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Abstract—Pointing is a universal gesture that naturally 
expresses interest or attraction towards the pointed items. If 
some 'magic' is added, the gesture may also make these items 
perform actions. In this paper, we describe a system that enables 
to interact by pointing with digital or physical controllable 
resources distributed in a smart space. The system facilitates 
building an interactive room using COTS devices, in particular a 
pair of Kinect sensors. The pointing direction is inferred from the 
user's elbow-wrist vector, which together with a secondary 
elbow-object vector serves to filter the controllable objects in the 
area of pointing. Experiments with 8 users in a real setting 
demonstrate the feasibility of the concept and show that the 
accuracy of the system is very dependent on the relative position 
user-resource and on the user behaviour itself. 

Keywords—computer vision; natural interaction; pointing 
interaction; Kinect; smart spaces. 

I. INTRODUCTION 

The pointing gesture is universally used as a way to denote 
or attract interest towards an item [1]. When combined with the 
adequate technology, a pointing gesture may also enable to 
remotely control the pointed object. This is the idea under the 
interaction concept that is explored in this work: the use of 
pointing to govern the objects in a smart environment. Thus the 
paper describes a system for pointing interaction, or deictic 
interaction, which delivers a 'natural user interface' (NUI) to 
the environment. The proposed NUI is built on the use of a 
traditional human-to-human interaction model (pointing, in this 
case), it is not instrumented through artificial control devices 
and the interaction mechanism aims at becoming 'invisible' 
after a learning process. 

A key point of the system is that it relies on commercial-of-
the-shelf (COTS) sensors, in particular Kinect devices. The 
Kinect device includes an RGB camera, a low-cost depth 
sensor and a multiarray microphone to facilitate full-body 3D 
motion capture, facial and voice recognition. The device makes 
also possible to recognize the user's body or hand poses or in-
air gestures. On the image streaming from two synchronized 
sensors, it is possible to transform a room in an 'interactive-
through-pointing' space. The system is composed by several 
processing modules, which facilitate person detection and 
tracking, gesture identification and gesture-object correlation 
for effective control. 

The context and the system is described as follows. Section 
II summarizes the state-of-the-art on pointing interaction-
enabling systems. Section III describes the deployment 
scenario and the pre-operation processes for the pointing 
system. The system modules are detailed in Section IV, while 
Section V gathers result on a real deployment that has been 
built for user validation. Section VI concludes the work. 

II. RELATED WORK 

Controlling objects by pointing at them is not a new 
concept; actually, it has been explored since the 80's. For 
example, the 'Put-that-there' system (1980) [2] relies on a 
specific wearable device to calculate the orientation of a user 
seated in an armchair in a Media Room; the room is also 
equipped with a voice recognition system, thus specific 
sentences combined with natural pointing enables the user to 
command simple shapes in a graphics display surface. 

In [3], authors apply Hidden Markov Models trained with 
3D trajectories of the head and the hand when performing 
sample pointing gestures (described in three phases: begin, 
hold and end). The system works on a fixed-baseline stereo 
camera and combines stereoscopic range information and skin-
color classification to achieve a gesture detection rate of 88% 
and a pointing detection rate of 90% on the correctly identified 
gestures (8 pointing targets, ten persons, 206 pointing 
gestures). Two approaches are used to estimate the pointing 
direction: the line of sight between the head and the hand and 
the forearm orientation. The 3D hand pointing gesture is 
estimated in [4] from two cameras, orthogonally located on top 
of the user and at his left side. The algorithm needs to be 
trained. First, the hand region is detected, then the hand is 
tracked in the limited search regions, using active appearance 
models to detect and track 14 feature points along the hand 
contour from a top and side view; finally, the 3D pointing 
direction is estimated by combining the different views. The 
correct pointing rate is 91% in 7600 frames. In [5], a system to 
track gestures in front of a computer screen was implemented. 
The system works on two cameras placed several feet above 
the desktop and several feet apart, such that they can both see 
the user's hand. The processing first extracts 2D information 
from the two images and then combines the information from 
each image to obtain 3D information about the thumb and 
pointing finger. The pose for each finger consists on three 
positional coordinates and two angles. 



Authors of [6] propose to detect point gestures by using 
binocular stereovision and estimating the pointing direction on 
the line of sight connecting the point of pseudo-eyes below a 
certain distance of the head top vertically and the fingertip of 
the pointing arm. For this system to work, it is needed to place 
two mounted overhead cameras looking down at an oblique 
angle to capture head and pointing arm. Authors underline that 
their system do not need to capture entire bodies and faces and 
does not constrain the flat surface pointed by the user to be 
visible by the cameras. Validation is done on a total of 864 
gestures performed by 36 users, 2 hands, pointing at 12 panels 
located in a range of [3.5, 12] m. away from the cameras in 
normal lighting. The recognition rate is 93% in the most far 
away panel and increases up to 97% in the closest one. 

Authors of [7] present an algorithm for real-time detection 
of pointing gestures in immersive environments (cave-like 
ones); they define the pointing direction as the line of sight 
connecting the eyes and the pointing fingertips. They rely on 
the live video stream from 4-8 statically mounted and 
calibrated cameras, including 1 overhead camera. The 
algorithm starts with background subtraction and silhouette 
segmentation. Extremal points on the silhouettes corresponding 
to the head and hands are searched and matched among the 
views from different cameras. The head and one or two hands 
positions are then searched within the 3D points. In [8], the use 
of disparity maps (instead of color-based blob trackers) as a 
more robust technique against light changes is proposed. The 
system subtracts the background, analyzes the foreground 
pixels to break the body into parts and estimates the direction 
of pointing. Authors evaluate their system by enabling the 
users to select objects in a room or guide a cursor. A similar 
strategy is used in [9] to extend the recognizable gesture set. A 
method combining Time-of-Flight (ToF) and RGB cameras is 
proposed in [11]. After a calibration process, it is applied a 3D 
hand detection algorithm based on depth and color, on which 
the gesture is recognized by using a classifier that relies on a 
dimensionality reduction based on Average Neighborhood 
Margin Maximization, approximated using Haarlets. The 
Kinect sensor is mounted in a robot in [10] to simulate an 
interaction in which the robot asks for directions to people and 
automatically detects a 3D pointing direction by connecting the 
wrist with the center of the hand. The system works on a 
Haarlet-based hand gesture recognition strategy. 

Some proposals explore multimodal systems for 3D 
interaction. In [12], eye gaze is used to move a rectangular 
overlay called ‘area of interaction’ in a computer screen; this 
area defines the boundary for pointer positioning. Hand 
fingertip is used to position the pointer and the presence of a 
second hand triggers a click event. Using the system described 
in [4], authors of [13] aims at providing a multi-gesture 
interaction system combining eye gaze, head pose/position, 
hand-pointing direction and mouth opening/closing. Authors 
claim that the maximum pointing error for a specific 
application is around 9 pixels. 

Apart from vision-based systems, there are other proposals 
that instrument the 3D pointing with devices. The 
‘Point&Click’ system [14] enables a stand-alone ‘remote 
control’ to get the control information from other devices, in 
order to allow operational interaction through a simple user 

interface. In a similar way, a laser-equipped device is proposed 
in [15] to retrieve a set of control commands from an object: 
when the object detects the laser beam, it sends the control 
description to the master device by using infrared. The XWand 
[16] is a wand-like device that enables the user to point at an 
object in the environment and control it using gestures and 
voice commands. A specific hardware solution to detect the 
pointing direction of a laser pointer on a screen is provided in 
[17]. Gloves and wearable devices have been also proposed to 
interpret hand gestures. The Charade interaction system [18] 
relies on a Data Glove to enable the user to perform 16 
different gestures when working with a presentation. Pointing 
is one of these gestures. A recent proposal is Digits [19], a 
wrist-worn sensor containing an I M U and infrared camera that 
optically images a large part of the user’s bare hand. 

3 D pointing estimation has many applications; among 
them, robot control is a widely explored one in literature. In 
[20], a human-robot interaction method enables the human to 
intuitively select a 3 D location and communicate it to a robot. 
The human points at the position with an off-the-shelf green 
laser pointer, then the robot detects the resulting laser spot with 
an omnidirectional, catadioptric camera with a narrow-band 
green filter. Once detected, the robot moves its stereo pan/tilt 
camera to look at the detected laser spot and then estimate the 
3 D location of the spot relative to the robot body. Authors 
claim an average error of 9.75cm for 178 trials (12 objects, 5 
users, 3 pointing attempts per user). The work [3] is applied to 
robot control in [21]. As previously mentioned [10] also focus 
in exploring human-robot interaction. Object or environment 
control is also the service scenario for many systems. For 
example, recent CityHome M I T project address the issue of 
configuring a gesture-responsive home. 

Current developments on Kinect for pointing interaction are 
still limited. The use of this low-cost device may facilitate to 
build and deploy real services. For this reason, our work 
proposes to use Kinect capabilities to build a pointing-aware 
environment. 

I I I . SERVICE SCENARIO SETTING 

The service objective of this Kinect-based system is to 
facilitate the creation of spaces enabled with interactive 
pointing capabilities. These capabilities will serve to activate 
and manage different resources, such as smart home devices 
(lights, blinds, etc.) by pointing at them. 

Kinect 1.0 devices have optimal visibility in a range of 0.8-
4 meters from the sensor. To enable pointing, the system has to 
determine the position of the users’ arms, which derives into a 
practical operation range of 1.2 to 3.5 meters. Our 
experimental setting is a room of 19 m2 (4.9x3.9 m.), which has 
been equipped with 2 Kinect sensors obliquely situated at 2.4 
m. high in opposite corners of the same wall (Figure 1); in 
these conditions, the user can move within an operating area of 
2.5x3 m. approximately. The placement of the devices 
maximizes the operating area when compared to the two-walls 
parallel and one-wall perpendicular alternatives. 

In order to obtain the needed features from the Kinect 
cameras, a calibration process has been previously completed 
to obtain the camera intrinsic and extrinsic parameters. The 



accurate calibration of the camera enables to estimate the 
required distances in the real world from the captured images. 
Intrinsic parameters (e.g. principal axis, optical center and focal 
distance) are related to the internal geometry and the optical 
features of the camera and remain constant if the features and 
relative positions of the optics and the imaging sensor do not 
vary. External parameters estimate the position and the 
orientation of the camera within the scene coordinate system 
(translation vector and rotation matrix). Kinect cameras are 
CCD enabled (Charged Coupled Devices), thus the intrinsic 
parameters define the coordinates in the reference frame of the 
camera. The system requires referencing the sensing devices 
and the smart objects to a global reference system. Each object 
in the environment will be assigned with an invariant position, 
independently of the Kinect device to be used in that moment. 
The mentioned global reference system will be obtained 
through the extrinsic parameters of the calibration process. 

Fig. 1. Service concept and sensor deployment. 

In our case, the system has been calibrated by using the 
open tool Camera Calibration Toolbox for M A T L A B (CCT) . 
Its workings are described e.g. at [22][23]. The calibration 
pattern that has been used is a chessboard of 4x4 80 mm-sided 
squares. The two Kinects have taken 34 images with the 
calibration pattern in different positions of the operational 
space in order to extract the intrinsic parameters. Afterwards, 
the coordinate origin for the new reference system has been 
placed on the floor, in the most distant line of sight of the 
Kinect devices (Figure 2a). With this information, extrinsic 
parameters have been calculated. 

I V . SYSTEM MODULES 

On the calibrated cameras, we have deployed a tracker that 
enables to continuously position the user. On the user standing 
still in a position, the system is prepared to detect pointing 
scenes and trigger the subsequent actions. 

A. Tracking and user management module 

When the interaction application is launched, the system 
waits until a user shows up in area of coverage of at least one 
Kinect device. On this ‘new user’ presence event, the logic 
starts acquiring the position of the user’s head (Kinect 1.0 
device is ready to detect 20 points/joints in the user’s body). If 
the user’s position falls into the operating space, a coordinates 
transformation process is initiated (as said in Section III.b, the 
coordinates of the initial positions are referred to the Kinect 
reference system and need to be transformed into the global 
reference system) and the data of the recognized user are stored 
in a list that enables user management. 

The maximum number of users that are detected by the 
Kinect 1.0 is 6. In this first prototype of the pointing system, a 

single user is enabled to interact with the objects in the space in 
a given slot. Thus, when a new user is detected by one of the 
Kinect sensors, it is needed to figure out if s/he is an existent 
user previously registered by the other Kinect device or a new 
user. In the first case, the system performs a user comparison, 
basically estimating the difference between the user’s position 
that each devices provide. If the distance is smaller than a 3D 
threshold (600, 600, 800mm.), then the system enables joint 
detection for the two devices. Apart from the ‘new user’ 
events, the system needs to manage ‘user lost’ events, in order 
to update the user list, which is decremented only when the two 
devices lose the user from their vision. For each frame (Kinect 
1.0 works at 30fps), a positioning update signal is emitted and 
the transformation of the position to the global reference 
system, completed. A user track is depicted in Figure 2a. 

Fig. 2. a) Track acquired by both Kinects. b) activation zones by object type. 

B. Pointing interaction and object selection 

Our first deployment of the pointing system makes possible 
to interact with two different types of devices: 9 smart led 
lights (in 3 rows) and 1 blind, and 4 on-wall projected contents 
(Figure 4a). The actions to be performed on the objects are 
two-state type (on/off, up/down, show/no show) and depend on 
their previous state (e.g. switch the pointed light on if it is off 
and viceversa), thus not additional gesture grammar is needed 
for this first version of the system. 

Depending on the region of the operating space, the user 
will be capable of interacting with the different resources. Due 
to service reasons, the central area of the operating space (zone 
2) is configured to interact with the led lights, while the lateral 
areas (zone 1, 3) are suited to interact with the projected 
contents (Figure 2b). As it is afterwards explained, the pointing 
vector is extracted from the user’s arm position. To simplify 
the initial setting, all the resources can be activated by the 
user’s right arm when in the zones 2 and 3, while the left arm is 
required to activate actions in zone 1. 

The global reference system is set at the left down corner of 
the room (Fig. 2b). Whenever a user is detected within an 
activation zone, Kinect estimates the position of the elbow and 
wrist joints for the activation arm. Those coordinates are 
transformed into the global reference system: the user’s elbow 
position is then (xe, ye, xe), the wrist position (xw, yw, xw) and 
the object position (xo, yo, xo). Then, the normalized pointing 
vector elbow-wrist v e w is calculated as: 

V P W = ) •> •> •> ( 1 ) 
e w V(xw-xe)

2+(yw-ye)2+(yw-ye)2 



This done, object filtering is performed. A new reference 
system is set at the user’s elbow and the wrist and objects’ 
positions, recalculated with respect to it (Fig. 3b). This way, 
the wrist remains situated in one of the eight cube regions in 
which the space is naturally divided. All the objects that are not 
within the target region are discarded as candidate objects. 
When the wrist position is in the boundaries of two cubes, 
objects within both spaces are considered. 

Fig. 3. a) Object selection vectors; b) Cubic filtering. 

For each object that remains in the candidate list, the inner 
product of vew and v^" is calculated (the inner product would 
be 1 if the two vectors are perfectly aligned). 

(Xn -Xp ,yo -ye . z o - z e ) 
V P n = , , , (2) 

6 0 V ( X o - X e ) 2 + ( y o - y e ) 2 + (Zo-Ze) 2 

Then, it is checked if the inner product is over an 
‘acceptance’ threshold Ta. If so, the object is kept within the 
candidate list. Ta has been empirically determined and depends 
on the user’s pointing habits and the position of the target 
resources. In our trial specific setting, it varies between 0.98 
and 0.96 (equivalent to an angle between vectors in 11º-16º 
range, Section V.B). After this second filtering, the final stage 
determines that the target object is the one offering a minimum 
angular difference between vew and veo (the greater inner 
product). 

Once the object/resource is chosen, the system 
communicates to the infrastructure to perform the required 
actions. To manage the led lights and the blind, a socket is used 
to send the event to an Arduino controller. In order to manage 
the resource projection, a D L N A (Digital Living Network 
Alliance) content management system is used. 

V. SYSTEM EVALUATION 

Two tests have been performed to adjust the experimental 
parameters and evaluate the system performance. In the first 
test, an experienced user has cooperated i) to model the system 
sensitivity to the interaction position, ii) to tune the acceptance 
threshold for resource filtering and iii) to estimate the response 
time. In the second test, 8 non-experienced users have tried the 
system, performing a set of interaction tasks. The number of 
participants provides a reasonable cost/benefit ratio, being 
enough to collect insights on the system’s main performance 
and usability aspects [24]. The independent variables of the 
tests are the reference positions and the target objects/resources 
to point, and the dependent ones, the time response and the 
accuracy. Details and results are following gathered. 

A. System sensitivity depending on the pointing location. 

This experiment was designed to test the influence of the 
distance between the user and the Kinect devices in the 
resource selection process. Firstly, five different positions 
(Figure 4a) in the central area of the interactive room were used 
as reference testing points. From each position, 3 different led 
lights were controlled (one light per row). For each pair 
(reference position, object), 10 measures were collected: in 
total 50 iterations/light were analyzed (Figure 4b). Results 
show that the accuracy in the object selection strategy not only 
depends on the user position, but on the relative position of the 
resource with respect to the user. Pointing resources behind the 
user position may make the arm colocation unnatural, deriving 
this fact in an increased error. Moreover, if the user is located 
far away from the Kinect devices (e.g. position 4 or 5), 
detection is affected. The optimal positions are those 
intermediate (position 2 or 3), as the user is in the optimal 
detection area for the Kinect devices and the arm position is 
natural. In the case of the 4 projected resources, three different 
positions in each of the lateral areas were used to perform an 
equivalent evaluation (a total of 60 iterations per projected 
object were obtained). In this case, the reference points were 
optimally situated, thus providing a success rate close to 100%. 

Fig. 4. a) Experiment setting with led lights, blind and projected paintings, 
and b) Distance effect, example for 2 led lights from different positions. 

B. Estimation of the acceptance threshold. 

As previously said, in the target selection process, two 
filters are applied. The second filter is tuned taking into 
consideration the acceptance threshold that defines the 
maximum allowed angle between the pointing vector vew and 
the elbow-resource vector v^¡. The threshold has been adjusted 
from the data collected in an experiment in which the user 
freely walked around the activation zones, randomly pointing 
at different objects until 65 measures/resource were gathered. 
For each object, the success/failure rate was calculated for 
different thresholds (Figure 5a), finally configuring the system 
with data in Table I. Errors can be classified as Type I, when an 
unwanted object is selected, and Type II, when no object is 



selected. As it can be seen at Figure 5b, the system acts in a 
conservative way: most of the errors are Type II. 

T A B L E I . SUCCESS/FAILURE RATE FOR THE SELECTED THRESHOLDS. 

Object 

Light 1 
Light 2 
Light 3 
Light 4 
Light 5 
Light 6 
Light 7 
Light 8 
Light 9 
Proj. image 1 
Proj. image 2 
Proj. image 3 
Proj. image 4 

Rate for selected threshold 
Ta 

0.97 
0.97 
0.97 

0.965 
0.97 

0.965 
0.97 
0.97 

0.965 
0.97 

0.965 
0.98 
0.97 

a 
14° 
14° 
14° 
15° 
14° 
15° 
14° 
14° 
15° 
14° 
15° 

11.5° 
14° 

Success rate 
76% 

91.4% 
100% 
100% 
91.4% 
90% 
100% 
80% 
90% 

88.6% 
91.4% 
87.1% 
84.3% 

Error rate 
24% 
8.6% 
0% 
0% 

8.6% 
10% 
0% 

20% 
10% 

11.4% 
8.6% 
12.9% 
15.7% 

Fig. 5. a) Success/failure rate distribution for different thresholds for led light 
no. 5. These results mask Type I errors when another light in the same raw 
(light 4 or 6) is selected. b) Distribution of Type I and Type II errors for led 
light no. 5 from position 3. 

C. Analysis of the system response time. 

The time between the pointing action and the object 
response has been measured from a random sequence of 
actions within the activation space. The tester walked around 
until she completed 60 interactions with the led lights (20 per 
row) and 20 interactions with the four projected images. 
Timestamps in the code show that the pointing calculation 
process (since Kinect data are received until the pointed object 
is decided) is basically instantaneous (1 ms). 

Operating results that include the complete process - since 
the user points at the object until the expected object response 
takes place - are summarized in Figure 6. The interaction 
duration was estimated off-line from the captured video 
frames. For led lights, the mean activation time is 1171 ms 
(0=496 ms) from the pointing action to the light response. This 
is due basically to the infrastructure delay: communication with 
the Arduino-based infrastructure that manage the smart home 
actuators takes around 300 ms and the row of led lights is 

blocked for 1 second, to avoid consecutive detection of the 
same interaction gesture (and subsequently, an unwanted 
second action over the same device). Thus, if the user wants to 
switch the light on and off, it will take 0.3s+1s+0.3s=1.6s. 

Fig. 6. Response time. 

With respect to the projected images, the mean projection 
time is 1017 ms (0=51ms); the lag is due to the DLNA 
standard infrastructure that is used to project the image on 
pointing detection. 

D. Non-experienced user tests. 

With all the information collected above, the system 
parameters were tuned to provide the optimal user experience 
and 8 users (ages between 23 and 31) were invited to try the 
system within June 2014. None of these users had previous 
knowledge about the system, thus the objective was to compare 
the time response and the accuracy in untrained users. A 
facilitator guided the users throughout the experiment. 

Users were firstly asked to point at the four projected 
resources from one position in each of the two activations 
zones (8 interaction attempts). Success and failures were 
annotated, together with the error types when needed and the 
response time. A total of 64 attempts were gathered to obtain 
53 success iterations (83%). The mean number of success 
iterations per participant was 6.6/8 (0=1.3). No Type I errors 
were obtained; the average number of Type II errors per user 
was 1.4 (0=1.3). Then, users were asked to point at each led 
light in each row (9 led lights) from positions 2 and 4, in a 
random order defined by the facilitator. From position 2, 72 
iterations were needed to reach 36 success events (50%), while 
from position 4, with the same number of iterations, 55 success 
events were obtained (76%). On position 2, the mean number 
of success iterations was 4.5/8 (0=1.6), while on position 4, it 
increased up to 6.9 (0=0.83). Type I errors represented 33% on 
position 2 and 29% on position 4. When considering the 
average number of errors per user, Type II errors double Type I 
in both positions (position 2: 3 vs. 1.5; position 4: 1.5 vs. 0.6). 

Results show, once more, that the relative position from the 
interaction location to the devices is a relevant factor for 
success. Additionally, the pointing gesture differs between 
users, thus accuracy is reduced by this fact. Data show that 
users perform differently: success rate among users vary from 
54% to 85%. 

After this first round of the experiments, participants were 
trained by the facilitator about the best manner to interact with 



the system regarding the arm position, and the tests were 
repeated with the same dynamics. The objective of this second 
round was to evaluate the learning effect but, although minimal 
enhancement in the success/error rate was achieved, it was not 
possible to extract conclusive results. 

V I . CONCLUSIONS AND FURTHER WORK 

The described work presents a preliminary deployment of a 
low-cost system that enables to build a pointing-aware 
interaction space with easy-to-deploy Kinect 1.0 devices. The 
system has been prototyped and validated to an extent that 
shows the feasibility of the concept, although there are many 
open issues to bring the deployment to a fully responsive, 
universal and multiuser solution. 

The system is currently being ported to integrate the Kinect 
2.0 device (launched in July 2014). This new device is more 
accurate and sensitive and provides a wider vision field. It can 
work consistently in different illumination conditions. The 
S D K includes the possibility of accurately tracking the user’s 
fingers, which can be useful to both enhance the inference of 
the pointing vector or to recognize grammars of gestures to 
perform actions on the objects, this way enhancing the system 
expressiveness. A problem to solve with Kinect 2.0 is the 
devices synchronization, as no more than one device is 
simultaneously supported nowadays. 

We are also working to provide more freedom and adapt 
the system to different pointing habits: the pointing vector can 
be obtained by fusing different type of inputs that can be 
retrieved from Kinect 2 (fingers position, gaze, etc.) or other 
complementary systems that may help when the user moves to 
border coverage areas. In future settings, the user should be 
able to freely modify the body pose, the arm to use and the 
attitude (sitting, standing, walking, etc.). Another interesting 
issue is how to handle multiuser responses, when different 
users are interacting in the same space. This situation is 
perfectly feasible for potential gaming or educative services. 

A deep study to evaluate the user experience with pointing 
interaction in different service settings will be accomplished 
over evolved prototypes. It will enable measuring the system 
performance against other interaction options, the learning 
curve or the hindrances for user adoption. 
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