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Abstract—In many practical communication systems, the channel is
corrupted by non-Gaussian impulsive noise (IN). It introduces decoding
metric mismatch for the traditional Euclidean metric decoders and limits
system performance. The situation is worsen by the practical difficulty
in accurately estimating the IN statistics. Recently, some metric clipping
based decoders with a properly chosen clipping threshold has been shown
to be very effective in mitigating the effect of IN, even without a precise
knowledge of its statistics. However, we observe that such a clipping
threshold is derived based on some assumptions which lead to an error
floor in the bit error probability curve at high signal-to-noise ratio (SNR).
In this work, a clipping threshold is derived by an optimization approach
without exploiting the IN statistics. It is demonstrated by simulation
that with our proposed clipping threshold, the optimzed metric clipping
decoder is able to perform close to the maximum likelihood decoding
performance at high SNR under the Bernoulli Gaussian noise model
with various parameters.

I. INTRODUCTION

In most communication channel models [1], the noise is assumed

to be Gaussian distributed. However, the assumption is violated by

the impulsive noise with random arrivals and high spikes in some

real-world applications, e.g., power line communications (PLC) [3],

digital subscriber line (DSL) loops [4], ultra wide-band (UWB)

communication system [5], cognitive radio systems [6].

In the literature, there are several well-known statistical models for

the impulsive noise. The Bernoulli Gaussian (BG) noise model [7]

is a simplistic and representative one. It models the impulsive noise

at the k-th time slot with two components, i.e.,

nk = wk + bk · gk (1)

where wk represents the white background Gaussian noise, gk de-

notes the additive Gaussian distributed impulsive noise with a larger

noise power, the power ratio between the impulsive and Gaussian

components is defined as the impulsive to Gaussian noise power

ratio (IGR) Γ, and bk ∈ {0, 1} is a Bernoulli random variable with

impulse arrival probability p for bk being 1. A more practical but

complicated model is the Middleton Class-A (MCA) noise model

[8] which models the impulsive component as a weighted linear

combination of an infinite number of Gaussian distributions with

different variances.

To tackle the impulsive noise, better decoding schemes have been

developed by exploiting the knowledge of the noise statistics. In

Song et al.’s work [5], a detection rule for the m-ary signal at

a low signal to noise ratio (SNR) was proposed by exploiting

the noise variance statistics, e.g., the noise dispersion parameter in

Cauchy distribution, the degree of freedom parameter in Student’s

t-distribution. A locally optimal detector was proposed in [9] by

preserving only one impulsive noise term in the MCA model and

estimating the noise state (e.g., impulsive or Gaussian) based on the

noise variance. However, estimating the impulsive noise statistic is

a non-trivial task since the number of impulsive noise samples is

much less than that of the background Gaussian noise, and more

importantly, the accurate impulsive noise model is unknown in many

practical applications. Recently, it was discovered that it is possible

to derive a decoding metric without knowing the impulsive noise

statistics such that the resultant decoding performance is close to

the optimal maximum likehood decoder (MLD) performance under

certain conditions. This was first demonstrated by the so-called joint

erasure marking and Viterbi algorithm (JEVA) proposed by Li et
al. [6], [7] for the convolutionally coded data by extending the Viterbi

decoding algorithm to exploiting the code structure to mark erasures.

However, the computational cost for JEVA is high and becomes

unmanageable for long codelengths. Fertonani and Colavolpe [10]

made a similar conclusion for low-density parity-check codes with

iterative decoding based on a robust (against impusive noise) soft

decoding metric, which can be obtained by simply clipping the

Gaussian noise metric. However, a systematic way to choose the

clipping threshold is unavailabe in [10]. In [11], by interpreting

the Viterbi algorithm with a clipped Euclidean metric as a special

form of JEVA that can mark a varying number of erasures, the

so-called metric erasure Viterbi algorithm (MEVA) was proposed

and a systematic way to choose the clipping threshold was derived

by assuming the impulsive noise probability is close to 1. The

aforementioned metric clipping based decoders are easy to implement

as practical decoders always adopt some form of metric clipping due

to the finite bit precision in digital circuit implementation. However,

the assumption made in [11] (and implicitly in [10]) about the noise

statistics for deriving the clipping threshold are violated at high SNR

which leads to an error floor in bit error probability curve, as shown

in the Experimentsl Results Section.

In this work, we focus on the high SNR behavior of the decoding

performance of a coded system under an impulsive noise channel. An

optimized metric clipping decoder (OMCD) is proposed. The selec-

tion of the metric clipping threshold is formulated as an optimization

problem without estimating the impulsive noise statistics. Compared

with MEVA [11], our optimization problem is analytically formulated

using the exact pairwise error provability (PEP), rather than choosing

the parameter with the plots of Chernoff bounds. To evaluate the

performance, simulations are conducted under the Bernoulli Gaus-

sian model over a wide range of parameters. Experimental results

demonstrate that the proposed clipping method is able to approach

the MLD performance at high SNR.

II. PROPOSED APPROACH

In this work, we consider the decoding problem in the presence of

impulsive noise. The decoding decision is based on choosing x that

maximizes the decoding metric m(t, r,x), where t is the clipping

threshold of the Euclidean metric [11] which is to be optimized, x
is the transmitted signal sequence, i.e., a codeword, r is the received

signal samples at the output of the communication channel. Denoting

by x̂ the competing codeword, the metric difference of the two
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codewords can be expressed as

Δm(t, r,x, x̂) = m(t, r,x)−m(t, r, x̂), (2)

where the path metric for a codeword of length N is given by the

sum of the bit metrics, i.e., m(t, r,x) =
∑N

i=1
m(t, ri, xi), and the

pairwise error probability (PEP) is given by

P{x → x̂} = P{Δm(t, r,x, x̂) < 0}. (3)

In this section, we aim at optimizing the clipping threshold by

minimizing the PEP as a function of t. According to the unified

PEP calculation formula in [12], the exact PEP can be expressed as

P{x → x̂} =
1

2πj

∫ c+j∞

c−j∞
Φ(s, t)

ds

s

=
1

2πj

∫ c+j∞

c−j∞
E(e−s·Δm(t,ri,xi,x̂i))d

ds

s
(4)

where Φ(s, t) is the moment generating function (MGF) of the

metric difference Δm(t, r,x, x̂), d is the pairwise distance of the

pair of codewords, and each dimension is assumed to be inde-

pendent and identically distributed. Therefore, the metric difference

Δm(t, r,x, x̂) =
∑d

i=1
Δm(t, ri, xi, x̂i). According to the nu-

merical calculation of the Gauss quadrature rule [12], the optimal

parameters which lead to the minimum PEP can be found by

minimizing the Chernoff bound, i.e., mins,t Φ(s, t). Therefore, the

optimal choice of clipping threshold t can be obtained by setting the

first order partial derivatives of Φ(s, t) to zeros. That is,

∂Φ(s, t)

∂t
= 0 and

∂Φ(s, t)

∂s
= 0. (5)

Assuming the all-zero codeword is transmitted (i.e., a linear code is
used), we have ri =

√
E+ni, where ni is the additive channel noise.

Thus, Δm(t, ri, xi, x̂i) can be expressed in terms of t and ni and for

notational convenience, we define Δ(t, ni, xi, x̂i) = Δm(t,
√
E +

ni, xi, x̂i). The metric difference for each bit Δ(t, ni, xi, x̂i) under

t ≥ √
E is given in [11] as,

Δ(t, ni, xi, x̂i) =

⎧⎪⎨
⎪⎩

4
√
E(

√
E + ni), −t < ni < t− 2

√
E

t2 − n2
i , t− 2

√
E ≤ ni < t

(2
√
E + ni)

2 − t2, −t− 2
√
E ≤ ni ≤ −t

0, otherwise.
(6)

It should be noted that, different from [11], we are only interested in
the case of t ≥ √

E, since t <
√
E leads to a disconnected decision

region and severe degradation of system performance. Eq. (5) can be
expanded as

∂Φ(s, t)

∂t
=

∂

∂t

∫ ∞

−∞
e−s·Δ(t,ni,xi,x̂i)f(ni)dni = 0

⇒
∫ t+2

√
E

t

e−s[t2−(ni−2
√
E)2]f(ni − 2

√
E)

− e−s[(ni−2
√

E)2−t2]f(ni)dni = 0 (7)

∂Φ(s, t)

∂s
=

∂

∂s

∫ ∞

−∞
e−s·Δ(t,ni,xi,x̂i)f(ni)dni = 0

⇒
∫ t

√
E

4
√
E(ni −

√
E)
[
e−4

√
Es(ni−

√
E)f(ni −

√
E)

− e4
√
Es(ni−

√
E)f(ni)

]
dni +

∫ t+2
√
E

t

[t2 − (ni − 2
√
E)2]×

[
e−s[t2−(ni−2

√
E)2]f(ni − 2

√
E)− es[t

2−(ni−2
√
E)2]f(ni)

]
dni = 0

(8)

Fig. 1. A 3D plot of the Chernoff bound Φ(s, t)versus the clipping threshold
t and the Chernoff parameter s under the Bernoulli Gaussian noise model
with Γ = 15, p = 0.1 and SNR = 15 dB.

Fig. 2. The union bound on the Bit Error Probability (BEP) of MLD, MEVA
and the proposed OMCD for a convolutional coded system under the BG
noise model with Γ = 400 and p = {0.01, 0.1}.

It can be seen that Eq. (7) and (8) consist of integrals of products of

an amplifying factor and the noise probability. The clipping threshold

t controls the exponential amplifying factor and the integral limits

while s affects the amplifying factors. It is conjectured that the

clipping threshold should be chosen as t = 2
√
E.

Intuitively, the reasons are two folds. First, although both t and s
are able to control the amplifying factors, s is more efficient since the

factors vary monotonically as s increases while t is not. Secondly,

only at t = 2
√
E, the amplifying factor and the noise probabil-

ity are monotonically decreasing/increasing in the integral interval,

[t, t+ 2
√
E], which leads to a stable choice of s for an exponential

amplifying factor. The argument is strengthened in the high SNR case

where the probability distribution is more concentrated.

The conjecture can be verified with a 3D plot of Φ(s, t) which

shows that the global minimum is near t = 2
√
E. Similar observa-

tions have been found for a wide range of parameters.

III. EXPERIMENTAL RESULTS

In this section, simulation results under the Bernoulli Gaussian

(BG) noise model will be presented. The BG model is chosen

for two reasons. First, it’s an intuitive model for controlling the

thickness of the tail probability with two parameters, i.e., impulse

arrival probability p and impluse to Gaussian ratio Γ [7]. Second,

as is shown in the literature that a locally optimal detector can be

derived by reducing the infinite impulsive noise terms to only one

dominant term [9] which is the same as the BG model. To illustrate
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Fig. 3. The pairwise error probability of MLD, MEVA and the proposed
method under the BG noise model with Γ ∈ {15, 100, 400} and p = 0.02.

Fig. 4. The pairwise error probability of MLD, MEVA and the proposed
method under the BG noise model with Γ = 100 and p ∈ {0.001, 0.01, 0.1}.

the performance of the proposed clipping threshold, experiments are

conducted to evaluate the pairwise error probability under a wide

range of IGR, Γ ∈ {15, 100, 400}, impulsive noise probability

p ∈ {0.001, 0.01, 0.1}. The IGR and impulse arrival probability

parameters characterize the “heaviness” of the tail distribution. It

should be noted that the impulsive noise parameters are chosen

similarly to those of the experiments in [7] and [11].

The PEP is the major comparisons metric in our experiment since

the exact PEP curves can be plotted efficiently according to [12].

However, it should be noted that the union bound on the overall

bit error probability (BEP) can be expressed as a weight sum of

PEPs of the dominating codeword pairs [1]. In the experiment, we

adopt (2, 1, 6) CC with generator 75,53 [13]. It can be seen from

the union bounds of different approaches in Figure 2 that the range

of error floors can be as high as 10−4 which depends on the noise

parameters in the BG model. In the following, we will consider the

pairwise error probability which dominates the bit error probability,

i.e., codeword pairs with d = 8 [13].

To compare the performances of different approaches, we first fix

the impulse arrival probability at p = 0.02 and varies the IGR in

Γ ∈ {15, 100, 400}. As can be seen in Fig. 3, the PEPs of the

proposed OMCD are able to approach those of the MLD closely

for Γ = 15 while error floors are observed for MEVA. This is due

to the approximation errors of the decoding metric in MEVA are not

negligible at high SNR where the impulse arrival probability p �
1. It should be noted that, as Γ increases, the error floor occurs at

higher SNR (from 15 to 25 dB) and higher probability (from 10−18

to 10−14). The gap between PEPs of the proposed method and MLD

are enlarged under larger IGR, Γ = 400, while it should be noted

that the gap is bounded and not diverging. On the other hand, the

gap between MEVA and MLD are reduced under the median SNR

condition (around 15 dB) as the Γ increases, the error floor cannot

be eliminated in the high SNR cases. Secondly, the experiments are

conducted by fixing IGR at Γ = 100 and varying the impulse arrival

probability in p ∈ {0.001, 0.01, 0.1}. Similar asymptotic behavior

for the proposed OMCD method can be observed in Fig. 4, while

the error floors occur in the high SNR region for MEVA.

IV. CONCLUSION

Some recently proposed metric clipping based decoders were

demonstrated to achieve near optimal performance without estimating

the impulsive noise statistics under some conditions. We pointed

out that these existing metric clipping decoders suffer from the

presence of error floors. In this work, we formulate the clipping

threshold design problem as a pairwise error probability optimization

problem so that the resultant optimized metric clipping decoder

can eliminate the error floor. It is demonstrated by simulation that

the resultant optimized metric clipping decoder can approach the

MLD performance at high SNR under BG noise model with a wide

range of parameters. One of our future works are to provide a

comprehensive proof on the proposed clipping threshold method and

evaluate its effectiveness under different impulsive noise models, e.g.,

the Middleton Class A model and the symmetric Alpha stable model.
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