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Abstract—A conductive object subject to an applied varying
magnetic field will emit a secondary magnetic field or scattered
field. The scattered field is dependent on the geometry of the
object and its material properties (conductivity, permeability,
etc). If we can calculate the scattered field for a given geometry
(the scattering problem), we can infer the material properties
from the detected electromagnetic response. Our motivation is the
production of induction based classifiers for object and material
classification. Applications include sorting of high value scrap
metal and identifying UXO from clutter in landmine clearance.
To this end, we require methods of solving the scattering problem
quickly and accurately.

In this paper, we evaluate the thin-skin approximation bound-
ary element method. The method offers a particularly compact
formulation of the scattering problem which is quick to solve.
We compare this method to the more established finite element
method. We find that larger objects at higher frequencies and
conductivities appear to give good agreement between the two
methods. However, the agreement breaks down for smaller
objects even when the frequency or conductivity is relatively high
for typical induction based sensing. This is especially true when
the object has a complex geometry. This imposes limitations on
the practical usefulness of this approach.

I. INTRODUCTION

The boundary element method, or method of moments,
is a well-established procedure for solving electromagnetic
scattering problems [1]. The method uses a discretisation of
the surface of the scattering object into a series of source
points, observation points and linear basis functions in order
to pose the scattering problem in the form of a linear matrix
function. We can then solve for the unknown source points
by using classical matrix inversion techniques to obtain the
magnetic field across the entire surface of the object. With the
object boundary conditions found, we can then solve for the
magnetic field at any point by using the appropriate Green’s
function.

The boundary element method is particularly advantageous
where we wish to avoid discretising an entire set of domains in
to a volumetric mesh, for instance when using finite element
or finite time difference methods. We need only discretise the
surface or boundary using planar meshes such as triangular
meshes. In some cases, such as when we only need to find
magnetic field in a small number of locations, this method can

offer significant solution-time improvements over alternative
solvers.

In the present work, we are motivated by two applications
for which the boundary element method offers a promising
solution. The first is in the estimation of the magnetic polariz-
ability tensor of metal objects [2]. The magnetic polarizability
tensor is a function of the dimensions, shape, material com-
position, and orientation of a metal object. If we know the
tensor of the object beforehand, we can use it to distinguish
different metallic objects from one another purely from their
magnetic response. This approach has significant application
in areas such as walk-through metal detectors [3], [4] and in
landmine detection and clearance [5].

A boundary element approach to predicting the magnetic
polarizability tensor has been previously reported by Lu et
al. [2]. However, this only addressed the asymptotic case of a
perfect electrical conductor. We follow this work by extending
to finite but high conductivities.

The second application is identifying metals in scrap metal
sorting. Current processes such as permanent magnets and
eddy-current separation can sort large proportions of the metal
samples, however, they leave a significant fraction of valuable
metals and alloys such as brass, bronze, aluminium and copper
[6]. Assuming the shape of the samples are known, we can
use a fast solver to obtain the scattering of these objects in
response to an excitation and thus obtain a prediction of their
conductivity and material type.

In this paper, we evaluate a boundary element method
that uses a thin-skin approximation to produce a particu-
larly compact formulation of the scattering problem for high
conductive objects where skin-depth is small relative to the
characteristic dimensions of object [7], [8]. The compactness
of the formulation means that the resultant matrix problem
is small and the consequent inversion time to solve for the
boundary elements is kept short. We examine the accuracy
of the field solutions using this method by comparing with
established finite-element methods using a small range of
simulated test objects.



II. THIN-SKIN APPROXIMATION BOUNDARY ELEMENT
METHOD

In this section, we provide only a brief overview of the
method formulated by Sun et al. [7], [8]. We refer the inter-
ested reader to these original references for a more detailed
and thorough explanation of this approach.

Consider a simply connected conductive object with surface
S existing in an external space that has magnetic permeability
at or close to free space and a conductivity close to zero.
We subject the object to an excitation magnetic field which in
turn induces a secondary magnetic field in the external region.
By further assuming that the magnetic field in the external
region is quasi-static, we can state that the magnetic field in the
external region is irrotational and can therefore be described in
terms of magnetic scalar potentials ψe and ψpr, where the first
term is the (overall) potential of the field in the exterior region
and the second denotes the potential due to the excitation field.

The following integral equation describes the magnetic
scalar potential at an observation point r in the external region
or on the surface of the object,

ψpr(r) = β(r)ψe(r)

+

∫
S

(
ψe(r′)

∂g(r, r′)

∂n′
+ g(r, r′)He

n(r′)

)
dS′ (1)

where g(r, r′) = 1/(4π |r− r′|) is the Green’s function for the
Laplace equation, r′ are source points on the surface of the
object, n is a surface normal with positive pointing outwards
and He

n the component of the magnetic field normal to the
surface. The term β(r) equals the exterior solid angle required
to exclude the singularity, divided by 4π, such that β = 1
when r is in the external region, β = 0 when r is inside the
object and β = 0.5 when r is on a perfectly flat region of
the object’s surface. In the present work, this is calculated by
β = 1− Ω/4π, where Ω is the solid angle at r subtended by
the surface of the object.

The thin-skin approximation assumes that the following
relation applies to the surface of the object,

∂Hn

∂n
= −iαnkHn(r), r ∈ S (2)

where Hn is the component of the magnetic field normal to
the object surface, i =

√
−1, and k =

√
σωµ/i (m−1) with

ω the frequency (rad/sec), σ the conductivity (S/m) and µ
the magnetic permeability (H/m). The term αn is a correction
factor which accounts for deviation from the ideal case, the
ideal case being when the field inside the object is governed
Hn(n) = Hn(0)e−ikn where n is the distance from the
surface. In what follows we assume the ideal case is true and
thus αn = 1.

We now wish to pose equations (1) and (2) in the form of
a boundary element problem so that we can solve for surface
ψe and Hn and then for the same terms in the exterior region.
First, the surface of the shape is approximated by a triangular
mesh consisting of N node points. We then introduce an

approximation for ψe and He
n on the surface,

ψe(r) =

N∑
j

ψe
jϕj(r), He

n(r) =

N∑
j

He
n,jϕj(r) (3)

where ψe
j and He

n,j are respectively the scalar potential and
normal magnetic field at node j and ϕj(r) is a linear basis
function which is equal to one one when r corresponds to the
jth node point and declines to zero as r approaches adjacent
nodes.

The boundary element problem is derived using equations
(1) and (2), the approximations in (3), and the divergence
relation ∇·H = 0 in the object interior (see Sun et al. [7] for
the detailed derivation). For the ith observation point,

ψpr(ri) =

N∑
j=1

(
β(ri)ψ

e
i + ψj

∫
S

ϕj(r
′)
∂g(ri, r

′)

∂n′
dS′

+He
n,j

∫
S

g(ri, r
′)ϕj(r

′)dS′
)

(4)

0 =

N∑
j=1

(
ψe
j

∫
Ai

∇ϕi · ∇ϕjdA

+
He

n,j

µr

[
1

Ai
− ikαn

] ∫
Ai

ϕiϕjdA

)
(5)

where Ai is the area of the surface triangular elements
around node i. We can solve for the unknown boundary
terms ψe

1, ψ
e
2, ..., ψ

e
N and He

n,1, H
e
n,2, ...H

e
n,N by choosing

observation points coincident with the nodes. This gives us
sufficient equations (2N ) to solve for each unknown via any
standard matrix inversion approach. We can then use the
boundary terms to calculate the magnetic scalar potential, and
therefore the magnetic field, for any observation point outside
of the object.

III. METHOD

We evaluate the TSA-BEM by comparing the resultant
scattered field computed by this method for four distinct
high conductivity (107 S/m) objects with the scattered field
computed by a commercial finite element solver for the same
objects and same excitation field. For the present work, the
excitation is equivalent to a cylindrical coil of 10 cm in radius
and 100 cm in length with central axis coincident with the x-
axis, providing a nearly uniform central field of approximately
1 A/m.

Four test objects are used with different geometries and
sizes: A cylinder, an ellipsoid, a right angle or L-shape, and
C-shape or cut ring. The dimensions of each object are shown
in figure 1. The cylinder is chosen to follow recent work on
using the perfect electrical conductor version of this boundary
element method [2], i.e. when He

n in equation (2) is zero. The
dimensions and mesh from the cylinder in this work are kept
the same for the present work. The ellipsoid is selected to
follow the original work which proposed the TSA approach
[7]. This work evaluated the method for spheres, ellipsoids
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Fig. 1. Geometry of the test objects.

and deformed ellipsoids. The right-angle and C-shape were
selected from our test library of real components for their
interesting geometry.

A. Implementation of the thin skin approx. boundary element
method

The thin-skin approximation boundary element method was
implemented in Matlab 2014b (Mathsworks inc, USA) and
used surface triangular meshes generated by Netgen 5.3 [9]
from CAD drawn STL files created for each object. The
number of nodes and surface triangles for each object are as
follows:

• Cylinder - nodes 146, triangles 288,
• Ellipsoid - nodes 336, triangles 668,
• Right angle - nodes 274, triangles 544,
• C-shape - nodes 723, triangles 1442.

The number of surface triangles are deliberately kept small
as we are investigating this method primarily for its ability to
produce rapid results to scattering problems in high throughput
applications. Large numbers of surface triangles increase the
time to produce the mesh and increase the size of the required
matrix inversion, which is in general of N3 complexity. There
are a number of methods, such as the fast multi-pole method
and precorrected FFT [10], which can improve the inversion
time. However, these methods necessarily incur some overhead
costs in computation. Investigation of these methods falls out
of the scope of our current work.

The equations (4) and (5) require integration of the Lapla-
cian Green’s function and it’s normal derivative over the
surface triangles. This introduces singularities when the node
and observation point coincide. We resolve the integrals an-
alytically using the method proposed by Graglia [11] for
integrating 3-D Green’s functions over planar triangles.

B. Finite element method

Simulations were performed using the commercial Finite
Element Method solver, Ansys Maxwell v16. Each test object
was positioned within the central region of the coil and
simulations were performed for a total of 31 frequencies from
10 Hz to 10 MHz with 5 logarithmic based increments per
decade frequency change. Typical total meshing levels was in
the order of 100k tetrahedral elements and solution times for
a single object at all frequencies was in the order of 0.5 hrs
running on Intel Core i7-2600 (3.4 GHz).

IV. RESULTS AND DISCUSSION

We compare the scattered field computed by the boundary
element with the field computed by the finite element method.
By scattered field, we refer to the magnetic field solely
generated by the object in consequence to the excitation. In
other words, the field in the external region with the initial
excitation subtracted. Field points are calculated across the
exterior region of the object at a resolution of 4 mm.

Field vector data exported from the finite element method
solver was visualized with ParaView [12] software. The as-
sociated secondary-field vector cloud for each test object was
visualized at all frequencies using the streamtracer and glyph
filters of ParaView in order to give a 3D representation of
the form and direction of the calculated fields. This was
performed for both boundary element and finite element data
in order to give a direct and accurate 3D visual comparison
between the two methodologies. Examples at 10 kHz and 1
MHz are shown in figure 2 for objects with conductivity of
σ = 3.5 × 107 S/m. In this figure, the real component of
the boundary element computed magnetic field is shown in
the form of streamlines across a plane. The finite element
computed values are shown for 1 MHz with red glyph arrows
superimposed over the streamlines. These images have also
been rendered in to animations showing finite and boundary
element data over different frequencies1.

Figures 3 and 4 show the real and imaginary x-axis com-
ponent of the scattered field (Hs

x) in a localised region below
the object. We define the bottom of the object as being the
face looking towards the negative x-axis. Figure 3 shows the
results over a range of wavenumbers at a single observation
point in space at y = 2 mm, z = 2 mm and x = 8 mm below
the bottom surface. It is feasible to conceive of this point as
the field detected by a small induction sensor such as a small
diameter receiver coil. Figure 4 shows the real and imaginary
component of Hs

x at a single wavenumber with respect to a
line at y = 2 mm, z = 2mm and along the negative x-axis. The
wavenumber is equivalent to aluminium objects (σ = 3.5×107

S/m) subject to a 10 kHz excitation field.
The larger of the four objects, the ellipsoid and cylinder,

show good similarity between the finite element and boundary
element methods at high wavenumbers. The real components
are particularly well matched: Figure 2 shows good correspon-
dence in the vector directions for the two objects and figure
3 shows the boundary element computed real component to
be within 20% of the finite element method at wavenumbers
down to k = 103. In practical terms, this is equivalent to an
aluminium cylinder or ellipsoid at 3.5 kHz, or a skin-depth
of approximately 1.4 mm. Both objects have a 10 mm radius
(at the widest point tangential to the x-axis for the ellipsoid),
which implies the skin-depth should be around 10-15% of the
size of the characteristic dimension of the shape. This broadly
agrees with the original work of Sun et al. [7] which found the
thin skin approximation applies well when the skin depth is no

1Animations available at
www.eee.manchester.ac.uk/people/staff/profile/?ea=michael.otoole



greater than an order of magnitude less than the characteristic
radius.

The imaginary components show poorer agreement with the
finite element results. The boundary element results appear
to be approximately double the finite element results at k =
103. This result is broadly similar to the findings of Sun et
al. [7], where poor match was found with other solvers for
the imaginary component when the object material has low
permeability. The reason for such poor agreement, given the
relatively good agreement of the real component, may be due
to poor conformity with the thin skin assumption when the
correction factor αn = 1. Evidently the corners of the cylinder
and the ellipsoid surface challenge the assumption of uniform
exponential decay of the normal component of the magnetic
field. The method may benefit from a rational approach to
choosing αn. For example, Sun et al. [7] approximates αn

using known solutions of a sphere.

The agreement between the boundary and finite element
methods for both the real and imaginary components do
improve with increasing frequency and conductivity. The
asymptotic perfect electrical conductor result for example, that
is when the real component approaches k → ∞, appears to
converge very closely.

Figure 4 shows a similar result to figure 3. The differences
between the boundary and finite element is relatively large
close to the boundary of the shape. This quickly converges
with distance from the base of the shape. Again, the imaginary
component shows considerably poorer agreement than the real
component, implying limitation of the thin-skin approxima-
tion. Figure 4 shows a similar result to figure 3. The differences
between the boundary and finite element is relatively large
close to the boundary of the shape. This quickly converges
with distance from the base of the shape. Again, the imaginary
component shows considerably poorer agreement than the real
component, implying limitation of the thin-skin approxima-
tion.

The trends found for larger objects also occur for the smaller
right-angle and c-shape objects. We find the agreement be-
tween boundary and finite element to improve with increasing
wavenumber and distance from the boundary. However, the
smaller objects show considerably poorer results generally
than the larger objects. Here, the ratio between the characteris-
tic dimension to skin-depth is much smaller and the presence
of complex geometry further limits the validity of the thin-
skin approximation. The results for the right angle are only
valid at a around k = 104; an order of magnitude different
from the larger shapes. The paraview visualizations clearly
show implausible field lines at 10 kHz but which converge
to realistic field lines matching the finite element results at 1
MHz. Interestingly the C-shape PEC result appears to diverge
markedly from the finite element results in contrast to the other
shapes. This can not be due to the thin-skin assumption as
the skin-depth is infinitesimally small for the perfect electrical
conductor case.

V. CONCLUSION

In this paper, we evaluated the thin-skin approximation
boundary element method for solving electromagnetic scatter-
ing problems against an existing, well-established commercial
finite element solver. This method uses scalar magnetic poten-
tials and an assumption that the component of the magnetic
field normal to the surface of the object decays uniformly,
with respect to the normal distance from the surface, across the
entire surface of the object. This combination allows for a very
compact formulation and keeps the size of the matrix inversion
required to solve for the boundary elements relatively small.
Thus, the method is computationally efficient and potentially
can be solved very quickly compared to other electromagnetic
solvers.

We find the boundary element method agrees well with
the finite element method for the larger objects and the level
of agreement improves as frequency or object condcutivity
(in the form of the wavenumber). The imaginary components
however, agreed less well than the real component. This may
be due to variation from the thin-skin assumption due to object
geometry and may be improved by better choice of correction
factor αn. However, choosing αn for any given geometry is
an open question.

The agreement for the smaller and more complex-shaped
objects was poor. To some extent this is to be expected, as we
can no longer necessarily assume a ’thin-skin’ for these shapes.
The skin depth fills a significant portion of the characteristic
dimensions of these pieces, even at higher wavenumbers.

The thin-skin approximation boundary element method has
promise as a method for fast solutions to electromagnetic scat-
tering problems. However, we conclude there are significant
shortcomings in its practical application in the case of smaller
and complex objects. This limits the usefulness in our target
applications - for example, it would only be suitable for sorting
larger fractions of scrap metal and for measurements towards
the higher end of many typical induction based sensors.
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Fig. 3. The x-axis component of the scattered field Hs
x at a point 8 mm below the bottom surface of the object (y = 2 mm, z = 2 mm) Vs wavenumber k

(m−1).
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Fig. 4. The x-axis component of the scattered field Hs
x on a line y = 2 mm, z = 2 mm, x<0, projecting from the bottom surface of the object.


