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Abstract—We consider an M/M/1 update-and-decide system
where Poisson distributed decisions are made based on the
received updates. We propose to characterize the freshness of
the received updates at decision epochs with Age upon Decisions
(AuD). Under the first-come-first-served policy (FCFS), the closed
form average AuD is derived. We show that the average AuD of
the system is determined by the arrival rate and the service rate,
and is independent of the decision rate. Thus, merely increasing
the decision rate does not improve the timeliness of decisions.
Nevertheless, increasing the arrival rate and the service rate
simultaneously can decrease the average AuD efficiently.

Index Terms—Age of information, update-and-decide system,
timely decisions.

I. INTRODUCTION

The development of modern information technology has

spawned many applications with stringent delay requirements.

In smart vehicular networks [1], [2], for example, vehicles

need to share their status (e.g., position, speed, acceleration)

timely to ensure safety. For these scenarios, neither of the

traditional measures like delay or throughput is suitable [3].

Note that when delay is small, the received update may not be

fresh if the updates come very infrequently; when throughput

is large, the received updates may also be not fresh if they

undergo large queueing delay during the transmission process.

To convey the freshness of received information, therefore,

a new metric was proposed in [4], i.e., age of information

(AoI). Specifically, AoI is defined as the elapsed time since

the generation of the latest received update [4], i.e., the age of

the newest update at the receiver. This insightful measure of

information freshness has been exhaustively studied in various

queueing systems, e.g., M/M/1,M/D/1 and D/M/1 [4],

under several serving disciplines, e.g., first-come-first-served

(FCFS) [4], [5], last-generate-first-served (LGFS) [6], and in

multi-source [7], multi-class [8], multi-hop [9] scenarios.

With the following observations that

• delay quantifies the freshness of updates at the epochs

when they are received;

• AoI quantifies the freshness of updates at every epoch

after they are received;

• in many update-and-decide systems, the freshness of

updates are only important for some decision epochs,

we are motivated to consider a new freshness measure termed

as age upon decisions (AuD). That is,

• AuD quantifies the freshness of the received updates at

those decision epochs when they are used.

In particular, AuD can readily be applied to parallel comput-

ing based machine learning systems, Internet-of-Things (IoT),

cognitive networks, and so on.

Example 1: The AlphaGo system performs Monte Carlo

tree search with 1920 CPUs and 280 GPUs in a distributed

and parallel manner [10]. In this kind of large-scale parallel

computing systems with depth first tree searching, random

polling is a simple yet effective dynamic load balancing

scheme [11]. AuD can then be used to evaluate the utility

of the system by characterizing the waiting time from the

beginning of a busy period (update arrival) of a server to the

polling epoch (decision epoch) from an idle server.

Example 2: In cognitive systems, a secondary user accesses

wireless channel by sensing the channel randomly [12]. In

this case, AuD is the time elapsed from the beginning of

an idle channel period to the sensing epoch (decision epoch)

of the secondary user. Thus, low AuD implies high channel

utilization.

Example 3: In large scale wireless sensor networks, IoT

networks, and underwater networks, collecting information by

random polling can improve system efficiency by avoiding

uplink collisions [13]. Since random polling epochs (decision

epochs) can never be consistent with information generation

epochs, AuD is useful to evaluate the timeliness of the

information collecting process.

In this paper, therefore, we are interested in the age of

information at decision epochs and shall apply it to an M/M/1
update-and-decide system. We assume that random decisions

are made following a Poisson process. It is surprising to

observe that the average AuD of the system is independent

of the rate of decisions. That is, making more decisions does

not help to reduce the average AuD.

This paper is organized as follows. Section II presents the

system model and the definition of AuD. We investigate the

average AuD in an M/M/1 queueing system in Section III

and present the obtained results via numerical simulation in

Section IV. Finally, our work is concluded in Section V.

II. SYSTEM MODEL

We consider a FCFS M/M/1 update-and-decide system

with arrival rate λ and service rate µ, as shown in Fig. 1.

The arrived updates are stored in an infinite long buffer and

will be served according to FCFS discipline. We assume that

the server utilization is smaller than unity, i.e., ρ = λ
µ
< 1,

so that the queueing process is stable. Based on the received

updates, the receiver makes random decisions at rate ν.

http://arxiv.org/abs/1808.02679v2
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Fig. 1. The queueing model.
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Fig. 2. Age upon decisions.

As shown in Fig. 2, the updates are generated at arrival

epochs {tk, k = 1, 2, · · · } and are received at departure epochs

t′k. The inter-arrival time Xk between neighboring updates is

Xk = tk− tk−1 and the system time that packet k stays in the

system is Tk = t′k − tk. Note that system time is the sum of

waiting time Wk and service time Sk, i.e., Tk = Wk+Sk. We

denote the period between two consecutive departure epochs

as inter-departure time Yk = t′k − t′k−1 and denote the period

between two consecutive decision epochs as inter-decision

time Zj = τj − τj−1. In this paper, we assume that Xk, Sk,

and Zk are all exponentially distributed random variables with

mean E[X ] = 1
λ

, E[S] = 1
µ

, and E[Z] = 1
ν

, respectively.

In this paper, we investigate the freshness of the received

updates at decision epochs via age upon decision.

Definition 1: (Age upon decision-AuD). At the j-th decision

epoch, the index of the most recently received update is

NU(τj) = max{k|t′k ≤ τj},

and the generation time of the update is

U(τj) = tNU(τj).

The Age upon decision of the update-and-decide system is

then defined as the random process

∆D(τj) = τj − U(τj). (1)

Note that if we replace decision epochs τj with arbitrary

time t, AuD ∆D(τj) reduces to AoI ∆(t).

Example 4: Fig. 2 shows a sample path of AoI and AUD.

Since the service of the first update is not completed until

t′1, the second update sees a busy server upon its arrival at

t2. The second update waits for a period of W2 and starts its

service immediately at the departure of the first update. Thus,

the inter-departure time Y2 between the first and the second

updates is equal to the service time of the second update, i.e.,

Y2 = S2. This is a typical case where Xk < Tk−1 is true

and we have Yk = Sk. On the other hand, if Xk > Tk−1 is

true (e.g., X3 > T2), the next update has not arrived at the

departure of update k. As shown in Fig. 2, the server will be

idle for a period of X3−T2 before the third update gets served

from its arrival. In this case, the inter-departure time is given

by Yk = Xk + Sk − Tk−1.

During each inter-departure time, several decisions can be

made based on the received update. For example, there are

two decision epochs τ2 and τ3 (denoted by the red arrows)

during Y3 and the corresponding AuD are ∆D(τ2) and ∆D(τ3),
respectively. �

For the given arrival process, the serving process, and the

decision process, we are interested in the average AuD of the

system. Suppose there are NT decisions during a period of T ,

the average AuD is given by

∆D = lim
T→∞

1
NT

NT
∑

j=1

∆D(τj), (2)

with limj→∞ τj = +∞.

III. AVERAGE AGE UPON DECISIONS

In this section, we first investigate the queueing process of

the system, and then derive the average AuD closed form.

A. Queueing Process

At time t, we denote the number of updates in the queue as

L(t). Since server utilization ρ = λ
µ

is smaller than unity, the

queue is stable and queue length L(t) has a stationary distribu-

tion π = [π0, π1, π2, · · · ]. By using the equilibrium equation

λπi = µπi+1 and the regularization condition
∑∞

i=0 πi = 1,

we have

πi = (1− ρ)ρi, i = 0, 1, · · · . (3)

Based on this result, the probability density function (p.d.f.)

of system time Tk can be given by the following proposition,

which is very useful in characterizing inter-departure time Yk.

Proposition 1: The p.d.f. of system time Tk is

fT(x) = µ(1− ρ)e−µ(1−ρ)x, x ≥ 0. (4)

That is, Tk is exponentially distributed.

Proof: See Appendix A. Although this result can also be

found in other references, e.g., [4], we present a brief proof

here to make it easy to follow.

Since the departure time t′k can be expressed as

t′k =

k
∑

i=1

Xi + Tk,

where X1 = t1, the inter-departure time Yk = t′k − t′k−1 can

be rewritten as

Yk = Xk + Tk − Tk−1, k ≥ 2. (5)

In particular, Yk follows the same distribution as inter-arrival

time Xk, as shown in the following proposition.



Proposition 2: Inter-departure time Yk is an exponentially

distributed random number with rate λ and p.d.f.

fY(x) = λe−λx. (6)

Proof: See Appendix B.

By considering the number of decision epochs during each

inter-departure time, average AuD of the system can be

obtained, as shown in the following theorem.

Theorem 1: In an M/M/1 update-and-decide system with

arrival rate λ, service rate µ, and Poisson decisions at rate ν,

the average AuD of the system is independent of decision rate

ν. Specifically, the average AuD is given by

∆D =
1

µ

(

1 +
1

ρ
+

ρ2

1− ρ

)

. (7)

Proof: See Appendix C.

Remark 1: From Theorem 1, we have the following obser-

vations.

1) For our model, the average AuD depends only on

arrival rate λ and service rate µ, and is independent of

decision rate ν. This means that making decisions more

frequently does not improve the timeliness of decisions.

This is because when decision rate is increased, although

there will be more decision epochs being closer to the

departure time of the newest update, there will also be

more decision epochs being farther from the departure

time. In the statistical sense, therefore, average AuD

does not change with the frequency of decisions.

2) If the arrival rate is small, although the waiting time

and the system time of updates are small, the average

AUD is large since the inter-arrival time is large. On the

other hand, although the inter-arrival time is small when

the arrival rate is large, the system time would be large

due to queueing delays, resulting to large average AuD.

To minimize the average AuD, therefore, the arrival rate

should neither be too small nor too large.

3) For a given service rate µ, the optimal arrival rate

minimizing ρ∗ would be close to 0.5, i.e., is λ∗
≈

µ
2 .

4) For a given arrival rate λ, the average AuD decreases

with service rate µ and approaches zero as µ goes to

infinity, i.e, updates are transmitted with zero service

time.

Moreover, the conclusion that average AuD is independent

of decision rate also applies to general G/G/1 queues if

decisions are made uniformly in the statistical sense, e.g.

periodically or with exponential inter-decision times. Thus,

we should be more focused on scheduling the update ar-

rival/service process other than the decision process.

IV. NUMERICAL RESULTS

In this section, we investigate the average AuD of the

M/M/1 system via numerical results. First, we set the service

rate to be a constant (e.g., µ = 0.5, µ = 1, µ = 1.5) and

investigate how average AuD changes with arrival rate λ. As

shown in Fig. 3(a), the average AuD is large when λ is either

very small or very large. To be specific, when λ is small,

average AuD is large because the waiting time for the arrival
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Fig. 3. Average AuD.

of a new update is large. When λ is large, the queueing delay

of updates is large due to the limited service capability of the

server. In this situation, the received updates will be outdated

at the decision epochs. To minimize AuD, therefore, we should

try to increase the service rate and set the arrival rate to be a

half of service rate, i.e., λ = µ/2.

Fig. 3(b) presents how average AuD changes with service

rate for a given arrival rate. As is shown, average AuD is

monotonically decreasing with service rate µ. Moreover, given

a large µ, AuD is smaller if arrive rate λ is larger. This means

that the AuD performance is better when the arrival rate and

the service rate grow larger at the same time.

We further plot the variations of average AuD with arrival

rate and service rate in Fig. 4. It is clear that average AuD

is small when λ and µ are large. When they are both small,

it is seen that µ brings more effect on AuD performance. In

particular, average AuD goes to infinity much faster if µ is

reduced to zero than λ is reduced to zero.
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Fig. 5 presents average AuD via Monte Carlo simulations.

We set arrival rate to λ = 0.5 and consider three decision rates,

i.e., ν = 0.1, ν = 1, and ν = 10. During a period in which

NT = 106 updates are generated and served, approximately

K = 2 × 105,K = 2 × 106 and K = 2 × 107 decisions are

made. As shown Fig. 5, the Monte Carlo results do not change

with decision rate ν and coincide with the corresponding

theory results (see (7)).

V. CONCLUSION

In this paper, we have proposed a new measure termed

age upon decisions to evaluate the freshness of updates at

decision epochs. For an M/M/1 update-and-decide system

with Poisson decision process, we proved that the average

AuD of the system is independent the rate of the decision

process. Thus, making decisions more frequently does not

improve the timeliness of these decisions. Moreover, the

proposed AuD measure has many practical applications. In a

cognitive communication system, for example, the secondary

user can choose its sensing rate based on its demand on

channel uses and its sensing cost, without extra consideration

on the timeliness of the accessing time. If the decision rate

is set to be very small, however, the receiver may miss

a lot of received updates. Therefore, characterizing system

performance jointly with AuD and update missing probability

would be an interesting extension of this work.

APPENDIX

A. Proof of Proposition 1

Proof: Suppose that at the arrival of update k, the number

of updates in the queue is L(t) = i. It is clear that update k
will not get served until all waiting updates are completed,

i.e., Wk =
∑i

j=2 S(j) + Sre
(1), where Sre

(1) is the remaining

service time of current update. Since S(1) follows the mem-

oryless exponential distribution, we know that Sre
(1) has the

same distributions as S(1). Thus, system Tk can be rewritten

as Tk = Wk + Sk =
∑i+1

j=1 S(j), which follows Erlang

distribution Erlang(i+1, µ). The probability that system time

Tk is larger than x can expressed as

Pr{Tk > x}=
∞
∑

i=0

Pr







i+1
∑

j=1

S(j) > x







Pr{L(t) = i}

=

∞
∑

i=0

i
∑

j=0

1
j!e

−µx(µx)
j
· (1− ρ)ρi

=

∞
∑

j=0

∞
∑

i=j

1
j!e

−µx(µx)
j
· (1− ρ)ρi

= e−µ(1−ρ)x, x ≥ 0.

The p.d.f. of Tk can then be readily obtained by taking the

derivative of 1 − Pr{Tk > x}, which completes the proof of

Proposition 1.

B. Proof of Proposition 2

Proof: As discussed in Example 4, inter-departure time

Yk is given by

Yk =

{

Sk, if Xk < Tk−1

Xk + Sk − Tk−1, if Xk > Tk−1.
, (A.8)

and thus we have,

GY(s) = Pr{Xk > Tk−1}E[e
sYk ] + Pr{Xk < Tk−1}E[e

sYk ]

= Pr{Xk > Tk−1}E[e
s(Xk−Tk−1)]E[esSk ]

+Pr{Xk < Tk−1}E[e
sSk ],

where the second equation follows (A.8) and the fact that Sk

is independent with Xk and Tk−1.

First, the probability that inter-arrival time Xk is smaller

than previous system time Tk−1 can be obtained as follows.

Pr{Xk < Tk−1} =

∫ ∞

0

fX(x)dx

∫ ∞

x

fT(t)dt = ρ,

where fX(x) = λe−λx is the p.d.f. of Xk and fT(t) is given

by Proposition 1. We also have Pr{Xk > Tk−1} = 1− ρ.



Second, the MGF of Yk conditioned on Xk > Tk−1 is given

by

E[esYk |Xk > Tk−1] = E[es(Xk−Tk−1)|Xk > Tk−1]E[e
sSk ]

=

∫ ∞

0

fT(t)dt

∫ ∞

t

fX|X>t(x)e
s(x−t)dx

∫ ∞

0

fS(x)e
sxdx

=
λµ

(λ− s)(µ− s)
,

where fT(t) is given by Proposition 1, fS(x) = µe−µx is the

p.d.f. of service time Sk, and

fX|X>t(x) =
fX(x)

Pr{X > t}
= λe−λ(x−t), x > t.

Also note that

E[esYk |Xk < Tk−1] = E[esSk ] =
µ

µ− s

Combining the obtained results, the proof of the proposition

would be completed readily.

C. Proof of Theorem 1

Proof: Given an inter-departure time Yk = y, suppose

Nk decisions are made at epochs {τj , j = 1, 2, · · · , Nk}. It

is clear that Nk is a Poisson distributed random number with

parameter νy. That is, the probability that n decisions are

made during Yk is

Pr{Nk = n|Yk = y} = (νy)n

n! e−νy.

We denote τ ′j = τj − t′k−1. Since decision epochs τj are

independently and uniformly distributed in Yk, τ ′j would be

independently and uniformly distributed over [0, y]. Thus, the

expected sum ∆′
Dk =

∑n
j=1 τ

′
j can be expressed as

E
[

∆′
Dk|Yk = y,Nk = n

]

=
n
∑

j=1

E[τ ′j ] =
ny
2 .

Note that the AuD at decision epoch τj is ∆Dk(τj) =
Tk−1+τ ′j , where Tk−1 is the system time of the latest received

update. We then have

E[∆Dk|Yk = y] =

∞
∑

n=0

Pr{Nk = n|Yk = y}(ny2 + nE[Tk−1])

= ν(y
2

2 + yE[Tk−1]).

Taking the expectation over Yk, we have

E[∆Dk] =
ν
2E[Y

2
k ] + νE[Tk−1Yk],

where E[Tk−1Yk] is given by

E[Tk−1Yk] = E[Tk−1Yk|Tk−1 > Xk] Pr{Tk−1 > Xk}

+E[Tk−1Yk|Tk−1 ≤ Xk] Pr{Tk−1 ≤ Xk}

= (1 − ρ)E[Tk−1Xk − T 2
k−1|Tk−1 ≤ Xk]

= +E[Tk−1]E[Sk].

Based on Proposition 1, we further have

E[Tk−1Xk − T 2
k−1|Tk−1 ≤ Xk]

1

1− ρ

∫ ∞

0

fX(x)dx

∫ x

0

(xt− t2)fT(x)dt

1

1− ρ

1− ρ

µ2ρ
,

and hence

E[Tk−1Yk] =
1

µ2(1− ρ)
+

1− ρ

µ2ρ
. (A.9)

Assume that there are K departure epochs and NT decision

epochs during a period T , we have NT =
∑K

k=1 Nk. As T
goes to infinity, we have

∆D = lim
T→∞

1
NT

K
∑

k=1

∆Dk = lim
T→∞

K
NT

1
K

K
∑

k=1

∆Dk = E[∆Dk]
νE[Yk]

=
E[Y 2

k ] + 2E[Tk−1Yk]

2E[Yk]
. (A.10)

From Proposition 2 and Proposition 1, we know that

E[Yk] =
1
λ

and E[Y 2
k ] =

2
λ2 . Inserting E[Yk], E[Yk], E[Yk],

and E[Tk−1Yk] into (A.10), the proof of Theorem 1 would be

completed.
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