solve in closed-form. We will consider instead a relaxed
optimization problem. First, we remove the constraint in Eqn
16. Second, we relax the constraint

∑

t H(V (t)|U(t − 1)) ≥
Tp to

∑

t H(V (t)) ≥ Tp, due to the fact that conditions do
not increase entropy. Thus, the original optimization problem
becomes

min
P(V (1),...,V (t),...V (T ))

E

[

∑

t

V (t)

]

Subject to:
∑

t

H(V (t)) ≥ Tp (18)

In a final step, because all the constraint and objective
functions only depend on marginal distributions ofV (t), we
may further relax the above optimization problem by replacing
the joint distribution

P(V (1), . . . , V (t), . . . , V (T )) (19)

with a set of pseudo marginal distributions

P(V (1)), . . . ,P(V (t)), . . . ,P(V (T )) (20)

The pseudo marginal distributions may or may not correspond
to a joint distribution. The final relax optimization problem is
thus as follows.

min
P(V (1)),...,P(V (t)),...,P(V (T )))

E

[

∑

t

V (t)

]

Subject to:
∑

t

H(V (t)) ≥ Tp (21)

Using the Lagrangian method, we can find that the optimal
distribution forV (t) takes the following form

P(V (t) = j) =
exp(−βtj)

∑K−1
s=0 exp(−βts)

(22)

for a certain parameterβt > 0. Let us define the cost function
cost(βt) and rate function rate(βt) at the t-th data encoding
round as follows.

cost(βt) = E [V (t)] , rate(βt) = H(V (t)) (23)

whereV (t) has a probability distribution in Eqn. 22. Both the
two functions have closed-form formula,

cost(βt) =

∑K−1
j=0 j exp(−βtj)
∑K−1

s=0 exp(−βts)

rate(βt) = βtcost(βt) + log

(

K−1
∑

s=0

exp(−βts)

)

(24)

Theorem 3.1: The coding efficiencyc is upper bounded by

c ≤ α
∑

t rate((βt))
∑

t cost(βt)
(25)

where,βt corresponds to the solution to the relaxed optimiza-
tion problem in Eqn. 21.



Proof: The optimal value of a relaxed maximization
optimization problem is greater than or equal to the optimal
value of the original optimization problem.

In our further discussion, we need to define a stage coding
efficiency function

f(β) =
rate(β)
cost(β)

(26)

Lemma 3.2:

d(rate(β))
d(cost(β))

= β (27)

Proof:

d rate(β)
d cost(β)

=
cost(β) + βcost′(β) +

∑

k −k exp(−βk)/
∑

s exp(−βs)

cost′(β)

=
cost(β) + βcost′(β) − cost(β)

cost′(β)
= β

(28)

where, the derivatives at the right hand sides are with respect
to β.

Lemma 3.3: The function cost(β) is a decreasing function
with respect toβ.

Proof: In order to show that cost(β) is a decreasing func-
tion, it is sufficient to show thatlog(cost(β)) is a decreasing
function. The derivative oflog(cost(β)) is

∑K−1
k=0 k exp(−kβ)
∑K−1

k=0 exp(−kβ)
−
∑K−1

k=0 k2 exp(−kβ)
∑K−1

k=0 k exp(−kβ)
(29)

By using the Cuachy-Schwarz inequality, we have

[

K−1
∑

k=0

k exp(−kβ)

]2

≤
K−1
∑

k=0

exp(−kβ)
K−1
∑

k=0

k2 exp(−kβ)

(30)

and the equality holds only whenβ goes to infinity. It thus
follows that the derivative oflog(cost(β)) is strictly negative
for any finiteβ. The lemma follows.

Lemma 3.4: The functionf(β) is an increasing function
with respect toβ.

Proof: The derivative off(β) is as in Eqn. 31.
The lemma is proven if we can show that
[

∑K−1
k=0 exp(−kβ)

] [

∑K−1
k=0 k2 exp(−kβ)

]

[

∑K−1
k=0 k exp(−kβ)

]2 ≥ 1 (32)

That is,

[

K−1
∑

k=0

k exp(−kβ)

]2

≤
[

K−1
∑

k=0

exp(−kβ)

] [

K−1
∑

k=0

k2 exp(−kβ)

]

(33)

We can show that this is indeed the case by using the Cuachy-
Schwarz inequality,

(

∑

k

√
xkyk

)2

≤
(

∑

k

xk

)(

∑

k

yk

)

(34)

Theorem 3.5: In the solution to the optimization problem
in Eqn. 21,

β1 = β2 = . . . = βt = . . . = βT = β. (35)

Therefore, the coding efficiency

c ≤ αrate((β))
cost(β)

(36)

Proof: The theorem is proven by contradiction. Suppose
that in the optimization solution for Eqn. 21, there existβs and
βt such thatβs > βt. According to Lemma 3.3, cost(βs) <
cost(βt). We may modifityβs andβt slightly into βs −∆βs

andβt +∆βt, such that

cost(βs −∆βs) = cost(βs) + ∆cost (37)

cost(βt +∆βt) = cost(βt)−∆cost (38)

where∆cost> 0. Therefore, the total sum of cost functions
remains the same. On the other hand, the rate function
corresponding toβs increases with derivativeβs, and the rate
function corresponding toβt decreases with derivativeβt. The
total sum of rate functions increases. Therefore,βs andβt can
not be a part of the optimization solution. This results in a
contradiction. The theorem is proven.

IV. A CHIEVABLE LOWER BOUND USING RANDOM

CODING ARGUMENTS

In this section, we prove a lower bound for the coding
efficiency by using a specific random coding scheme. The
data encoding scheme consists of multiple stages. During all
the stages, the cells in the block are restricted to take one of
two states,k or k − 1, wherek = 1, . . . ,K − 1. Assume in
a certain stage, there arel cells that take the statek − 1, and
the restN − l cells take statek. Then, during this stage, the
state of only one memory cell is changed fromk to k − 1
and l(t) = log2⌊(1 − ǫ)(N − l)⌋ bits can be recorded, where
⌊·⌋ denotes the floor function, andǫ is a small real number,
0 < ǫ < 1.

The data encoding process is as follows. Let us throw
all the sequences of symbols with lengthN and alphabet
{0, 1, 2, . . . ,K − 1} into 2(l(t)) bins uniformly in random. If
the to-be-recorded message ism[t], then we check them[t]-
th bin. We try to find one sequence in the bin, such that the
current configuration of the memory cells can be modified to
be equal to the sequence by turning the state of one memory
cell Xn from k to k−1. If such a sequence can be found, then
we turn the state of the memory cellXn from k to k − 1. If
such a sequence can not be found in the bin, then a decoding
error is declared and we randomly turn one memory cell from
k to k − 1 and go to the next coding stage.



f ′(β) = log

(

K−1
∑

k=0

exp(−kβ)

)











−1 +

[

∑K−1
k=0 exp(−kβ)

] [

∑K−1
k=0 k2 exp(−kβ)

]

[

∑K−1
k=0 k exp(−kβ)

]2











(31)

We assume that the data decoding process knows the
random coding schemes, for example, by sharing the same
random source with the encoder, or using a pseudo random
source. In the first step of data decoding, the decoder can
determine the stage of data encoding by looking at the states
of the memory cells and the numberl of cells being at the
statek−1. The recorded messagem(t) can then be recovered
by looking at the bin index of the current configuration of the
memory cells.

The encoding error probability can be bounded as follows,

P(error) ≤
[

1− 1

⌊(1− ǫ)(N − l)⌋

]N−l

(a)

≤ exp

(

− N − l

⌊(1− ǫ)(N − l)⌋

)

≤ exp

( −1

1− ǫ

)

(39)

where, (a) follows from the inequality,(1 − x)y ≤
exp(−xy), for x ∈ (0, 1), y ≥ 0.

The expected total amount of recoded information between
two erase operations can be bounded as

E(rate) ≥ (K − 1)

×
N
∑

l=0

[

1− exp

( −1

1− ǫ

)]

log2 (⌊(1− ǫ)(N − l)⌋) (40)

For sufficiently largeN and ǫ = 0.5, the total expected
recorded information is lower bounded as

E(rate) ≥ (K − 1)N

2
[1− exp (−2)] log (N/2) (41)

Therefore, the coding efficiency is bounded as follows.

c ≥ α

2
[1− exp (−2)] log (N/2) (42)

The payload can be calculated as

p =
1

N2

N−1
∑

l=0

log2 (⌊(1− ǫ)(N − l)⌋) (43)

Based on the above discussions in this section, we arrive at
the following theorem.

Theorem 4.1: The optimal coding efficiency forK levelN
cell flash memories can go to infinity asN goes to infinity.

V. THE CODING-EFFICIENCY-TO-PAYLOAD TRADEOFF

Some important insights can be gained from the upper and
lower bounds for coding efficiency proved in the previous
sections. From the upper bound, it can be seen clearly that
the coding efficiency decreases as the payload increases. From
the lower bound, it can be seen that the coding efficiency may
go to infinity as the payload decreases to zero. Therefore, we
can conclude that there exists a tradeoff between the coding

efficiency and payload. The tradeoff is illustrated in Fig. 1. In
the figure, the upper and lower bound for coding efficiency
are shown, where the x-axis shows the payload. We assume
α = 1, and the flash memories are 8-level (3bit) TLC type
flash memories.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2

4

6

8

10

12

14

16
Upper and lower bounds for coding efficiency

Payload

C
od

in
g 

ef
fic

ie
nc

y

Fig. 1. Upper and lower bounds for coding efficiency of 3-bit flash memory
cells.

VI. CONCLUSION

In this paper, we study the coding efficiency problem for
flash memories. A coding theorem for achievable rates is
proven. We prove an upper and lower bounds for the coding
efficiency. We show that there exists a tradeoff between the
coding efficiency and payload. Our discussions in this paper
provide useful insights on the design of future flash memory
systems.
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