
A Kinect-based system to enable interaction by
pointing in smart spaces

Ana Fernández, Luca Bergesio, Ana M. Bernardos, Juan A. Besada, José R. Casar

Abstract—Pointing is a universal gesture that naturally
expresses interest or attraction towards the pointed items. If
some 'magic' is added, the gesture may also make these items
perform actions. In this paper, we describe a system that enables
to interact by pointing with digital or physical controllable
resources distributed in a smart space. The system facilitates
building an interactive room using COTS devices, in particular a
pair of Kinect sensors. The pointing direction is inferred from the
user's elbow-wrist vector, which together with a secondary
elbow-object vector serves to filter the controllable objects in the
area of pointing. Experiments with 8 users in a real setting
demonstrate the feasibility of the concept and show that the
accuracy of the system is very dependent on the relative position
user-resource and on the user behaviour itself.

Keywords—computer vision; natural interaction; pointing
interaction; Kinect; smart spaces.

I. INTRODUCTION

The pointing gesture is universally used as a way to denote
or attract interest towards an item [1]. When combined with the
adequate technology, a pointing gesture may also enable to
remotely control the pointed object. This is the idea under the
interaction concept that is explored in this work: the use of
pointing to govern the objects in a smart environment. Thus the
paper describes a system for pointing interaction, or deictic
interaction, which delivers a 'natural user interface' (NUI) to
the environment. The proposed NUI is built on the use of a
traditional human-to-human interaction model (pointing, in this
case), it is not instrumented through artificial control devices
and the interaction mechanism aims at becoming 'invisible'
after a learning process.

A key point of the system is that it relies on commercial-of-
the-shelf (COTS) sensors, in particular Kinect devices. The
Kinect device includes an RGB camera, a low-cost depth
sensor and a multiarray microphone to facilitate full-body 3D
motion capture, facial and voice recognition. The device makes
also possible to recognize the user's body or hand poses or in-
air gestures. On the image streaming from two synchronized
sensors, it is possible to transform a room in an 'interactive-
through-pointing' space. The system is composed by several
processing modules, which facilitate person detection and
tracking, gesture identification and gesture-object correlation
for effective control.

The context and the system is described as follows. Section
II summarizes the state-of-the-art on pointing interaction-
enabling systems. Section III describes the deployment
scenario and the pre-operation processes for the pointing
system. The system modules are detailed in Section IV, while
Section V gathers result on a real deployment that has been
built for user validation. Section VI concludes the work.

II. RELATED WORK

Controlling objects by pointing at them is not a new
concept; actually, it has been explored since the 80's. For
example, the 'Put-that-there' system (1980) [2] relies on a
specific wearable device to calculate the orientation of a user
seated in an armchair in a Media Room; the room is also
equipped with a voice recognition system, thus specific
sentences combined with natural pointing enables the user to
command simple shapes in a graphics display surface.

In [3], authors apply Hidden Markov Models trained with
3D trajectories of the head and the hand when performing
sample pointing gestures (described in three phases: begin,
hold and end). The system works on a fixed-baseline stereo
camera and combines stereoscopic range information and skin-
color classification to achieve a gesture detection rate of 88%
and a pointing detection rate of 90% on the correctly identified
gestures (8 pointing targets, ten persons, 206 pointing
gestures). Two approaches are used to estimate the pointing
direction: the line of sight between the head and the hand and
the forearm orientation. The 3D hand pointing gesture is
estimated in [4] from two cameras, orthogonally located on top
of the user and at his left side. The algorithm needs to be
trained. First, the hand region is detected, then the hand is
tracked in the limited search regions, using active appearance
models to detect and track 14 feature points along the hand
contour from a top and side view; finally, the 3D pointing
direction is estimated by combining the different views. The
correct pointing rate is 91% in 7600 frames. In [5], a system to
track gestures in front of a computer screen was implemented.
The system works on two cameras placed several feet above
the desktop and several feet apart, such that they can both see
the user's hand. The processing first extracts 2D information
from the two images and then combines the information from
each image to obtain 3D information about the thumb and
pointing finger. The pose for each finger consists on three
positional coordinates and two angles.

Authors of [6] propose to detect point gestures by using
binocular stereovision and estimating the pointing direction on
the line of sight connecting the point of pseudo-eyes below a
certain distance of the head top vertically and the fingertip of
the pointing arm. For this system to work, it is needed to place
two mounted overhead cameras looking down at an oblique
angle to capture head and pointing arm. Authors underline that
their system do not need to capture entire bodies and faces and
does not constrain the flat surface pointed by the user to be
visible by the cameras. Validation is done on a total of 864
gestures performed by 36 users, 2 hands, pointing at 12 panels
located in a range of [3.5, 12] m. away from the cameras in
normal lighting. The recognition rate is 93% in the most far
away panel and increases up to 97% in the closest one.

Authors of [7] present an algorithm for real-time detection
of pointing gestures in immersive environments (cave-like
ones); they define the pointing direction as the line of sight
connecting the eyes and the pointing fingertips. They rely on
the live video stream from 4-8 statically mounted and
calibrated cameras, including 1 overhead camera. The
algorithm starts with background subtraction and silhouette
segmentation. Extremal points on the silhouettes corresponding
to the head and hands are searched and matched among the
views from different cameras. The head and one or two hands
positions are then searched within the 3D points. In [8], the use
of disparity maps (instead of color-based blob trackers) as a
more robust technique against light changes is proposed. The
system subtracts the background, analyzes the foreground
pixels to break the body into parts and estimates the direction
of pointing. Authors evaluate their system by enabling the
users to select objects in a room or guide a cursor. A similar
strategy is used in [9] to extend the recognizable gesture set. A
method combining Time-of-Flight (ToF) and RGB cameras is
proposed in [11]. After a calibration process, it is applied a 3D
hand detection algorithm based on depth and color, on which
the gesture is recognized by using a classifier that relies on a
dimensionality reduction based on Average Neighborhood
Margin Maximization, approximated using Haarlets. The
Kinect sensor is mounted in a robot in [10] to simulate an
interaction in which the robot asks for directions to people and
automatically detects a 3D pointing direction by connecting the
wrist with the center of the hand. The system works on a
Haarlet-based hand gesture recognition strategy.

Some proposals explore multimodal systems for 3D
interaction. In [12], eye gaze is used to move a rectangular
overlay called ‘area of interaction’ in a computer screen; this
area defines the boundary for pointer positioning. Hand
fingertip is used to position the pointer and the presence of a
second hand triggers a click event. Using the system described
in [4], authors of [13] aims at providing a multi-gesture
interaction system combining eye gaze, head pose/position,
hand-pointing direction and mouth opening/closing. Authors
claim that the maximum pointing error for a specific
application is around 9 pixels.

Apart from vision-based systems, there are other proposals
that instrument the 3D pointing with devices. The
‘Point&Click’ system [14] enables a stand-alone ‘remote
control’ to get the control information from other devices, in
order to allow operational interaction through a simple user

interface. In a similar way, a laser-equipped device is proposed
in [15] to retrieve a set of control commands from an object:
when the object detects the laser beam, it sends the control
description to the master device by using infrared. The XWand
[16] is a wand-like device that enables the user to point at an
object in the environment and control it using gestures and
voice commands. A specific hardware solution to detect the
pointing direction of a laser pointer on a screen is provided in
[17]. Gloves and wearable devices have been also proposed to
interpret hand gestures. The Charade interaction system [18]
relies on a Data Glove to enable the user to perform 16
different gestures when working with a presentation. Pointing
is one of these gestures. A recent proposal is Digits [19], a
wrist-worn sensor containing an I M U and infrared camera that
optically images a large part of the user’s bare hand.

3 D pointing estimation has many applications; among
them, robot control is a widely explored one in literature. In
[20], a human-robot interaction method enables the human to
intuitively select a 3 D location and communicate it to a robot.
The human points at the position with an off-the-shelf green
laser pointer, then the robot detects the resulting laser spot with
an omnidirectional, catadioptric camera with a narrow-band
green filter. Once detected, the robot moves its stereo pan/tilt
camera to look at the detected laser spot and then estimate the
3 D location of the spot relative to the robot body. Authors
claim an average error of 9.75cm for 178 trials (12 objects, 5
users, 3 pointing attempts per user). The work [3] is applied to
robot control in [21]. As previously mentioned [10] also focus
in exploring human-robot interaction. Object or environment
control is also the service scenario for many systems. For
example, recent CityHome M I T project address the issue of
configuring a gesture-responsive home.

Current developments on Kinect for pointing interaction are
still limited. The use of this low-cost device may facilitate to
build and deploy real services. For this reason, our work
proposes to use Kinect capabilities to build a pointing-aware
environment.

I I I . SERVICE SCENARIO SETTING

The service objective of this Kinect-based system is to
facilitate the creation of spaces enabled with interactive
pointing capabilities. These capabilities will serve to activate
and manage different resources, such as smart home devices
(lights, blinds, etc.) by pointing at them.

Kinect 1.0 devices have optimal visibility in a range of 0.8-
4 meters from the sensor. To enable pointing, the system has to
determine the position of the users’ arms, which derives into a
practical operation range of 1.2 to 3.5 meters. Our
experimental setting is a room of 19 m2 (4.9x3.9 m.), which has
been equipped with 2 Kinect sensors obliquely situated at 2.4
m. high in opposite corners of the same wall (Figure 1); in
these conditions, the user can move within an operating area of
2.5x3 m. approximately. The placement of the devices
maximizes the operating area when compared to the two-walls
parallel and one-wall perpendicular alternatives.

In order to obtain the needed features from the Kinect
cameras, a calibration process has been previously completed
to obtain the camera intrinsic and extrinsic parameters. The

accurate calibration of the camera enables to estimate the
required distances in the real world from the captured images.
Intrinsic parameters (e.g. principal axis, optical center and focal
distance) are related to the internal geometry and the optical
features of the camera and remain constant if the features and
relative positions of the optics and the imaging sensor do not
vary. External parameters estimate the position and the
orientation of the camera within the scene coordinate system
(translation vector and rotation matrix). Kinect cameras are
CCD enabled (Charged Coupled Devices), thus the intrinsic
parameters define the coordinates in the reference frame of the
camera. The system requires referencing the sensing devices
and the smart objects to a global reference system. Each object
in the environment will be assigned with an invariant position,
independently of the Kinect device to be used in that moment.
The mentioned global reference system will be obtained
through the extrinsic parameters of the calibration process.

Fig. 1. Service concept and sensor deployment.

In our case, the system has been calibrated by using the
open tool Camera Calibration Toolbox for M A T L A B (CCT) .
Its workings are described e.g. at [22][23]. The calibration
pattern that has been used is a chessboard of 4x4 80 mm-sided
squares. The two Kinects have taken 34 images with the
calibration pattern in different positions of the operational
space in order to extract the intrinsic parameters. Afterwards,
the coordinate origin for the new reference system has been
placed on the floor, in the most distant line of sight of the
Kinect devices (Figure 2a). With this information, extrinsic
parameters have been calculated.

I V . SYSTEM MODULES

On the calibrated cameras, we have deployed a tracker that
enables to continuously position the user. On the user standing
still in a position, the system is prepared to detect pointing
scenes and trigger the subsequent actions.

A. Tracking and user management module

When the interaction application is launched, the system
waits until a user shows up in area of coverage of at least one
Kinect device. On this ‘new user’ presence event, the logic
starts acquiring the position of the user’s head (Kinect 1.0
device is ready to detect 20 points/joints in the user’s body). If
the user’s position falls into the operating space, a coordinates
transformation process is initiated (as said in Section III.b, the
coordinates of the initial positions are referred to the Kinect
reference system and need to be transformed into the global
reference system) and the data of the recognized user are stored
in a list that enables user management.

The maximum number of users that are detected by the
Kinect 1.0 is 6. In this first prototype of the pointing system, a

single user is enabled to interact with the objects in the space in
a given slot. Thus, when a new user is detected by one of the
Kinect sensors, it is needed to figure out if s/he is an existent
user previously registered by the other Kinect device or a new
user. In the first case, the system performs a user comparison,
basically estimating the difference between the user’s position
that each devices provide. If the distance is smaller than a 3D
threshold (600, 600, 800mm.), then the system enables joint
detection for the two devices. Apart from the ‘new user’
events, the system needs to manage ‘user lost’ events, in order
to update the user list, which is decremented only when the two
devices lose the user from their vision. For each frame (Kinect
1.0 works at 30fps), a positioning update signal is emitted and
the transformation of the position to the global reference
system, completed. A user track is depicted in Figure 2a.

Fig. 2. a) Track acquired by both Kinects. b) activation zones by object type.

B. Pointing interaction and object selection

Our first deployment of the pointing system makes possible
to interact with two different types of devices: 9 smart led
lights (in 3 rows) and 1 blind, and 4 on-wall projected contents
(Figure 4a). The actions to be performed on the objects are
two-state type (on/off, up/down, show/no show) and depend on
their previous state (e.g. switch the pointed light on if it is off
and viceversa), thus not additional gesture grammar is needed
for this first version of the system.

Depending on the region of the operating space, the user
will be capable of interacting with the different resources. Due
to service reasons, the central area of the operating space (zone
2) is configured to interact with the led lights, while the lateral
areas (zone 1, 3) are suited to interact with the projected
contents (Figure 2b). As it is afterwards explained, the pointing
vector is extracted from the user’s arm position. To simplify
the initial setting, all the resources can be activated by the
user’s right arm when in the zones 2 and 3, while the left arm is
required to activate actions in zone 1.

The global reference system is set at the left down corner of
the room (Fig. 2b). Whenever a user is detected within an
activation zone, Kinect estimates the position of the elbow and
wrist joints for the activation arm. Those coordinates are
transformed into the global reference system: the user’s elbow
position is then (xe, ye, xe), the wrist position (xw, yw, xw) and
the object position (xo, yo, xo). Then, the normalized pointing
vector elbow-wrist v e w is calculated as:

V P W =) •> •> •> (1)
e w V(xw-xe)

2+(yw-ye)2+(yw-ye)2

This done, object filtering is performed. A new reference
system is set at the user’s elbow and the wrist and objects’
positions, recalculated with respect to it (Fig. 3b). This way,
the wrist remains situated in one of the eight cube regions in
which the space is naturally divided. All the objects that are not
within the target region are discarded as candidate objects.
When the wrist position is in the boundaries of two cubes,
objects within both spaces are considered.

Fig. 3. a) Object selection vectors; b) Cubic filtering.

For each object that remains in the candidate list, the inner
product of vew and v^" is calculated (the inner product would
be 1 if the two vectors are perfectly aligned).

(Xn -Xp ,yo -ye . z o - z e)
V P n = , , , (2)

6 0 V (X o - X e) 2 + (y o - y e) 2 + (Zo-Ze) 2

Then, it is checked if the inner product is over an
‘acceptance’ threshold Ta. If so, the object is kept within the
candidate list. Ta has been empirically determined and depends
on the user’s pointing habits and the position of the target
resources. In our trial specific setting, it varies between 0.98
and 0.96 (equivalent to an angle between vectors in 11º-16º
range, Section V.B). After this second filtering, the final stage
determines that the target object is the one offering a minimum
angular difference between vew and veo (the greater inner
product).

Once the object/resource is chosen, the system
communicates to the infrastructure to perform the required
actions. To manage the led lights and the blind, a socket is used
to send the event to an Arduino controller. In order to manage
the resource projection, a D L N A (Digital Living Network
Alliance) content management system is used.

V. SYSTEM EVALUATION

Two tests have been performed to adjust the experimental
parameters and evaluate the system performance. In the first
test, an experienced user has cooperated i) to model the system
sensitivity to the interaction position, ii) to tune the acceptance
threshold for resource filtering and iii) to estimate the response
time. In the second test, 8 non-experienced users have tried the
system, performing a set of interaction tasks. The number of
participants provides a reasonable cost/benefit ratio, being
enough to collect insights on the system’s main performance
and usability aspects [24]. The independent variables of the
tests are the reference positions and the target objects/resources
to point, and the dependent ones, the time response and the
accuracy. Details and results are following gathered.

A. System sensitivity depending on the pointing location.

This experiment was designed to test the influence of the
distance between the user and the Kinect devices in the
resource selection process. Firstly, five different positions
(Figure 4a) in the central area of the interactive room were used
as reference testing points. From each position, 3 different led
lights were controlled (one light per row). For each pair
(reference position, object), 10 measures were collected: in
total 50 iterations/light were analyzed (Figure 4b). Results
show that the accuracy in the object selection strategy not only
depends on the user position, but on the relative position of the
resource with respect to the user. Pointing resources behind the
user position may make the arm colocation unnatural, deriving
this fact in an increased error. Moreover, if the user is located
far away from the Kinect devices (e.g. position 4 or 5),
detection is affected. The optimal positions are those
intermediate (position 2 or 3), as the user is in the optimal
detection area for the Kinect devices and the arm position is
natural. In the case of the 4 projected resources, three different
positions in each of the lateral areas were used to perform an
equivalent evaluation (a total of 60 iterations per projected
object were obtained). In this case, the reference points were
optimally situated, thus providing a success rate close to 100%.

Fig. 4. a) Experiment setting with led lights, blind and projected paintings,
and b) Distance effect, example for 2 led lights from different positions.

B. Estimation of the acceptance threshold.

As previously said, in the target selection process, two
filters are applied. The second filter is tuned taking into
consideration the acceptance threshold that defines the
maximum allowed angle between the pointing vector vew and
the elbow-resource vector v^¡. The threshold has been adjusted
from the data collected in an experiment in which the user
freely walked around the activation zones, randomly pointing
at different objects until 65 measures/resource were gathered.
For each object, the success/failure rate was calculated for
different thresholds (Figure 5a), finally configuring the system
with data in Table I. Errors can be classified as Type I, when an
unwanted object is selected, and Type II, when no object is

selected. As it can be seen at Figure 5b, the system acts in a
conservative way: most of the errors are Type II.

T A B L E I . SUCCESS/FAILURE RATE FOR THE SELECTED THRESHOLDS.

Object

Light 1
Light 2
Light 3
Light 4
Light 5
Light 6
Light 7
Light 8
Light 9
Proj. image 1
Proj. image 2
Proj. image 3
Proj. image 4

Rate for selected threshold
Ta

0.97
0.97
0.97

0.965
0.97

0.965
0.97
0.97

0.965
0.97

0.965
0.98
0.97

a
14°
14°
14°
15°
14°
15°
14°
14°
15°
14°
15°

11.5°
14°

Success rate
76%

91.4%
100%
100%
91.4%
90%
100%
80%
90%

88.6%
91.4%
87.1%
84.3%

Error rate
24%
8.6%
0%
0%

8.6%
10%
0%

20%
10%

11.4%
8.6%
12.9%
15.7%

Fig. 5. a) Success/failure rate distribution for different thresholds for led light
no. 5. These results mask Type I errors when another light in the same raw
(light 4 or 6) is selected. b) Distribution of Type I and Type II errors for led
light no. 5 from position 3.

C. Analysis of the system response time.

The time between the pointing action and the object
response has been measured from a random sequence of
actions within the activation space. The tester walked around
until she completed 60 interactions with the led lights (20 per
row) and 20 interactions with the four projected images.
Timestamps in the code show that the pointing calculation
process (since Kinect data are received until the pointed object
is decided) is basically instantaneous (1 ms).

Operating results that include the complete process - since
the user points at the object until the expected object response
takes place - are summarized in Figure 6. The interaction
duration was estimated off-line from the captured video
frames. For led lights, the mean activation time is 1171 ms
(0=496 ms) from the pointing action to the light response. This
is due basically to the infrastructure delay: communication with
the Arduino-based infrastructure that manage the smart home
actuators takes around 300 ms and the row of led lights is

blocked for 1 second, to avoid consecutive detection of the
same interaction gesture (and subsequently, an unwanted
second action over the same device). Thus, if the user wants to
switch the light on and off, it will take 0.3s+1s+0.3s=1.6s.

Fig. 6. Response time.

With respect to the projected images, the mean projection
time is 1017 ms (0=51ms); the lag is due to the DLNA
standard infrastructure that is used to project the image on
pointing detection.

D. Non-experienced user tests.

With all the information collected above, the system
parameters were tuned to provide the optimal user experience
and 8 users (ages between 23 and 31) were invited to try the
system within June 2014. None of these users had previous
knowledge about the system, thus the objective was to compare
the time response and the accuracy in untrained users. A
facilitator guided the users throughout the experiment.

Users were firstly asked to point at the four projected
resources from one position in each of the two activations
zones (8 interaction attempts). Success and failures were
annotated, together with the error types when needed and the
response time. A total of 64 attempts were gathered to obtain
53 success iterations (83%). The mean number of success
iterations per participant was 6.6/8 (0=1.3). No Type I errors
were obtained; the average number of Type II errors per user
was 1.4 (0=1.3). Then, users were asked to point at each led
light in each row (9 led lights) from positions 2 and 4, in a
random order defined by the facilitator. From position 2, 72
iterations were needed to reach 36 success events (50%), while
from position 4, with the same number of iterations, 55 success
events were obtained (76%). On position 2, the mean number
of success iterations was 4.5/8 (0=1.6), while on position 4, it
increased up to 6.9 (0=0.83). Type I errors represented 33% on
position 2 and 29% on position 4. When considering the
average number of errors per user, Type II errors double Type I
in both positions (position 2: 3 vs. 1.5; position 4: 1.5 vs. 0.6).

Results show, once more, that the relative position from the
interaction location to the devices is a relevant factor for
success. Additionally, the pointing gesture differs between
users, thus accuracy is reduced by this fact. Data show that
users perform differently: success rate among users vary from
54% to 85%.

After this first round of the experiments, participants were
trained by the facilitator about the best manner to interact with

the system regarding the arm position, and the tests were
repeated with the same dynamics. The objective of this second
round was to evaluate the learning effect but, although minimal
enhancement in the success/error rate was achieved, it was not
possible to extract conclusive results.

V I . CONCLUSIONS AND FURTHER WORK

The described work presents a preliminary deployment of a
low-cost system that enables to build a pointing-aware
interaction space with easy-to-deploy Kinect 1.0 devices. The
system has been prototyped and validated to an extent that
shows the feasibility of the concept, although there are many
open issues to bring the deployment to a fully responsive,
universal and multiuser solution.

The system is currently being ported to integrate the Kinect
2.0 device (launched in July 2014). This new device is more
accurate and sensitive and provides a wider vision field. It can
work consistently in different illumination conditions. The
S D K includes the possibility of accurately tracking the user’s
fingers, which can be useful to both enhance the inference of
the pointing vector or to recognize grammars of gestures to
perform actions on the objects, this way enhancing the system
expressiveness. A problem to solve with Kinect 2.0 is the
devices synchronization, as no more than one device is
simultaneously supported nowadays.

We are also working to provide more freedom and adapt
the system to different pointing habits: the pointing vector can
be obtained by fusing different type of inputs that can be
retrieved from Kinect 2 (fingers position, gaze, etc.) or other
complementary systems that may help when the user moves to
border coverage areas. In future settings, the user should be
able to freely modify the body pose, the arm to use and the
attitude (sitting, standing, walking, etc.). Another interesting
issue is how to handle multiuser responses, when different
users are interacting in the same space. This situation is
perfectly feasible for potential gaming or educative services.

A deep study to evaluate the user experience with pointing
interaction in different service settings will be accomplished
over evolved prototypes. It will enable measuring the system
performance against other interaction options, the learning
curve or the hindrances for user adoption.

ACKNOWLEDGMENT

This work has been supported by the C D T I C E N I T
T H O F U Programme. Additionally, authors want to thank the
eight volunteers of the E T S I T - U P M that have kindly provided
their help for the completion of the study.

REFERENCES

[1] G. Imai. "Gestures: Body language and nonverbal communication."
Retrieved Oct 2005.

[2] R.A. Bolt. “Put-that-there: Voice and gesture at the graphics interface”.
Vol. 14, no. 3. ACM, 1980.

[3] K. Nickel and R. Stiefelhagen. "Real-time recognition of 3d-pointing
gestures for human-machine-interaction." In Pattern Recognition, pp.
557-565. Springer Berlin Heidelberg, 2003.

[4] H. Kaoning, S. Canavan, Y. Lijun, "Hand Pointing Estimation for
Human Computer Interaction Based on Two Orthogonal-Views," Intl.
Conference on Pattern Recognition, pp.3760-3763, 23-26 Aug. 2010.

[5] J. Segen, S. Kumar, "Human-computer interaction using gesture
recognition and 3D hand tracking," 1998 International Conference on
Image Processing, pp.188-192 vol.3, 4-7 Oct 1998.

[6] G. Yepeng, Z. Mingen, "Real-time 3D pointing gesture recognition for
natural HCI," 7th World Congress on Intelligent Control and
Automation, pp.2433-2436, 25-27 June 2008.

[7] R. Kehl, L. Van Gool, "Real-time pointing gesture recognition for an
immersive environment", IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 577-582, 17-19 May 2004.

[8] N. Jojic, B. Brumitt, B. Meyers, S. Harris and T. Huang. "Detection and
estimation of pointing gestures in dense disparity maps." Intl. Conf. on
Automatic Face and Gesture Recognition, pp. 468-475. IEEE, 2000.

[9] L. Xia, K. Fujimura. "Hand gesture recognition using depth data." Intl.
Conf. on Automatic Face and Gesture Recog. pp. 529-534. IEEE, 2004.

[10] M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou, C. Landsiedel, K.
Kuehnlenz, D. Wollherr, L. Van Gool, and M. Buss. "Real-time 3D hand
gesture interaction with a robot for understanding directions from
humans." In RO-MAN IEEE, pp. 357-362. IEEE, 2011.

[11] M. Van den Bergh and L. Van Gool. "Combining RGB and ToF
cameras for real-time 3D hand gesture interaction." In IEEE Workshop
on Applications of Computer Vision, pp. 66-72. IEEE, 2011.

[12] N.-K. Chuan and A. Sivaji, "Combining eye gaze and hand tracking for
pointer control in HCI: Developing a more robust and accurate
interaction system for pointer positioning and clicking". IEEE
Colloquium on Humanities, Science and Engineering (CHUSER), pp.
172-176, 3-4 Dec. 2012.

[13] M.J. Reale, S. Canavan, L. Yin, K. Hu and T. Hung. "A multi-gesture
interaction system using a 3-D Iris disk model for gaze estimation and
an active appearance model for 3-D hand pointing." IEEE Transactions
on Multimedia, 13, no. 3, pp. 474-486, 2011.

[14] M. Beigl, “Point & Click – Interaction in Smart Environments”. Procs.
of the First Int. Symposium on Handheld and Ubiquitous Computing,
LNCS 1707, Springer-Verlag, pp. 311-313, 1999.

[15] G. Broll, M. Paolucci, M. Wagner, E. Rukzio, A. Schmidt, H. Hubmann.
“Perci: Pervasive Service Interaction with the Internet of Things”. IEEE
Internet Computing, vol. 13, no. 6, pp. 74-81, 2009.

[16] A. Wilson, S. Shafer. "XWand: UI for intelligent spaces." Proc.
Conference on Human factors in Comp. Sys., pp. 545-552. ACM, 2003.

[17] D. Pasquariello, M. Vissenberg, G.J. Destura, "Remote-Touch: A Laser
Input User–Display Interaction Technology," Journal of Display
Technology, vol. 4, no.1, pp.39-46, March 2008.

[18] T. Baudel, M. Beaudouin-Lafon. "Charade: remote control of objects
using free-hand gestures." Comm. of the ACM 36, 7, 28-35, 1993.

[19] D. Kim, O. Hilliges, S. Izadi, A.D. Butler, J. Chen, I. Oikonomidis, and
P. Olivier. "Digits: freehand 3D interactions anywhere using a wrist-
worn gloveless sensor." Proc. of the 25th annual ACM symposium on
User interface software and technology, pp. 167-176. ACM, 2012.

[20] C.C. Kemp, C.D. Anderson, H. Nguyen, A.J. Trevor, X. Zhe Xu, "A
point-and-click interface for the real world: Laser designation of objects
for mobile manipulation," 3rd ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pp.241-248, 12-15 March 2008.

[21] K. Nickel and R. Stiefelhagen. "Real-time person tracking and pointing
gesture recognition for human-robot interaction." Computer Vision in
Human-Comp. Interaction, pp. 28-38. Springer Berlin Heidelberg, 2004.

[22] J. Heikkila, O. Silvén, "A four-step camera calibration procedure with
implicit image correction", Procs. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE, 1997.

[23] J.-Y. Bouguet, Jean-Yves. "Complete camera calibration toolbox for
matlab", 2004, http://www.vision.caltech.edu/bouguetj/calib_doc/.

[24] J.M. Christian Bastien, “Usability testing: a review of some
methodological and technical aspects of the method”, Intl. J. of Medical
Informatics, Vol. 79, Is. 4, pp. 18-23, 2010.

http://www.vision.caltech.edu/bouguetj/calib_doc/

