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Abstract—Developing wearable sensing technologies and un-
obtrusive devices is paving the way to the design of compelling
applications for the next generation of systems for a smart IoT
node for Human Machine Interaction (HMI). In this paper we
present a smart sensor node for IoT and HMI based on a
programmable Parallel Ultra-Low-Power (PULP) platform. We
tested the system on a hand gesture recognition application, which
is a preferred way of interaction in HMI design. A wearable
armband with 8 EMG sensors is controlled by our IoT node,
running a machine learning algorithm in real-time, recognizing up
to 11 gestures with a power envelope of 11.84 mW. As a result, the
proposed approach is capable to 35 hours of continuous operation
and 1000 hours in standby. The resulting platform minimizes
effectively the power required to run the software application
and thus, it allows more power budget for high-quality AFE.

Keywords—Embedded systems, ultra-low power, multi-core,
PULP, EMG.

I. INTRODUCTION

The global Human-Machine Interface (HMI) market is
expected to generate revenues of more than 8 billion USD
over the next 5 years. This trend is driven by the increasing
adoption of devices for industrial automation [1], wearable
health tracking [2] and, more in general, the growing plethora
of IoT ecosystems.

Hand gesture is probably the most natural and direct method
used by humans to interact with objects and it has compelling
and straightforward applications in many scenarios, including
industrial control, healthcare, gaming and rehabilitation.

Decoding human intentions expressed by hand gestures is
usually based on two main approaches: (i) visual recognition
of hand gestures using computer vision techniques [3]; (ii)
recognition based on the analysis of the electrical activity of the
muscles involved in the gestures [4]. The former solution relies
on the image processing of gesture captured by video cameras.
Based on machine learning algorithms, it can recognize a
large number of gestures [3], but it requires an external
infrastructure such as fixed cameras, mounting attachments,
and power supply, and it is very sensitive to environmental
factors, such as variations of the intensity of lighting or line
of sight interruption.

The alternative approach is based on decoding ElectroMioG-
raphy (EMG) signal by leveraging techniques ranging from
direct control [5] to pattern recognition [6], to deep learning

[7] and synergies [8], with the objective of mapping muscle
contractions onto the corresponding hand gesture.

Such systems require accurate sensory interfaces and high
computational capabilities to be implemented on systems with
a reduced form factor, due to the intrinsically noisy nature
of the EMG signal and on the computationally demanding
algorithms required to make sense of the biosignals [9]. Some
attempts have been made at a commercial level, such as
the MYO [10], an armband that acquires EMG data from 8
differential channels and sends the data collected on EMG to
a PC that processes them with pattern recognition techniques,
to recognize up to 5 gestures. Such approach requires a con-
tinuous link between the sensor armband and the PC/gateway
platform, since traditional wearable platforms are not suitable
for computationally intensive tasks, such as pattern recognition
algorithms.

In an effort to move towards fully portable solutions, an
approach which is gaining traction in the last year is to use
an offline bench-top system for the algorithm training and to
implement the classification of the EMG signal directly on
the wearable node. However, designing wearable integrated
systems for acquisition and processing of EMG signals, which
are capable of executing full pattern recognition algorithms in
real-time at high energy efficiency is still an open challenge.
Some systems, like the work presented in [11] or [12], rely on
high-end ARM CORTEX A8 processors, which can sustain
the high computational load but require significant energy,
guaranteeing only 0.5 h of operation with a 100 mAh battery.

More efficient solutions, such as [13] and [14] are based on
dedicated industrial IoT microcontrollers (i.e. ARM CORTEX
M4) and provide up to 10 hours with a 100 mAh LiPo battery.

The lesson learned from this analysis is that the development
of HMI wearable devices pose two significant challenges for
the digital processing part: (i) the power envelope of the digital
platforms must be minimized to allow high-quality signal
acquisition via an Analog-Front-End (AFE) and (ii) approaches
based on data streaming, which offloads the signal processing
on external platforms, do not scale well because of limited
bandwidth and high energy-per-transmitted bit of wireless
interfaces, even though energy-efficient protocols are used (e.g.
Bluetooth Low Energy). In this work, we introduce BioWolf,
an integrated platform for computationally-intensive medical
IoT applications, which addresses all these challenges as it



provides an ULP compute platform that can process biosignals
in parallel and locally with a power budget lower than that
of the AFE. Our platform is based on Mr. Wolf [15], a pro-
grammable Parallel Ultra-Low-Power processor that combines
high versatility and compute efficiency higher than single-core
architectures such as those available in standard MCUs with
wireless connectivity. Hence, local end-to-end processing (i.e.,
with on-board classification) has also a lower power budget
than streaming and remote recognition (in addition to lower
latency and more robustness wrt wireless connectivity issues),
employing 2.4x and 7x less power than the AFE and direct
data streaming, respectively.

The PULP processor is coupled with a commercial Blue-
tooth Low Energy (BLE) SoC (Nordic nRF52832), which
enables communications and auxiliary support for the sys-
tem. The board also integrates an 8-channel Analog Front
End (AFE) for the analog-to-digital conversion of the input
signals. The system also includes an Energy Harvesting (EH)
subsystem that provides extended battery life and automated
battery recharging. All the components are assembled in a
20x40 mm form factored 4-layer Printed Circuit Board (PCB)
that aims to provide full portability and wearability. To validate
the system, we integrated it in an elastic armband, to enable a
hand gesture recognition device, based on Hyperdimensional
Computing [16], a novel pattern recognition framework. First,
we validate the electrical characteristic of the signal acqui-
sition, demonstrating the suitability of Biowolf for biosignal
processing, then we characterize the performance of the system
in terms of energy efficiency showing that, while running the
application, the device consumes only 11.84 mW, providing
up to 18 hs of operation with a battery life that is further
extended when energy is generated through the EH subsystem.
The full HMI recognition software runs on the wearable node
that employs less than 30% of the total power to acquire and
convert the EMG signals. Thus, the remaining power can be
employed on power-demanding high-quality AFEs, resulting
in an improvement of the overall performance of the system.

II. MATERIAL AND METHODS

A. Embedded Architecture

BioWolf is a highly-configurable platform for acquisition
and embedded processing of biopotentials featuring a Parallel
Ultra-Low-Power (PULP) SoC MCU for signal processing,
an ARM-based Nordic SoC MCU for Bluetooth Low Energy
(BLE) communications and system management, an Analog
Front End (AFE) for analog-to-digital conversion of biosignals
and a nano-power buck-boost regulator for energy harvesting.
A T.I. BQ27441 fuel gauge is also present allowing to regularly
check for battery status on a I2C interface. Fig. 1 shows a
block diagram of the complete system and Fig. 2 shows the
final PCB implementation.

Mr. Wolf, the Nordic SoC and the AFE are connected via
SPI bus. Three operating modes are available, as described
below.

Fig. 1. BioWolf System Architecture.

Fig. 2. BioWolf Board. Top side allocates Mr. Wolf, the AFE and part of
the power supply section. Bottom side is mostly dedicated to the nRF52832
SoC, fuel gauge, connectors and the analog power supply section.

• When data needs to be streamed out directly (eventually
after some basic processing such as simple filtering), Mr.
Wolf is put in sleep mode and the Nordic SoC acts as
master on the SPI bus, reading data from the AFE.

• When more computationally intensive processing is re-
quired, Mr. Wolf guarantees the best power efficiency to
the system and is therefore the one controlling the SPI
bus as the master, reading data from the AFE, processing
it and sending only the result of such processing to the
Nordic SoC for BLE transmission.

• When the system is not required to acquire and/or process
data, it can be put in a deep sleep mode to minimize power
consumption. Wake up is obtained by putting the device
in a NFC field, such as tapping on it with a NFC-enabled
smart-phone or tablet.

Biosignals are acquired by a multichannel commercial AFE
from TI (ADS1298). The AFE is the de-facto standard used in
biopotential acquisition platforms and presents a very favorable
trade-off between performance and power consumption, since
its 3 V single supply does not require step-up DC/DC con-
version of the battery voltage, without significantly affecting
noise performance. The board supports simultaneous sampling
of up to 8 differential channels at frequencies up to 32 kbps
with a gain of the input programmable gain amplifier (PGA)
from 1 to 12 and a maximum resolution of 24-bits. The system
is compatible both with dry and wet electrodes.

Mr. Wolf is a multi-core programmable SoC implemented
in CMOS 40nm technology that combines a tiny (12 Kgates)



RISC-V processor (zero-risky) [17], namely the Fabric Con-
troller (FC), with a cluster of eight RISC-V processors
equipped with flexible and powerful DSP extensions available
on the RI5CY processor [17]. The cluster is coupled with a
single-cycle latency multi-banked L1 memory (64 kB) allow-
ing fast data transfer among the cores, and with an ’off the
cluster’ 512 kB of memory (L2) with 15 cycles latency. A
dedicated DMA controller allows reducing the latency and
computational power associated with data transfer. It also
features two floating-point units (FPU) that are shared among
the cores. Mr. Wolf can achieve very fine-grained parallelism
and high energy efficiency in parallel workloads through a
dedicated hardware block (HW Sync) that provides fast event
management, parallel thread dispatching and synchronization.
The SoC contains a full set of peripherals, including a Quad
SPI (QSPI), I2C and UART, with data transfers also managed
by a multi-channel I/O DMA to reduce the load on the system.
In run mode, the SoC is powered by an internal DC/DC
converter that can be programmed to deliver from 0.8 V to
1.1 V. In sleep mode, a low-dropout (LDO) regulator powers
a real-time clock (32 kHz crystal oscillator) that controls a
programmed wake-up and, optionally, part of the L2 memory,
allowing retention of application state for fast wake-up. In deep
sleep mode, the power consumption of the MCU is about 108
µW that can be further reduced to 72 µW when no retention
is required.

Data communication (and basic processing if needed) is
performed by the nRF52832 SoC from Nordic. The MCU,
based on an ARM Cortex-M4 (up to 64 MHz clock frequency)
provides flexible Bluetooth 5 (BLE) communication at a low-
power budget. This MCU also serves as a device manager
of the board. It allows choosing the operation mode (sleep,
raw data streaming, data acquisition and processing), including
programming Mr. Wolf accordingly and setting power on/down
of the analog section. It also detects battery status from the fuel
gauge.

Power supply, battery management, and energy harvest-
ing are managed by a Texas Instruments BQ25570. The IC
implements a Maximum Power Point Tracking (MPPT) that
adapts the input impedance of the solar cells maximizing the
energy conversion in all the lighting conditions with up to
90% of efficiency. This energy is then used to recharge a
small factor 65 mAh LiPo battery. The Energy Subsystem (EH)
also provides a high efficient buck converter that delivers a
stable voltage output of 1.8 V to supply the digital portions of
the board. An additional output is available, connected to the
battery voltage when its voltage level is higher than 3 V. This
is used to power the analog portions of the board, in particular,
the AFE which requires a minimum supply voltage of 2.7 V.

B. Hyperdimensional Computing

To demonstrate the performance of our system architecture,
we propose as a case study the classification of hand gestures
from EMG signal through HD Computing algorithm, a brain-
inspired approach that computes with points in the HD space
(hypervectors) as an alternative to numbers [16].

Fig. 3. Implementation on BioWolf of the HD computing algorithm.

To exploit all the capabilities of the hardware implemen-
tation, these hypervectors are considered as (pseudo)random
dense binary vectors composed of an equal number of ran-
domly placed 0s and 1s, which can be combined into new
hypervectors through well-defined algebraic operations such
as componentwise XOR (⊕) as multiplication, the compo-
nentwise majority function ([+]) as addition, and one-bit
circular rotation (ρ) as permutation. Features are extracted
from the raw signals and mapped (i.e. encoded) into the
HD space using Item Memory (IM) and Continuous Item
Memory (CIM) [18] matrices. The IM is composed of random
orthogonal (⊥) hypervectors (i.e., E1 ⊥ E2... ⊥ Ei) related
to the input channels. The CIM contains orthogonal endpoint
hypervectors, mapped through discretized values of the input
channels. Discretizing the features in K levels, we have K
hypervectors (V1..VK) where V1 and VK are related to the
minimum and maximum input values and the intermediate
levels are generated by a linear interpolation between these
two orthogonal endpoints [18]. The HD computing provides
two encoders, spatial and temporal. The first one captures the
spatial information contained in the signal with a component-
wise XOR between E and V resulting (at instant t):

St = [(E1 ⊕ V t
l(1)) + ...+ (Ei ⊕ V t

l(i))]. (1)

Sometimes the spatial information is not enough, and the tem-
poral information is required. This can be done by a temporal
encoder that extracts such information through permutation and
multiplication of n consecutive hypervectors generated by the
previous encoder. Thus, n spatial hypervectors form an n-gram
hypervector (T ), defined as:

T = St ⊕ ρSt+1 ⊕ ρ2St+2 ⊕ ...⊕ ρn−1St+n−1 (2)

where ρk stands for k times permutation. The HD comput-
ing is trained off-line, generating different n-grams for each
gesture and adding them to create a protorype hypervector
stored in the associative memory (AM). During inference, an
unseen feature is encoded into an n-gram (query) hypervector,
compared with all the prototype hypervectors in AM through
the Hamming distance. Thus, the label associated with the
minimum distance is assigned as the classification output. Fig.
3 summarizes the classification process introduced above.

C. Implementation and Optimization on BioWolf

Typically, binary hypervectors assume a very high dimen-
sion (i.e., 10k-D), and they can be manipulated using mul-
tiplication, addition, and permutation (MAP) operations after
compacting them into 32-bit unsigned integer, leading to a con-
spicuous gain in performance and memory requirements.This
representation requires bitwise operations (i.e. read/insert bits



Fig. 4. Solar Panel current charging output for different illumination
conditions. Indoor illumination is typically around 600 lux (magnified), while
in outdoors, the illumination is about 10k lux.

into a 32-bit word) and to count the number of 1s in a word
(the well-known popcount). The RI5CY processor allows ag-
gressive performance optimizations including bit manipulation
instructions (builtins). This allows bitwise operations in 1 clock
cycle [19], dramatically reducing the computational load on the
MCU. An other optimization derives from the exploiting of the
parallel programming models through an optimized version of
Open Multi-Processing (OpenMP).

III. EXPERIMENTAL RESULTS

A. Electrical characterization

We characterized the system at 1000 samples-per-second
(SPS) sampling frequency, that guarantees a bandwidth of 262
Hz, exceeding the needs of most target applications. Noise
is measured by shorting the inputs of the electrodes and
varies depending on the chosen PGA gain. We compare the
performance with IFCN standards for clinical recording of
EEG signals [20], which are generally considered as the most
stringent for bio-potential acquisition. With PGA gain equal
to 1, it is measured at 1.65 µVRMS in the 0.5-100 Hz band,
decreasing to 0.97 µVRMS (gain = 2), 0.49 µVRMS (gain =
4) and 0.41 µVRMS (gain = 12) with PGA gain equal to 12.
Common Mode Rejection Ratio for a 50 Hz, 2 Vpp signal
ranges from a minimum of 115 dB (G = 1) to 122 dB (gain
= 12). Channel isolation exceeds 100 dB. These values are in
line with IFCN standards for clinical recording of EEG signals.

We also estimated the harvesting capabilities of the system
by measuring the current applied by the EH subsystem to
the battery in different illuminations. The installed solar panel
has the same footprint of the board (2 x 4 cm) aiming
to preserve wearability. Figure 4 summarizes the harvester
performances denoting, at the magnified frame, that under
indoor illumination (≈ 600 lux), generated current is quite low
(around 80 µA) but still enough to charge the system when
in standby (around 80 µA current consumption, as shown in
subsection III-C). This situation dramatically improves when
moving into brighter environments, where the solar panel can
deliver up to 2.5 mA.

Fig. 5. Average accuracy obtaining by HD computing, using the same data
collected by 10 subjects, increasing the number of gestures (from 1 to 11).

B. HDC performance

To demonstrate the performance of the system in terms of
classification accuracy, we involved in the experiment ten able-
bodied subjects (aged 26-42) without a previous history of
neurological or muscular disorders. All participants provided
written consent to participate in the experiments.

The algorithm is trained for each subject off-line and the
AM matrix stored in the L2 memory. The training can also be
executed on-chip in real time, but this is out from the scope of
this paper. The gestures tested in this work are open hand, fist,
index, 2-fingers pinch, ok, supination, pronation, number two,
number three, number four and rest position. Fig. 5 shows the
average accuracy results obtained by increasing the number of
gestures (from 2 to 11). The accuracy stands between 84.3%
and 99.4%, showing that this implementation is suitable for a
hand gesture controller [14].

Table I shows performance in execution time and energy
consumption obtained by executing the algorithm on different
configurations of the target architecture. A schematic block
diagram of the algorithm is shown in Fig. 3. The first kernel
(RMS) computes the envelope of the raw signals on a circular
buffer of dimension 60. It does not require bitwise operations.
Hence, the built-ins are not involved. This kernel can be
perfectly parallelized on eight cores as each core can extract
the envelope from 1 channel. In the MAP+ENCS kernel, the
cluster executes the component-wise XOR operation between
CIM and IM and the component-wise majority to create the
spatial hypervector. This is optimized through the built-ins,
obtaining 2.6× better performance. Moreover, the workload is
equally distributed among the cores of the cluster (each core
performs the encoding operations on a different portion of the
hypervector) showing a gain of 20.4× (7.7× wrt Mr. Wolf 1
core with built-ins).

In the last kernel (AM), the query hypervector in output from
the MAP+ENCS kernel is associated with one of the possible
gestures. Here, it is possible to optimize the performance of
the component-wise majority and the popcount (2.8×) used
for the Hamming distance through the built-ins. The small
quantity of work to distribute among multiple cores leads
to a saturation of the speed-up. The small gain obtained
in this kernel (9.5×) does not impact significantly on the



TABLE I
HD COMPUTING EXECUTION TIMES ON THE TARGET ARCHITECTURES,

WITH 10,000-D, N=1. (CYC, SU) STAND FOR (CYCLES, SPEED-UP). THE
TOTAL ENERGY/CLASS REPORTED, IS THE RESULT OF THE ADDITION OF
THE CONTRIBUTION OF THESE FUNCTIONS WITHOUT CONSIDERING THE

ENERGY DURING IDLE PERIODS.

Mr. Wolf 1 core Mr. Wolf 1 core built-ins Mr. Wolf 8 cores built-ins

Kernel cyc(k)a E(µJ)c cyc(k)a sub E(µJ)c cyc(k)a sub E(µJ)c
RMS 6.82 0.86 6.82 1.00 0.86 0.89 7.66 0.17
MAP+ENCS 569.10 71.91 215.35 2.64 27.21 27.94 20.36 5.55
AM 68.59 8.66 24.19 2.83 3.05 7.23 9.48 1.43
TOTAL 644.48 81.44 246.37 2.62 31.13 36.06 17.87 7.17

a cycles per sample, b speed-up wrt Mr.Wolf 1 core, c 100MHz@0.8V

TABLE II
CURRENT CONSUMPTION OF THE BOARD COMPONENTS IN THE

DIFFERENT OPERATIONAL STATES

Operating Processing on Digital Analog Battery
Mode Mr. Wolf Section Section Drain

@1.8 V @1.8 V @2.7 V @3.7 V
Sleep 55 µA 10 µA 10 µA 50 µA

Streaming 55 µA 7.2 mA 2.4 mA 6.4 mA
Application 1.0 mA 0.7 mA 2.4 mA 3.2 mA

overall performance (17.9×) because of the dominance of the
MAP+ENCS kernel.

C. Power Consumption

To evaluate the performance of the architecture we set the
operating frequency of Mr. Wolf to its most efficient operative
point, 100 MHz at 0.8 V.

Table I shows results related to the energy consumed for
the classification of a new sample. The dominant part of the
entire processing derives from the MAP+ENCS kernel with
an energy consumption of 71.9 µJ. The optimized version
with the built-ins leads to a gain of 2.6×, which is further
improved exploiting the parallel computing on eight cores
(13.0×). The overall energy consumption of the single core
execution is 81.44 µJ, further reduced by the introduction of
built-ins (2.6×). Furthermore, splitting the workload among
the eight cores leads to a total energy consumption of 7.2 µJ
for a single classification.

While running the application, the total power consumption
of the system derives from the contribution of the active
blocks, namely, Mr. Wolf, the ADC, and the Nordic Soc, for
a total of 11.84 mW. The analog sections (mainly the AFE)
is responsible for 67% of the power consumption, whether the
digital section (mostly BLE transmission of computation re-
sults, data transfer between AFE and Mr. Wolf) employs 13%.
The remaining power consumption derives from Mr. Wolf
(SoC and cluster), and it is the result of the parallelization,
the optimizations, and several power-management techniques.
Data are acquired at a sampling frequency of 1 KHz, and a new
window of data is elaborated each 8 ms (8 samples overlap).
The cluster elaborates the entire processing chain in less than
1ms. During the processing, only the required cores of the
cluster are clocked up avoiding energy loss. When the MCU
is in idle, we power off the cluster and part of the SoC (sleep
mode) to minimize the power consumption. As a result, our

system delivers up to 18 h of autonomy with a 60 mAh battery,
which can be further extended up to 19 h and 35 h in indoor
(600 lux)/outdoor (10000 lux) scenarios, respectively, using
the energy harvester subsystem. These results are based on
the values summarized in Table II, where we also show the
current consumption of the system in streaming mode, with
up to 9 h of autonomy, and sleep/standby (up to 1000 h).
While it is difficult to compare wearable systems directly, it is
still noticeable that SoA systems for EMG gesture recognition
have a battery life ranging from 3 to 11h [21], [22], [13],
independently from the algorithm that is used. As explained
above, our architecture is capable of providing around 2x
more autonomy with a tiny 60 mAh battery, offering superior
performance and unintrusive form factor.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a complete system for wearable
sensing and processing of biosignals, suitable for HMI design
based on hand gesture recognition. The performance of the
proposed system, both in terms of execution time and of
energy efficiency, allows the design of a smart interface to
communicate with objects through the hands. By virtue of its
highly optimized and versatile architecture, which combines a
small solar harvester with an energy efficient and versatile chip.
Biowolf can run a pattern recognition algorithm, recognizing
up to 11 hand gestures, and ensure up to 18 h of continuous
operation that can be further extended up to 35 h with outdoor
illumination, outperforming the State-of-the-Art systems which
reach only 11 h of operation with a standard 100 mAh
LiPo battery. This demonstrates the capabilities of BioWolf,
throwing the pillars for the next generation of unobtrusive and
real-time embedded architecture for biosignal processing.
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